forked from phoenix/litellm-mirror
(Feat) Add langsmith key based logging (#6682)
* add langsmith_api_key to StandardCallbackDynamicParams * create a file for langsmith types * langsmith add key / team based logging * add key based logging for langsmith * fix langsmith key based logging * fix linting langsmith * remove NOQA violation * add unit test coverage for all helpers in test langsmith * test_langsmith_key_based_logging * docs langsmith key based logging * run langsmith tests in logging callback tests * fix logging testing * test_langsmith_key_based_logging * test_add_callback_via_key_litellm_pre_call_utils_langsmith * add debug statement langsmith key based logging * test_langsmith_key_based_logging
This commit is contained in:
parent
1e2ba3e045
commit
c3bc9e6b12
9 changed files with 810 additions and 179 deletions
|
@ -22,61 +22,6 @@ litellm.set_verbose = True
|
|||
import time
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_langsmith_queue_logging():
|
||||
try:
|
||||
# Initialize LangsmithLogger
|
||||
test_langsmith_logger = LangsmithLogger()
|
||||
|
||||
litellm.callbacks = [test_langsmith_logger]
|
||||
test_langsmith_logger.batch_size = 6
|
||||
litellm.set_verbose = True
|
||||
|
||||
# Make multiple calls to ensure we don't hit the batch size
|
||||
for _ in range(5):
|
||||
response = await litellm.acompletion(
|
||||
model="gpt-3.5-turbo",
|
||||
messages=[{"role": "user", "content": "Test message"}],
|
||||
max_tokens=10,
|
||||
temperature=0.2,
|
||||
mock_response="This is a mock response",
|
||||
)
|
||||
|
||||
await asyncio.sleep(3)
|
||||
|
||||
# Check that logs are in the queue
|
||||
assert len(test_langsmith_logger.log_queue) == 5
|
||||
|
||||
# Now make calls to exceed the batch size
|
||||
for _ in range(3):
|
||||
response = await litellm.acompletion(
|
||||
model="gpt-3.5-turbo",
|
||||
messages=[{"role": "user", "content": "Test message"}],
|
||||
max_tokens=10,
|
||||
temperature=0.2,
|
||||
mock_response="This is a mock response",
|
||||
)
|
||||
|
||||
# Wait a short time for any asynchronous operations to complete
|
||||
await asyncio.sleep(1)
|
||||
|
||||
print(
|
||||
"Length of langsmith log queue: {}".format(
|
||||
len(test_langsmith_logger.log_queue)
|
||||
)
|
||||
)
|
||||
# Check that the queue was flushed after exceeding batch size
|
||||
assert len(test_langsmith_logger.log_queue) < 5
|
||||
|
||||
# Clean up
|
||||
for cb in litellm.callbacks:
|
||||
if isinstance(cb, LangsmithLogger):
|
||||
await cb.async_httpx_client.client.aclose()
|
||||
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
||||
# test_langsmith_logging()
|
||||
|
||||
|
||||
|
|
394
tests/logging_callback_tests/test_langsmith_unit_test.py
Normal file
394
tests/logging_callback_tests/test_langsmith_unit_test.py
Normal file
|
@ -0,0 +1,394 @@
|
|||
import io
|
||||
import os
|
||||
import sys
|
||||
|
||||
|
||||
sys.path.insert(0, os.path.abspath("../.."))
|
||||
|
||||
import asyncio
|
||||
import gzip
|
||||
import json
|
||||
import logging
|
||||
import time
|
||||
from unittest.mock import AsyncMock, patch, MagicMock
|
||||
import pytest
|
||||
from datetime import datetime, timezone
|
||||
from litellm.integrations.langsmith import (
|
||||
LangsmithLogger,
|
||||
LangsmithQueueObject,
|
||||
CredentialsKey,
|
||||
BatchGroup,
|
||||
)
|
||||
|
||||
import litellm
|
||||
|
||||
|
||||
# Test get_credentials_from_env
|
||||
@pytest.mark.asyncio
|
||||
async def test_get_credentials_from_env():
|
||||
# Test with direct parameters
|
||||
logger = LangsmithLogger(
|
||||
langsmith_api_key="test-key",
|
||||
langsmith_project="test-project",
|
||||
langsmith_base_url="http://test-url",
|
||||
)
|
||||
|
||||
credentials = logger.get_credentials_from_env(
|
||||
langsmith_api_key="custom-key",
|
||||
langsmith_project="custom-project",
|
||||
langsmith_base_url="http://custom-url",
|
||||
)
|
||||
|
||||
assert credentials["LANGSMITH_API_KEY"] == "custom-key"
|
||||
assert credentials["LANGSMITH_PROJECT"] == "custom-project"
|
||||
assert credentials["LANGSMITH_BASE_URL"] == "http://custom-url"
|
||||
|
||||
# assert that the default api base is used if not provided
|
||||
credentials = logger.get_credentials_from_env()
|
||||
assert credentials["LANGSMITH_BASE_URL"] == "https://api.smith.langchain.com"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_group_batches_by_credentials():
|
||||
|
||||
logger = LangsmithLogger(langsmith_api_key="test-key")
|
||||
|
||||
# Create test queue objects
|
||||
queue_obj1 = LangsmithQueueObject(
|
||||
data={"test": "data1"},
|
||||
credentials={
|
||||
"LANGSMITH_API_KEY": "key1",
|
||||
"LANGSMITH_PROJECT": "proj1",
|
||||
"LANGSMITH_BASE_URL": "url1",
|
||||
},
|
||||
)
|
||||
|
||||
queue_obj2 = LangsmithQueueObject(
|
||||
data={"test": "data2"},
|
||||
credentials={
|
||||
"LANGSMITH_API_KEY": "key1",
|
||||
"LANGSMITH_PROJECT": "proj1",
|
||||
"LANGSMITH_BASE_URL": "url1",
|
||||
},
|
||||
)
|
||||
|
||||
logger.log_queue = [queue_obj1, queue_obj2]
|
||||
|
||||
grouped = logger._group_batches_by_credentials()
|
||||
|
||||
# Check grouping
|
||||
assert len(grouped) == 1 # Should have one group since credentials are same
|
||||
key = list(grouped.keys())[0]
|
||||
assert isinstance(key, CredentialsKey)
|
||||
assert len(grouped[key].queue_objects) == 2
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_group_batches_by_credentials_multiple_credentials():
|
||||
|
||||
# Test with multiple different credentials
|
||||
logger = LangsmithLogger(langsmith_api_key="test-key")
|
||||
|
||||
queue_obj1 = LangsmithQueueObject(
|
||||
data={"test": "data1"},
|
||||
credentials={
|
||||
"LANGSMITH_API_KEY": "key1",
|
||||
"LANGSMITH_PROJECT": "proj1",
|
||||
"LANGSMITH_BASE_URL": "url1",
|
||||
},
|
||||
)
|
||||
|
||||
queue_obj2 = LangsmithQueueObject(
|
||||
data={"test": "data2"},
|
||||
credentials={
|
||||
"LANGSMITH_API_KEY": "key2", # Different API key
|
||||
"LANGSMITH_PROJECT": "proj1",
|
||||
"LANGSMITH_BASE_URL": "url1",
|
||||
},
|
||||
)
|
||||
|
||||
queue_obj3 = LangsmithQueueObject(
|
||||
data={"test": "data3"},
|
||||
credentials={
|
||||
"LANGSMITH_API_KEY": "key1",
|
||||
"LANGSMITH_PROJECT": "proj2", # Different project
|
||||
"LANGSMITH_BASE_URL": "url1",
|
||||
},
|
||||
)
|
||||
|
||||
logger.log_queue = [queue_obj1, queue_obj2, queue_obj3]
|
||||
|
||||
grouped = logger._group_batches_by_credentials()
|
||||
|
||||
# Check grouping
|
||||
assert len(grouped) == 3 # Should have three groups since credentials differ
|
||||
for key, batch_group in grouped.items():
|
||||
assert isinstance(key, CredentialsKey)
|
||||
assert len(batch_group.queue_objects) == 1 # Each group should have one object
|
||||
|
||||
|
||||
# Test make_dot_order
|
||||
@pytest.mark.asyncio
|
||||
async def test_make_dot_order():
|
||||
logger = LangsmithLogger(langsmith_api_key="test-key")
|
||||
run_id = "729cff0e-f30c-4336-8b79-45d6b61c64b4"
|
||||
dot_order = logger.make_dot_order(run_id)
|
||||
|
||||
print("dot_order=", dot_order)
|
||||
|
||||
# Check format: YYYYMMDDTHHMMSSfffZ + run_id
|
||||
# Check the timestamp portion (first 23 characters)
|
||||
timestamp_part = dot_order[:-36] # 36 is length of run_id
|
||||
assert len(timestamp_part) == 22
|
||||
assert timestamp_part[8] == "T" # Check T separator
|
||||
assert timestamp_part[-1] == "Z" # Check Z suffix
|
||||
|
||||
# Verify timestamp format
|
||||
try:
|
||||
# Parse the timestamp portion (removing the Z)
|
||||
datetime.strptime(timestamp_part[:-1], "%Y%m%dT%H%M%S%f")
|
||||
except ValueError:
|
||||
pytest.fail("Timestamp portion is not in correct format")
|
||||
|
||||
# Verify run_id portion
|
||||
assert dot_order[-36:] == run_id
|
||||
|
||||
|
||||
# Test is_serializable
|
||||
@pytest.mark.asyncio
|
||||
async def test_is_serializable():
|
||||
from litellm.integrations.langsmith import is_serializable
|
||||
from pydantic import BaseModel
|
||||
|
||||
# Test basic types
|
||||
assert is_serializable("string") is True
|
||||
assert is_serializable(123) is True
|
||||
assert is_serializable({"key": "value"}) is True
|
||||
|
||||
# Test non-serializable types
|
||||
async def async_func():
|
||||
pass
|
||||
|
||||
assert is_serializable(async_func) is False
|
||||
|
||||
class TestModel(BaseModel):
|
||||
field: str
|
||||
|
||||
assert is_serializable(TestModel(field="test")) is False
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_async_send_batch():
|
||||
logger = LangsmithLogger(langsmith_api_key="test-key")
|
||||
|
||||
# Mock the httpx client
|
||||
mock_response = AsyncMock()
|
||||
mock_response.status_code = 200
|
||||
logger.async_httpx_client = AsyncMock()
|
||||
logger.async_httpx_client.post.return_value = mock_response
|
||||
|
||||
# Add test data to queue
|
||||
logger.log_queue = [
|
||||
LangsmithQueueObject(
|
||||
data={"test": "data"}, credentials=logger.default_credentials
|
||||
)
|
||||
]
|
||||
|
||||
await logger.async_send_batch()
|
||||
|
||||
# Verify the API call
|
||||
logger.async_httpx_client.post.assert_called_once()
|
||||
call_args = logger.async_httpx_client.post.call_args
|
||||
assert "runs/batch" in call_args[1]["url"]
|
||||
assert "x-api-key" in call_args[1]["headers"]
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_langsmith_key_based_logging(mocker):
|
||||
"""
|
||||
In key based logging langsmith_api_key and langsmith_project are passed directly to litellm.acompletion
|
||||
"""
|
||||
try:
|
||||
# Mock the httpx post request
|
||||
mock_post = mocker.patch(
|
||||
"litellm.llms.custom_httpx.http_handler.AsyncHTTPHandler.post"
|
||||
)
|
||||
mock_post.return_value.status_code = 200
|
||||
mock_post.return_value.raise_for_status = lambda: None
|
||||
litellm.set_verbose = True
|
||||
|
||||
litellm.callbacks = [LangsmithLogger()]
|
||||
response = await litellm.acompletion(
|
||||
model="gpt-3.5-turbo",
|
||||
messages=[{"role": "user", "content": "Test message"}],
|
||||
max_tokens=10,
|
||||
temperature=0.2,
|
||||
mock_response="This is a mock response",
|
||||
langsmith_api_key="fake_key_project2",
|
||||
langsmith_project="fake_project2",
|
||||
)
|
||||
print("Waiting for logs to be flushed to Langsmith.....")
|
||||
await asyncio.sleep(15)
|
||||
|
||||
print("done sleeping 15 seconds...")
|
||||
|
||||
# Verify the post request was made with correct parameters
|
||||
mock_post.assert_called_once()
|
||||
call_args = mock_post.call_args
|
||||
|
||||
print("call_args", call_args)
|
||||
|
||||
# Check URL contains /runs/batch
|
||||
assert "/runs/batch" in call_args[1]["url"]
|
||||
|
||||
# Check headers contain the correct API key
|
||||
assert call_args[1]["headers"]["x-api-key"] == "fake_key_project2"
|
||||
|
||||
# Verify the request body contains the expected data
|
||||
request_body = call_args[1]["json"]
|
||||
assert "post" in request_body
|
||||
assert len(request_body["post"]) == 1 # Should contain one run
|
||||
|
||||
# EXPECTED BODY
|
||||
expected_body = {
|
||||
"post": [
|
||||
{
|
||||
"name": "LLMRun",
|
||||
"run_type": "llm",
|
||||
"inputs": {
|
||||
"id": "chatcmpl-82699ee4-7932-4fc0-9585-76abc8caeafa",
|
||||
"call_type": "acompletion",
|
||||
"model": "gpt-3.5-turbo",
|
||||
"messages": [{"role": "user", "content": "Test message"}],
|
||||
"model_parameters": {
|
||||
"temperature": 0.2,
|
||||
"max_tokens": 10,
|
||||
"extra_body": {},
|
||||
},
|
||||
},
|
||||
"outputs": {
|
||||
"id": "chatcmpl-82699ee4-7932-4fc0-9585-76abc8caeafa",
|
||||
"model": "gpt-3.5-turbo",
|
||||
"choices": [
|
||||
{
|
||||
"finish_reason": "stop",
|
||||
"index": 0,
|
||||
"message": {
|
||||
"content": "This is a mock response",
|
||||
"role": "assistant",
|
||||
"tool_calls": None,
|
||||
"function_call": None,
|
||||
},
|
||||
}
|
||||
],
|
||||
"usage": {
|
||||
"completion_tokens": 20,
|
||||
"prompt_tokens": 10,
|
||||
"total_tokens": 30,
|
||||
},
|
||||
},
|
||||
"session_name": "fake_project2",
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
# Print both bodies for debugging
|
||||
actual_body = call_args[1]["json"]
|
||||
print("\nExpected body:")
|
||||
print(json.dumps(expected_body, indent=2))
|
||||
print("\nActual body:")
|
||||
print(json.dumps(actual_body, indent=2))
|
||||
|
||||
assert len(actual_body["post"]) == 1
|
||||
|
||||
# Assert only the critical parts we care about
|
||||
assert actual_body["post"][0]["name"] == expected_body["post"][0]["name"]
|
||||
assert (
|
||||
actual_body["post"][0]["run_type"] == expected_body["post"][0]["run_type"]
|
||||
)
|
||||
assert (
|
||||
actual_body["post"][0]["inputs"]["messages"]
|
||||
== expected_body["post"][0]["inputs"]["messages"]
|
||||
)
|
||||
assert (
|
||||
actual_body["post"][0]["inputs"]["model_parameters"]
|
||||
== expected_body["post"][0]["inputs"]["model_parameters"]
|
||||
)
|
||||
assert (
|
||||
actual_body["post"][0]["outputs"]["choices"]
|
||||
== expected_body["post"][0]["outputs"]["choices"]
|
||||
)
|
||||
assert (
|
||||
actual_body["post"][0]["outputs"]["usage"]["completion_tokens"]
|
||||
== expected_body["post"][0]["outputs"]["usage"]["completion_tokens"]
|
||||
)
|
||||
assert (
|
||||
actual_body["post"][0]["outputs"]["usage"]["prompt_tokens"]
|
||||
== expected_body["post"][0]["outputs"]["usage"]["prompt_tokens"]
|
||||
)
|
||||
assert (
|
||||
actual_body["post"][0]["outputs"]["usage"]["total_tokens"]
|
||||
== expected_body["post"][0]["outputs"]["usage"]["total_tokens"]
|
||||
)
|
||||
assert (
|
||||
actual_body["post"][0]["session_name"]
|
||||
== expected_body["post"][0]["session_name"]
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_langsmith_queue_logging():
|
||||
try:
|
||||
# Initialize LangsmithLogger
|
||||
test_langsmith_logger = LangsmithLogger()
|
||||
|
||||
litellm.callbacks = [test_langsmith_logger]
|
||||
test_langsmith_logger.batch_size = 6
|
||||
litellm.set_verbose = True
|
||||
|
||||
# Make multiple calls to ensure we don't hit the batch size
|
||||
for _ in range(5):
|
||||
response = await litellm.acompletion(
|
||||
model="gpt-3.5-turbo",
|
||||
messages=[{"role": "user", "content": "Test message"}],
|
||||
max_tokens=10,
|
||||
temperature=0.2,
|
||||
mock_response="This is a mock response",
|
||||
)
|
||||
|
||||
await asyncio.sleep(3)
|
||||
|
||||
# Check that logs are in the queue
|
||||
assert len(test_langsmith_logger.log_queue) == 5
|
||||
|
||||
# Now make calls to exceed the batch size
|
||||
for _ in range(3):
|
||||
response = await litellm.acompletion(
|
||||
model="gpt-3.5-turbo",
|
||||
messages=[{"role": "user", "content": "Test message"}],
|
||||
max_tokens=10,
|
||||
temperature=0.2,
|
||||
mock_response="This is a mock response",
|
||||
)
|
||||
|
||||
# Wait a short time for any asynchronous operations to complete
|
||||
await asyncio.sleep(1)
|
||||
|
||||
print(
|
||||
"Length of langsmith log queue: {}".format(
|
||||
len(test_langsmith_logger.log_queue)
|
||||
)
|
||||
)
|
||||
# Check that the queue was flushed after exceeding batch size
|
||||
assert len(test_langsmith_logger.log_queue) < 5
|
||||
|
||||
# Clean up
|
||||
for cb in litellm.callbacks:
|
||||
if isinstance(cb, LangsmithLogger):
|
||||
await cb.async_httpx_client.client.aclose()
|
||||
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
|
@ -1632,6 +1632,139 @@ async def test_add_callback_via_key_litellm_pre_call_utils_gcs_bucket(
|
|||
assert new_data["failure_callback"] == expected_failure_callbacks
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize(
|
||||
"callback_type, expected_success_callbacks, expected_failure_callbacks",
|
||||
[
|
||||
("success", ["langsmith"], []),
|
||||
("failure", [], ["langsmith"]),
|
||||
("success_and_failure", ["langsmith"], ["langsmith"]),
|
||||
],
|
||||
)
|
||||
async def test_add_callback_via_key_litellm_pre_call_utils_langsmith(
|
||||
prisma_client, callback_type, expected_success_callbacks, expected_failure_callbacks
|
||||
):
|
||||
import json
|
||||
|
||||
from fastapi import HTTPException, Request, Response
|
||||
from starlette.datastructures import URL
|
||||
|
||||
from litellm.proxy.litellm_pre_call_utils import add_litellm_data_to_request
|
||||
|
||||
setattr(litellm.proxy.proxy_server, "prisma_client", prisma_client)
|
||||
setattr(litellm.proxy.proxy_server, "master_key", "sk-1234")
|
||||
await litellm.proxy.proxy_server.prisma_client.connect()
|
||||
|
||||
proxy_config = getattr(litellm.proxy.proxy_server, "proxy_config")
|
||||
|
||||
request = Request(scope={"type": "http", "method": "POST", "headers": {}})
|
||||
request._url = URL(url="/chat/completions")
|
||||
|
||||
test_data = {
|
||||
"model": "azure/chatgpt-v-2",
|
||||
"messages": [
|
||||
{"role": "user", "content": "write 1 sentence poem"},
|
||||
],
|
||||
"max_tokens": 10,
|
||||
"mock_response": "Hello world",
|
||||
"api_key": "my-fake-key",
|
||||
}
|
||||
|
||||
json_bytes = json.dumps(test_data).encode("utf-8")
|
||||
|
||||
request._body = json_bytes
|
||||
|
||||
data = {
|
||||
"data": {
|
||||
"model": "azure/chatgpt-v-2",
|
||||
"messages": [{"role": "user", "content": "write 1 sentence poem"}],
|
||||
"max_tokens": 10,
|
||||
"mock_response": "Hello world",
|
||||
"api_key": "my-fake-key",
|
||||
},
|
||||
"request": request,
|
||||
"user_api_key_dict": UserAPIKeyAuth(
|
||||
token=None,
|
||||
key_name=None,
|
||||
key_alias=None,
|
||||
spend=0.0,
|
||||
max_budget=None,
|
||||
expires=None,
|
||||
models=[],
|
||||
aliases={},
|
||||
config={},
|
||||
user_id=None,
|
||||
team_id=None,
|
||||
max_parallel_requests=None,
|
||||
metadata={
|
||||
"logging": [
|
||||
{
|
||||
"callback_name": "langsmith",
|
||||
"callback_type": callback_type,
|
||||
"callback_vars": {
|
||||
"langsmith_api_key": "ls-1234",
|
||||
"langsmith_project": "pr-brief-resemblance-72",
|
||||
"langsmith_base_url": "https://api.smith.langchain.com",
|
||||
},
|
||||
}
|
||||
]
|
||||
},
|
||||
tpm_limit=None,
|
||||
rpm_limit=None,
|
||||
budget_duration=None,
|
||||
budget_reset_at=None,
|
||||
allowed_cache_controls=[],
|
||||
permissions={},
|
||||
model_spend={},
|
||||
model_max_budget={},
|
||||
soft_budget_cooldown=False,
|
||||
litellm_budget_table=None,
|
||||
org_id=None,
|
||||
team_spend=None,
|
||||
team_alias=None,
|
||||
team_tpm_limit=None,
|
||||
team_rpm_limit=None,
|
||||
team_max_budget=None,
|
||||
team_models=[],
|
||||
team_blocked=False,
|
||||
soft_budget=None,
|
||||
team_model_aliases=None,
|
||||
team_member_spend=None,
|
||||
team_metadata=None,
|
||||
end_user_id=None,
|
||||
end_user_tpm_limit=None,
|
||||
end_user_rpm_limit=None,
|
||||
end_user_max_budget=None,
|
||||
last_refreshed_at=None,
|
||||
api_key=None,
|
||||
user_role=None,
|
||||
allowed_model_region=None,
|
||||
parent_otel_span=None,
|
||||
),
|
||||
"proxy_config": proxy_config,
|
||||
"general_settings": {},
|
||||
"version": "0.0.0",
|
||||
}
|
||||
|
||||
new_data = await add_litellm_data_to_request(**data)
|
||||
print("NEW DATA: {}".format(new_data))
|
||||
|
||||
assert "langsmith_api_key" in new_data
|
||||
assert new_data["langsmith_api_key"] == "ls-1234"
|
||||
assert "langsmith_project" in new_data
|
||||
assert new_data["langsmith_project"] == "pr-brief-resemblance-72"
|
||||
assert "langsmith_base_url" in new_data
|
||||
assert new_data["langsmith_base_url"] == "https://api.smith.langchain.com"
|
||||
|
||||
if expected_success_callbacks:
|
||||
assert "success_callback" in new_data
|
||||
assert new_data["success_callback"] == expected_success_callbacks
|
||||
|
||||
if expected_failure_callbacks:
|
||||
assert "failure_callback" in new_data
|
||||
assert new_data["failure_callback"] == expected_failure_callbacks
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_gemini_pass_through_endpoint():
|
||||
from starlette.datastructures import URL
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue