forked from phoenix/litellm-mirror
fix: support dynamic timeouts for openai and azure
This commit is contained in:
parent
77be3e3114
commit
c33c1d85bb
3 changed files with 36 additions and 24 deletions
|
@ -247,7 +247,7 @@ class AzureChatCompletion(BaseLLM):
|
||||||
azure_client = AzureOpenAI(**azure_client_params)
|
azure_client = AzureOpenAI(**azure_client_params)
|
||||||
else:
|
else:
|
||||||
azure_client = client
|
azure_client = client
|
||||||
response = azure_client.chat.completions.create(**data) # type: ignore
|
response = azure_client.chat.completions.create(**data, timeout=timeout) # type: ignore
|
||||||
stringified_response = response.model_dump_json()
|
stringified_response = response.model_dump_json()
|
||||||
## LOGGING
|
## LOGGING
|
||||||
logging_obj.post_call(
|
logging_obj.post_call(
|
||||||
|
@ -290,6 +290,7 @@ class AzureChatCompletion(BaseLLM):
|
||||||
raise AzureOpenAIError(
|
raise AzureOpenAIError(
|
||||||
status_code=422, message="max retries must be an int"
|
status_code=422, message="max retries must be an int"
|
||||||
)
|
)
|
||||||
|
|
||||||
# init AzureOpenAI Client
|
# init AzureOpenAI Client
|
||||||
azure_client_params = {
|
azure_client_params = {
|
||||||
"api_version": api_version,
|
"api_version": api_version,
|
||||||
|
@ -318,7 +319,9 @@ class AzureChatCompletion(BaseLLM):
|
||||||
"complete_input_dict": data,
|
"complete_input_dict": data,
|
||||||
},
|
},
|
||||||
)
|
)
|
||||||
response = await azure_client.chat.completions.create(**data)
|
response = await azure_client.chat.completions.create(
|
||||||
|
**data, timeout=timeout
|
||||||
|
)
|
||||||
return convert_to_model_response_object(
|
return convert_to_model_response_object(
|
||||||
response_object=json.loads(response.model_dump_json()),
|
response_object=json.loads(response.model_dump_json()),
|
||||||
model_response_object=model_response,
|
model_response_object=model_response,
|
||||||
|
@ -377,7 +380,7 @@ class AzureChatCompletion(BaseLLM):
|
||||||
"complete_input_dict": data,
|
"complete_input_dict": data,
|
||||||
},
|
},
|
||||||
)
|
)
|
||||||
response = azure_client.chat.completions.create(**data)
|
response = azure_client.chat.completions.create(**data, timeout=timeout)
|
||||||
streamwrapper = CustomStreamWrapper(
|
streamwrapper = CustomStreamWrapper(
|
||||||
completion_stream=response,
|
completion_stream=response,
|
||||||
model=model,
|
model=model,
|
||||||
|
@ -427,7 +430,9 @@ class AzureChatCompletion(BaseLLM):
|
||||||
"complete_input_dict": data,
|
"complete_input_dict": data,
|
||||||
},
|
},
|
||||||
)
|
)
|
||||||
response = await azure_client.chat.completions.create(**data)
|
response = await azure_client.chat.completions.create(
|
||||||
|
**data, timeout=timeout
|
||||||
|
)
|
||||||
# return response
|
# return response
|
||||||
streamwrapper = CustomStreamWrapper(
|
streamwrapper = CustomStreamWrapper(
|
||||||
completion_stream=response,
|
completion_stream=response,
|
||||||
|
@ -451,6 +456,7 @@ class AzureChatCompletion(BaseLLM):
|
||||||
input: list,
|
input: list,
|
||||||
client=None,
|
client=None,
|
||||||
logging_obj=None,
|
logging_obj=None,
|
||||||
|
timeout=None,
|
||||||
):
|
):
|
||||||
response = None
|
response = None
|
||||||
try:
|
try:
|
||||||
|
@ -458,7 +464,7 @@ class AzureChatCompletion(BaseLLM):
|
||||||
openai_aclient = AsyncAzureOpenAI(**azure_client_params)
|
openai_aclient = AsyncAzureOpenAI(**azure_client_params)
|
||||||
else:
|
else:
|
||||||
openai_aclient = client
|
openai_aclient = client
|
||||||
response = await openai_aclient.embeddings.create(**data)
|
response = await openai_aclient.embeddings.create(**data, timeout=timeout)
|
||||||
stringified_response = response.model_dump_json()
|
stringified_response = response.model_dump_json()
|
||||||
## LOGGING
|
## LOGGING
|
||||||
logging_obj.post_call(
|
logging_obj.post_call(
|
||||||
|
@ -541,6 +547,7 @@ class AzureChatCompletion(BaseLLM):
|
||||||
api_key=api_key,
|
api_key=api_key,
|
||||||
model_response=model_response,
|
model_response=model_response,
|
||||||
azure_client_params=azure_client_params,
|
azure_client_params=azure_client_params,
|
||||||
|
timeout=timeout,
|
||||||
)
|
)
|
||||||
return response
|
return response
|
||||||
if client is None:
|
if client is None:
|
||||||
|
@ -548,7 +555,7 @@ class AzureChatCompletion(BaseLLM):
|
||||||
else:
|
else:
|
||||||
azure_client = client
|
azure_client = client
|
||||||
## COMPLETION CALL
|
## COMPLETION CALL
|
||||||
response = azure_client.embeddings.create(**data) # type: ignore
|
response = azure_client.embeddings.create(**data, timeout=timeout) # type: ignore
|
||||||
## LOGGING
|
## LOGGING
|
||||||
logging_obj.post_call(
|
logging_obj.post_call(
|
||||||
input=input,
|
input=input,
|
||||||
|
@ -578,6 +585,7 @@ class AzureChatCompletion(BaseLLM):
|
||||||
input: list,
|
input: list,
|
||||||
client=None,
|
client=None,
|
||||||
logging_obj=None,
|
logging_obj=None,
|
||||||
|
timeout=None,
|
||||||
):
|
):
|
||||||
response = None
|
response = None
|
||||||
try:
|
try:
|
||||||
|
@ -590,7 +598,7 @@ class AzureChatCompletion(BaseLLM):
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
openai_aclient = client
|
openai_aclient = client
|
||||||
response = await openai_aclient.images.generate(**data)
|
response = await openai_aclient.images.generate(**data, timeout=timeout)
|
||||||
stringified_response = response.model_dump_json()
|
stringified_response = response.model_dump_json()
|
||||||
## LOGGING
|
## LOGGING
|
||||||
logging_obj.post_call(
|
logging_obj.post_call(
|
||||||
|
@ -656,7 +664,7 @@ class AzureChatCompletion(BaseLLM):
|
||||||
azure_client_params["azure_ad_token"] = azure_ad_token
|
azure_client_params["azure_ad_token"] = azure_ad_token
|
||||||
|
|
||||||
if aimg_generation == True:
|
if aimg_generation == True:
|
||||||
response = self.aimage_generation(data=data, input=input, logging_obj=logging_obj, model_response=model_response, api_key=api_key, client=client, azure_client_params=azure_client_params) # type: ignore
|
response = self.aimage_generation(data=data, input=input, logging_obj=logging_obj, model_response=model_response, api_key=api_key, client=client, azure_client_params=azure_client_params, timeout=timeout) # type: ignore
|
||||||
return response
|
return response
|
||||||
|
|
||||||
if client is None:
|
if client is None:
|
||||||
|
@ -680,7 +688,7 @@ class AzureChatCompletion(BaseLLM):
|
||||||
)
|
)
|
||||||
|
|
||||||
## COMPLETION CALL
|
## COMPLETION CALL
|
||||||
response = azure_client.images.generate(**data) # type: ignore
|
response = azure_client.images.generate(**data, timeout=timeout) # type: ignore
|
||||||
## LOGGING
|
## LOGGING
|
||||||
logging_obj.post_call(
|
logging_obj.post_call(
|
||||||
input=input,
|
input=input,
|
||||||
|
|
|
@ -306,7 +306,7 @@ class OpenAIChatCompletion(BaseLLM):
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
openai_client = client
|
openai_client = client
|
||||||
response = openai_client.chat.completions.create(**data) # type: ignore
|
response = openai_client.chat.completions.create(**data, timeout=timeout) # type: ignore
|
||||||
stringified_response = response.model_dump_json()
|
stringified_response = response.model_dump_json()
|
||||||
logging_obj.post_call(
|
logging_obj.post_call(
|
||||||
input=messages,
|
input=messages,
|
||||||
|
@ -383,7 +383,9 @@ class OpenAIChatCompletion(BaseLLM):
|
||||||
},
|
},
|
||||||
)
|
)
|
||||||
|
|
||||||
response = await openai_aclient.chat.completions.create(**data)
|
response = await openai_aclient.chat.completions.create(
|
||||||
|
**data, timeout=timeout
|
||||||
|
)
|
||||||
stringified_response = response.model_dump_json()
|
stringified_response = response.model_dump_json()
|
||||||
logging_obj.post_call(
|
logging_obj.post_call(
|
||||||
input=data["messages"],
|
input=data["messages"],
|
||||||
|
@ -431,7 +433,7 @@ class OpenAIChatCompletion(BaseLLM):
|
||||||
"complete_input_dict": data,
|
"complete_input_dict": data,
|
||||||
},
|
},
|
||||||
)
|
)
|
||||||
response = openai_client.chat.completions.create(**data)
|
response = openai_client.chat.completions.create(**data, timeout=timeout)
|
||||||
streamwrapper = CustomStreamWrapper(
|
streamwrapper = CustomStreamWrapper(
|
||||||
completion_stream=response,
|
completion_stream=response,
|
||||||
model=model,
|
model=model,
|
||||||
|
@ -476,7 +478,9 @@ class OpenAIChatCompletion(BaseLLM):
|
||||||
},
|
},
|
||||||
)
|
)
|
||||||
|
|
||||||
response = await openai_aclient.chat.completions.create(**data)
|
response = await openai_aclient.chat.completions.create(
|
||||||
|
**data, timeout=timeout
|
||||||
|
)
|
||||||
streamwrapper = CustomStreamWrapper(
|
streamwrapper = CustomStreamWrapper(
|
||||||
completion_stream=response,
|
completion_stream=response,
|
||||||
model=model,
|
model=model,
|
||||||
|
@ -522,7 +526,7 @@ class OpenAIChatCompletion(BaseLLM):
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
openai_aclient = client
|
openai_aclient = client
|
||||||
response = await openai_aclient.embeddings.create(**data) # type: ignore
|
response = await openai_aclient.embeddings.create(**data, timeout=timeout) # type: ignore
|
||||||
stringified_response = response.model_dump_json()
|
stringified_response = response.model_dump_json()
|
||||||
## LOGGING
|
## LOGGING
|
||||||
logging_obj.post_call(
|
logging_obj.post_call(
|
||||||
|
@ -584,7 +588,7 @@ class OpenAIChatCompletion(BaseLLM):
|
||||||
openai_client = client
|
openai_client = client
|
||||||
|
|
||||||
## COMPLETION CALL
|
## COMPLETION CALL
|
||||||
response = openai_client.embeddings.create(**data) # type: ignore
|
response = openai_client.embeddings.create(**data, timeout=timeout) # type: ignore
|
||||||
## LOGGING
|
## LOGGING
|
||||||
logging_obj.post_call(
|
logging_obj.post_call(
|
||||||
input=input,
|
input=input,
|
||||||
|
@ -629,7 +633,7 @@ class OpenAIChatCompletion(BaseLLM):
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
openai_aclient = client
|
openai_aclient = client
|
||||||
response = await openai_aclient.images.generate(**data) # type: ignore
|
response = await openai_aclient.images.generate(**data, timeout=timeout) # type: ignore
|
||||||
stringified_response = response.model_dump_json()
|
stringified_response = response.model_dump_json()
|
||||||
## LOGGING
|
## LOGGING
|
||||||
logging_obj.post_call(
|
logging_obj.post_call(
|
||||||
|
@ -669,9 +673,9 @@ class OpenAIChatCompletion(BaseLLM):
|
||||||
if not isinstance(max_retries, int):
|
if not isinstance(max_retries, int):
|
||||||
raise OpenAIError(status_code=422, message="max retries must be an int")
|
raise OpenAIError(status_code=422, message="max retries must be an int")
|
||||||
|
|
||||||
# if aembedding == True:
|
if aimg_generation == True:
|
||||||
# response = self.aembedding(data=data, input=input, logging_obj=logging_obj, model_response=model_response, api_base=api_base, api_key=api_key, timeout=timeout, client=client, max_retries=max_retries) # type: ignore
|
response = self.aimage_generation(data=data, input=input, logging_obj=logging_obj, model_response=model_response, api_base=api_base, api_key=api_key, timeout=timeout, client=client, max_retries=max_retries) # type: ignore
|
||||||
# return response
|
return response
|
||||||
|
|
||||||
if client is None:
|
if client is None:
|
||||||
openai_client = OpenAI(
|
openai_client = OpenAI(
|
||||||
|
@ -697,7 +701,7 @@ class OpenAIChatCompletion(BaseLLM):
|
||||||
)
|
)
|
||||||
|
|
||||||
## COMPLETION CALL
|
## COMPLETION CALL
|
||||||
response = openai_client.images.generate(**data) # type: ignore
|
response = openai_client.images.generate(**data, timeout=timeout) # type: ignore
|
||||||
## LOGGING
|
## LOGGING
|
||||||
logging_obj.post_call(
|
logging_obj.post_call(
|
||||||
input=input,
|
input=input,
|
||||||
|
|
|
@ -10,7 +10,7 @@ sys.path.insert(
|
||||||
import time
|
import time
|
||||||
import litellm
|
import litellm
|
||||||
import openai
|
import openai
|
||||||
import pytest
|
import pytest, uuid
|
||||||
|
|
||||||
|
|
||||||
def test_timeout():
|
def test_timeout():
|
||||||
|
@ -60,7 +60,7 @@ def test_hanging_request_azure():
|
||||||
encoded = litellm.utils.encode(model="gpt-3.5-turbo", text="blue")[0]
|
encoded = litellm.utils.encode(model="gpt-3.5-turbo", text="blue")[0]
|
||||||
response = router.completion(
|
response = router.completion(
|
||||||
model="azure-gpt",
|
model="azure-gpt",
|
||||||
messages=[{"role": "user", "content": "what color is red"}],
|
messages=[{"role": "user", "content": f"what color is red {uuid.uuid4()}"}],
|
||||||
logit_bias={encoded: 100},
|
logit_bias={encoded: 100},
|
||||||
timeout=0.01,
|
timeout=0.01,
|
||||||
)
|
)
|
||||||
|
@ -126,7 +126,7 @@ def test_hanging_request_openai():
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
test_hanging_request_openai()
|
# test_hanging_request_openai()
|
||||||
|
|
||||||
# test_timeout()
|
# test_timeout()
|
||||||
|
|
||||||
|
@ -155,4 +155,4 @@ def test_timeout_streaming():
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
test_timeout_streaming()
|
# test_timeout_streaming()
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue