fix: support dynamic timeouts for openai and azure

This commit is contained in:
Krrish Dholakia 2023-12-30 12:14:02 +05:30
parent 77be3e3114
commit c33c1d85bb
3 changed files with 36 additions and 24 deletions

View file

@ -247,7 +247,7 @@ class AzureChatCompletion(BaseLLM):
azure_client = AzureOpenAI(**azure_client_params)
else:
azure_client = client
response = azure_client.chat.completions.create(**data) # type: ignore
response = azure_client.chat.completions.create(**data, timeout=timeout) # type: ignore
stringified_response = response.model_dump_json()
## LOGGING
logging_obj.post_call(
@ -290,6 +290,7 @@ class AzureChatCompletion(BaseLLM):
raise AzureOpenAIError(
status_code=422, message="max retries must be an int"
)
# init AzureOpenAI Client
azure_client_params = {
"api_version": api_version,
@ -318,7 +319,9 @@ class AzureChatCompletion(BaseLLM):
"complete_input_dict": data,
},
)
response = await azure_client.chat.completions.create(**data)
response = await azure_client.chat.completions.create(
**data, timeout=timeout
)
return convert_to_model_response_object(
response_object=json.loads(response.model_dump_json()),
model_response_object=model_response,
@ -377,7 +380,7 @@ class AzureChatCompletion(BaseLLM):
"complete_input_dict": data,
},
)
response = azure_client.chat.completions.create(**data)
response = azure_client.chat.completions.create(**data, timeout=timeout)
streamwrapper = CustomStreamWrapper(
completion_stream=response,
model=model,
@ -427,7 +430,9 @@ class AzureChatCompletion(BaseLLM):
"complete_input_dict": data,
},
)
response = await azure_client.chat.completions.create(**data)
response = await azure_client.chat.completions.create(
**data, timeout=timeout
)
# return response
streamwrapper = CustomStreamWrapper(
completion_stream=response,
@ -451,6 +456,7 @@ class AzureChatCompletion(BaseLLM):
input: list,
client=None,
logging_obj=None,
timeout=None,
):
response = None
try:
@ -458,7 +464,7 @@ class AzureChatCompletion(BaseLLM):
openai_aclient = AsyncAzureOpenAI(**azure_client_params)
else:
openai_aclient = client
response = await openai_aclient.embeddings.create(**data)
response = await openai_aclient.embeddings.create(**data, timeout=timeout)
stringified_response = response.model_dump_json()
## LOGGING
logging_obj.post_call(
@ -541,6 +547,7 @@ class AzureChatCompletion(BaseLLM):
api_key=api_key,
model_response=model_response,
azure_client_params=azure_client_params,
timeout=timeout,
)
return response
if client is None:
@ -548,7 +555,7 @@ class AzureChatCompletion(BaseLLM):
else:
azure_client = client
## COMPLETION CALL
response = azure_client.embeddings.create(**data) # type: ignore
response = azure_client.embeddings.create(**data, timeout=timeout) # type: ignore
## LOGGING
logging_obj.post_call(
input=input,
@ -578,6 +585,7 @@ class AzureChatCompletion(BaseLLM):
input: list,
client=None,
logging_obj=None,
timeout=None,
):
response = None
try:
@ -590,7 +598,7 @@ class AzureChatCompletion(BaseLLM):
)
else:
openai_aclient = client
response = await openai_aclient.images.generate(**data)
response = await openai_aclient.images.generate(**data, timeout=timeout)
stringified_response = response.model_dump_json()
## LOGGING
logging_obj.post_call(
@ -656,7 +664,7 @@ class AzureChatCompletion(BaseLLM):
azure_client_params["azure_ad_token"] = azure_ad_token
if aimg_generation == True:
response = self.aimage_generation(data=data, input=input, logging_obj=logging_obj, model_response=model_response, api_key=api_key, client=client, azure_client_params=azure_client_params) # type: ignore
response = self.aimage_generation(data=data, input=input, logging_obj=logging_obj, model_response=model_response, api_key=api_key, client=client, azure_client_params=azure_client_params, timeout=timeout) # type: ignore
return response
if client is None:
@ -680,7 +688,7 @@ class AzureChatCompletion(BaseLLM):
)
## COMPLETION CALL
response = azure_client.images.generate(**data) # type: ignore
response = azure_client.images.generate(**data, timeout=timeout) # type: ignore
## LOGGING
logging_obj.post_call(
input=input,

View file

@ -306,7 +306,7 @@ class OpenAIChatCompletion(BaseLLM):
)
else:
openai_client = client
response = openai_client.chat.completions.create(**data) # type: ignore
response = openai_client.chat.completions.create(**data, timeout=timeout) # type: ignore
stringified_response = response.model_dump_json()
logging_obj.post_call(
input=messages,
@ -383,7 +383,9 @@ class OpenAIChatCompletion(BaseLLM):
},
)
response = await openai_aclient.chat.completions.create(**data)
response = await openai_aclient.chat.completions.create(
**data, timeout=timeout
)
stringified_response = response.model_dump_json()
logging_obj.post_call(
input=data["messages"],
@ -431,7 +433,7 @@ class OpenAIChatCompletion(BaseLLM):
"complete_input_dict": data,
},
)
response = openai_client.chat.completions.create(**data)
response = openai_client.chat.completions.create(**data, timeout=timeout)
streamwrapper = CustomStreamWrapper(
completion_stream=response,
model=model,
@ -476,7 +478,9 @@ class OpenAIChatCompletion(BaseLLM):
},
)
response = await openai_aclient.chat.completions.create(**data)
response = await openai_aclient.chat.completions.create(
**data, timeout=timeout
)
streamwrapper = CustomStreamWrapper(
completion_stream=response,
model=model,
@ -522,7 +526,7 @@ class OpenAIChatCompletion(BaseLLM):
)
else:
openai_aclient = client
response = await openai_aclient.embeddings.create(**data) # type: ignore
response = await openai_aclient.embeddings.create(**data, timeout=timeout) # type: ignore
stringified_response = response.model_dump_json()
## LOGGING
logging_obj.post_call(
@ -584,7 +588,7 @@ class OpenAIChatCompletion(BaseLLM):
openai_client = client
## COMPLETION CALL
response = openai_client.embeddings.create(**data) # type: ignore
response = openai_client.embeddings.create(**data, timeout=timeout) # type: ignore
## LOGGING
logging_obj.post_call(
input=input,
@ -629,7 +633,7 @@ class OpenAIChatCompletion(BaseLLM):
)
else:
openai_aclient = client
response = await openai_aclient.images.generate(**data) # type: ignore
response = await openai_aclient.images.generate(**data, timeout=timeout) # type: ignore
stringified_response = response.model_dump_json()
## LOGGING
logging_obj.post_call(
@ -669,9 +673,9 @@ class OpenAIChatCompletion(BaseLLM):
if not isinstance(max_retries, int):
raise OpenAIError(status_code=422, message="max retries must be an int")
# if aembedding == True:
# response = self.aembedding(data=data, input=input, logging_obj=logging_obj, model_response=model_response, api_base=api_base, api_key=api_key, timeout=timeout, client=client, max_retries=max_retries) # type: ignore
# return response
if aimg_generation == True:
response = self.aimage_generation(data=data, input=input, logging_obj=logging_obj, model_response=model_response, api_base=api_base, api_key=api_key, timeout=timeout, client=client, max_retries=max_retries) # type: ignore
return response
if client is None:
openai_client = OpenAI(
@ -697,7 +701,7 @@ class OpenAIChatCompletion(BaseLLM):
)
## COMPLETION CALL
response = openai_client.images.generate(**data) # type: ignore
response = openai_client.images.generate(**data, timeout=timeout) # type: ignore
## LOGGING
logging_obj.post_call(
input=input,

View file

@ -10,7 +10,7 @@ sys.path.insert(
import time
import litellm
import openai
import pytest
import pytest, uuid
def test_timeout():
@ -60,7 +60,7 @@ def test_hanging_request_azure():
encoded = litellm.utils.encode(model="gpt-3.5-turbo", text="blue")[0]
response = router.completion(
model="azure-gpt",
messages=[{"role": "user", "content": "what color is red"}],
messages=[{"role": "user", "content": f"what color is red {uuid.uuid4()}"}],
logit_bias={encoded: 100},
timeout=0.01,
)
@ -126,7 +126,7 @@ def test_hanging_request_openai():
)
test_hanging_request_openai()
# test_hanging_request_openai()
# test_timeout()
@ -155,4 +155,4 @@ def test_timeout_streaming():
)
test_timeout_streaming()
# test_timeout_streaming()