forked from phoenix/litellm-mirror
(Feat) Add langsmith key based logging (#6682)
* add langsmith_api_key to StandardCallbackDynamicParams * create a file for langsmith types * langsmith add key / team based logging * add key based logging for langsmith * fix langsmith key based logging * fix linting langsmith * remove NOQA violation * add unit test coverage for all helpers in test langsmith * test_langsmith_key_based_logging * docs langsmith key based logging * run langsmith tests in logging callback tests * fix logging testing * test_langsmith_key_based_logging * test_add_callback_via_key_litellm_pre_call_utils_langsmith * add debug statement langsmith key based logging * test_langsmith_key_based_logging
This commit is contained in:
parent
1e2ba3e045
commit
c3bc9e6b12
9 changed files with 810 additions and 179 deletions
|
@ -686,6 +686,7 @@ jobs:
|
|||
pip install "pytest-retry==1.6.3"
|
||||
pip install "pytest-cov==5.0.0"
|
||||
pip install "pytest-asyncio==0.21.1"
|
||||
pip install pytest-mock
|
||||
pip install "respx==0.21.1"
|
||||
pip install "google-generativeai==0.3.2"
|
||||
pip install "google-cloud-aiplatform==1.43.0"
|
||||
|
|
|
@ -281,6 +281,51 @@ curl -X POST 'http://0.0.0.0:4000/key/generate' \
|
|||
}'
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
||||
<TabItem label="Langsmith" value="langsmith">
|
||||
|
||||
1. Create Virtual Key to log to a specific Langsmith Project
|
||||
|
||||
```bash
|
||||
curl -X POST 'http://0.0.0.0:4000/key/generate' \
|
||||
-H 'Authorization: Bearer sk-1234' \
|
||||
-H 'Content-Type: application/json' \
|
||||
-d '{
|
||||
"metadata": {
|
||||
"logging": [{
|
||||
"callback_name": "langsmith", # "otel", "gcs_bucket"
|
||||
"callback_type": "success", # "success", "failure", "success_and_failure"
|
||||
"callback_vars": {
|
||||
"langsmith_api_key": "os.environ/LANGSMITH_API_KEY", # API Key for Langsmith logging
|
||||
"langsmith_project": "pr-brief-resemblance-72", # project name on langsmith
|
||||
"langsmith_base_url": "https://api.smith.langchain.com"
|
||||
}
|
||||
}]
|
||||
}
|
||||
}'
|
||||
|
||||
```
|
||||
|
||||
2. Test it - `/chat/completions` request
|
||||
|
||||
Use the virtual key from step 3 to make a `/chat/completions` request
|
||||
|
||||
You should see your logs on your Langsmith project on a successful request
|
||||
|
||||
```shell
|
||||
curl -i http://localhost:4000/v1/chat/completions \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "Authorization: Bearer sk-Fxq5XSyWKeXDKfPdqXZhPg" \
|
||||
-d '{
|
||||
"model": "fake-openai-endpoint",
|
||||
"messages": [
|
||||
{"role": "user", "content": "Hello, Claude"}
|
||||
],
|
||||
"user": "hello",
|
||||
}'
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
|
|
|
@ -23,34 +23,8 @@ from litellm.llms.custom_httpx.http_handler import (
|
|||
get_async_httpx_client,
|
||||
httpxSpecialProvider,
|
||||
)
|
||||
from litellm.types.utils import StandardLoggingPayload
|
||||
|
||||
|
||||
class LangsmithInputs(BaseModel):
|
||||
model: Optional[str] = None
|
||||
messages: Optional[List[Any]] = None
|
||||
stream: Optional[bool] = None
|
||||
call_type: Optional[str] = None
|
||||
litellm_call_id: Optional[str] = None
|
||||
completion_start_time: Optional[datetime] = None
|
||||
temperature: Optional[float] = None
|
||||
max_tokens: Optional[int] = None
|
||||
custom_llm_provider: Optional[str] = None
|
||||
input: Optional[List[Any]] = None
|
||||
log_event_type: Optional[str] = None
|
||||
original_response: Optional[Any] = None
|
||||
response_cost: Optional[float] = None
|
||||
|
||||
# LiteLLM Virtual Key specific fields
|
||||
user_api_key: Optional[str] = None
|
||||
user_api_key_user_id: Optional[str] = None
|
||||
user_api_key_team_alias: Optional[str] = None
|
||||
|
||||
|
||||
class LangsmithCredentialsObject(TypedDict):
|
||||
LANGSMITH_API_KEY: str
|
||||
LANGSMITH_PROJECT: str
|
||||
LANGSMITH_BASE_URL: str
|
||||
from litellm.types.integrations.langsmith import *
|
||||
from litellm.types.utils import StandardCallbackDynamicParams, StandardLoggingPayload
|
||||
|
||||
|
||||
def is_serializable(value):
|
||||
|
@ -93,15 +67,16 @@ class LangsmithLogger(CustomBatchLogger):
|
|||
)
|
||||
if _batch_size:
|
||||
self.batch_size = int(_batch_size)
|
||||
self.log_queue: List[LangsmithQueueObject] = []
|
||||
asyncio.create_task(self.periodic_flush())
|
||||
self.flush_lock = asyncio.Lock()
|
||||
super().__init__(**kwargs, flush_lock=self.flush_lock)
|
||||
|
||||
def get_credentials_from_env(
|
||||
self,
|
||||
langsmith_api_key: Optional[str],
|
||||
langsmith_project: Optional[str],
|
||||
langsmith_base_url: Optional[str],
|
||||
langsmith_api_key: Optional[str] = None,
|
||||
langsmith_project: Optional[str] = None,
|
||||
langsmith_base_url: Optional[str] = None,
|
||||
) -> LangsmithCredentialsObject:
|
||||
|
||||
_credentials_api_key = langsmith_api_key or os.getenv("LANGSMITH_API_KEY")
|
||||
|
@ -132,42 +107,19 @@ class LangsmithLogger(CustomBatchLogger):
|
|||
LANGSMITH_PROJECT=_credentials_project,
|
||||
)
|
||||
|
||||
def _prepare_log_data( # noqa: PLR0915
|
||||
self, kwargs, response_obj, start_time, end_time
|
||||
def _prepare_log_data(
|
||||
self,
|
||||
kwargs,
|
||||
response_obj,
|
||||
start_time,
|
||||
end_time,
|
||||
credentials: LangsmithCredentialsObject,
|
||||
):
|
||||
import json
|
||||
from datetime import datetime as dt
|
||||
|
||||
try:
|
||||
_litellm_params = kwargs.get("litellm_params", {}) or {}
|
||||
metadata = _litellm_params.get("metadata", {}) or {}
|
||||
new_metadata = {}
|
||||
for key, value in metadata.items():
|
||||
if (
|
||||
isinstance(value, list)
|
||||
or isinstance(value, str)
|
||||
or isinstance(value, int)
|
||||
or isinstance(value, float)
|
||||
):
|
||||
new_metadata[key] = value
|
||||
elif isinstance(value, BaseModel):
|
||||
new_metadata[key] = value.model_dump_json()
|
||||
elif isinstance(value, dict):
|
||||
for k, v in value.items():
|
||||
if isinstance(v, dt):
|
||||
value[k] = v.isoformat()
|
||||
new_metadata[key] = value
|
||||
|
||||
metadata = new_metadata
|
||||
|
||||
kwargs["user_api_key"] = metadata.get("user_api_key", None)
|
||||
kwargs["user_api_key_user_id"] = metadata.get("user_api_key_user_id", None)
|
||||
kwargs["user_api_key_team_alias"] = metadata.get(
|
||||
"user_api_key_team_alias", None
|
||||
)
|
||||
|
||||
project_name = metadata.get(
|
||||
"project_name", self.default_credentials["LANGSMITH_PROJECT"]
|
||||
"project_name", credentials["LANGSMITH_PROJECT"]
|
||||
)
|
||||
run_name = metadata.get("run_name", self.langsmith_default_run_name)
|
||||
run_id = metadata.get("id", None)
|
||||
|
@ -175,16 +127,10 @@ class LangsmithLogger(CustomBatchLogger):
|
|||
trace_id = metadata.get("trace_id", None)
|
||||
session_id = metadata.get("session_id", None)
|
||||
dotted_order = metadata.get("dotted_order", None)
|
||||
tags = metadata.get("tags", []) or []
|
||||
verbose_logger.debug(
|
||||
f"Langsmith Logging - project_name: {project_name}, run_name {run_name}"
|
||||
)
|
||||
|
||||
# filter out kwargs to not include any dicts, langsmith throws an erros when trying to log kwargs
|
||||
# logged_kwargs = LangsmithInputs(**kwargs)
|
||||
# kwargs = logged_kwargs.model_dump()
|
||||
|
||||
# new_kwargs = {}
|
||||
# Ensure everything in the payload is converted to str
|
||||
payload: Optional[StandardLoggingPayload] = kwargs.get(
|
||||
"standard_logging_object", None
|
||||
|
@ -193,7 +139,6 @@ class LangsmithLogger(CustomBatchLogger):
|
|||
if payload is None:
|
||||
raise Exception("Error logging request payload. Payload=none.")
|
||||
|
||||
new_kwargs = payload
|
||||
metadata = payload[
|
||||
"metadata"
|
||||
] # ensure logged metadata is json serializable
|
||||
|
@ -201,12 +146,12 @@ class LangsmithLogger(CustomBatchLogger):
|
|||
data = {
|
||||
"name": run_name,
|
||||
"run_type": "llm", # this should always be llm, since litellm always logs llm calls. Langsmith allow us to log "chain"
|
||||
"inputs": new_kwargs,
|
||||
"outputs": new_kwargs["response"],
|
||||
"inputs": payload,
|
||||
"outputs": payload["response"],
|
||||
"session_name": project_name,
|
||||
"start_time": new_kwargs["startTime"],
|
||||
"end_time": new_kwargs["endTime"],
|
||||
"tags": tags,
|
||||
"start_time": payload["startTime"],
|
||||
"end_time": payload["endTime"],
|
||||
"tags": payload["request_tags"],
|
||||
"extra": metadata,
|
||||
}
|
||||
|
||||
|
@ -243,37 +188,6 @@ class LangsmithLogger(CustomBatchLogger):
|
|||
except Exception:
|
||||
raise
|
||||
|
||||
def _send_batch(self):
|
||||
if not self.log_queue:
|
||||
return
|
||||
|
||||
langsmith_api_key = self.default_credentials["LANGSMITH_API_KEY"]
|
||||
langsmith_api_base = self.default_credentials["LANGSMITH_BASE_URL"]
|
||||
|
||||
url = f"{langsmith_api_base}/runs/batch"
|
||||
|
||||
headers = {"x-api-key": langsmith_api_key}
|
||||
|
||||
try:
|
||||
response = requests.post(
|
||||
url=url,
|
||||
json=self.log_queue,
|
||||
headers=headers,
|
||||
)
|
||||
|
||||
if response.status_code >= 300:
|
||||
verbose_logger.error(
|
||||
f"Langsmith Error: {response.status_code} - {response.text}"
|
||||
)
|
||||
else:
|
||||
verbose_logger.debug(
|
||||
f"Batch of {len(self.log_queue)} runs successfully created"
|
||||
)
|
||||
|
||||
self.log_queue.clear()
|
||||
except Exception:
|
||||
verbose_logger.exception("Langsmith Layer Error - Error sending batch.")
|
||||
|
||||
def log_success_event(self, kwargs, response_obj, start_time, end_time):
|
||||
try:
|
||||
sampling_rate = (
|
||||
|
@ -295,8 +209,20 @@ class LangsmithLogger(CustomBatchLogger):
|
|||
kwargs,
|
||||
response_obj,
|
||||
)
|
||||
data = self._prepare_log_data(kwargs, response_obj, start_time, end_time)
|
||||
self.log_queue.append(data)
|
||||
credentials = self._get_credentials_to_use_for_request(kwargs=kwargs)
|
||||
data = self._prepare_log_data(
|
||||
kwargs=kwargs,
|
||||
response_obj=response_obj,
|
||||
start_time=start_time,
|
||||
end_time=end_time,
|
||||
credentials=credentials,
|
||||
)
|
||||
self.log_queue.append(
|
||||
LangsmithQueueObject(
|
||||
data=data,
|
||||
credentials=credentials,
|
||||
)
|
||||
)
|
||||
verbose_logger.debug(
|
||||
f"Langsmith, event added to queue. Will flush in {self.flush_interval} seconds..."
|
||||
)
|
||||
|
@ -323,8 +249,20 @@ class LangsmithLogger(CustomBatchLogger):
|
|||
kwargs,
|
||||
response_obj,
|
||||
)
|
||||
data = self._prepare_log_data(kwargs, response_obj, start_time, end_time)
|
||||
self.log_queue.append(data)
|
||||
credentials = self._get_credentials_to_use_for_request(kwargs=kwargs)
|
||||
data = self._prepare_log_data(
|
||||
kwargs=kwargs,
|
||||
response_obj=response_obj,
|
||||
start_time=start_time,
|
||||
end_time=end_time,
|
||||
credentials=credentials,
|
||||
)
|
||||
self.log_queue.append(
|
||||
LangsmithQueueObject(
|
||||
data=data,
|
||||
credentials=credentials,
|
||||
)
|
||||
)
|
||||
verbose_logger.debug(
|
||||
"Langsmith logging: queue length %s, batch size %s",
|
||||
len(self.log_queue),
|
||||
|
@ -349,8 +287,20 @@ class LangsmithLogger(CustomBatchLogger):
|
|||
return # Skip logging
|
||||
verbose_logger.info("Langsmith Failure Event Logging!")
|
||||
try:
|
||||
data = self._prepare_log_data(kwargs, response_obj, start_time, end_time)
|
||||
self.log_queue.append(data)
|
||||
credentials = self._get_credentials_to_use_for_request(kwargs=kwargs)
|
||||
data = self._prepare_log_data(
|
||||
kwargs=kwargs,
|
||||
response_obj=response_obj,
|
||||
start_time=start_time,
|
||||
end_time=end_time,
|
||||
credentials=credentials,
|
||||
)
|
||||
self.log_queue.append(
|
||||
LangsmithQueueObject(
|
||||
data=data,
|
||||
credentials=credentials,
|
||||
)
|
||||
)
|
||||
verbose_logger.debug(
|
||||
"Langsmith logging: queue length %s, batch size %s",
|
||||
len(self.log_queue),
|
||||
|
@ -365,31 +315,58 @@ class LangsmithLogger(CustomBatchLogger):
|
|||
|
||||
async def async_send_batch(self):
|
||||
"""
|
||||
sends runs to /batch endpoint
|
||||
Handles sending batches of runs to Langsmith
|
||||
|
||||
Sends runs from self.log_queue
|
||||
self.log_queue contains LangsmithQueueObjects
|
||||
Each LangsmithQueueObject has the following:
|
||||
- "credentials" - credentials to use for the request (langsmith_api_key, langsmith_project, langsmith_base_url)
|
||||
- "data" - data to log on to langsmith for the request
|
||||
|
||||
|
||||
This function
|
||||
- groups the queue objects by credentials
|
||||
- loops through each unique credentials and sends batches to Langsmith
|
||||
|
||||
|
||||
This was added to support key/team based logging on langsmith
|
||||
"""
|
||||
if not self.log_queue:
|
||||
return
|
||||
|
||||
batch_groups = self._group_batches_by_credentials()
|
||||
for batch_group in batch_groups.values():
|
||||
await self._log_batch_on_langsmith(
|
||||
credentials=batch_group.credentials,
|
||||
queue_objects=batch_group.queue_objects,
|
||||
)
|
||||
|
||||
async def _log_batch_on_langsmith(
|
||||
self,
|
||||
credentials: LangsmithCredentialsObject,
|
||||
queue_objects: List[LangsmithQueueObject],
|
||||
):
|
||||
"""
|
||||
Logs a batch of runs to Langsmith
|
||||
sends runs to /batch endpoint for the given credentials
|
||||
|
||||
Args:
|
||||
credentials: LangsmithCredentialsObject
|
||||
queue_objects: List[LangsmithQueueObject]
|
||||
|
||||
Returns: None
|
||||
|
||||
Raises: Does not raise an exception, will only verbose_logger.exception()
|
||||
"""
|
||||
if not self.log_queue:
|
||||
return
|
||||
|
||||
langsmith_api_base = self.default_credentials["LANGSMITH_BASE_URL"]
|
||||
|
||||
langsmith_api_base = credentials["LANGSMITH_BASE_URL"]
|
||||
langsmith_api_key = credentials["LANGSMITH_API_KEY"]
|
||||
url = f"{langsmith_api_base}/runs/batch"
|
||||
|
||||
langsmith_api_key = self.default_credentials["LANGSMITH_API_KEY"]
|
||||
|
||||
headers = {"x-api-key": langsmith_api_key}
|
||||
elements_to_log = [queue_object["data"] for queue_object in queue_objects]
|
||||
|
||||
try:
|
||||
response = await self.async_httpx_client.post(
|
||||
url=url,
|
||||
json={
|
||||
"post": self.log_queue,
|
||||
},
|
||||
json={"post": elements_to_log},
|
||||
headers=headers,
|
||||
)
|
||||
response.raise_for_status()
|
||||
|
@ -411,6 +388,74 @@ class LangsmithLogger(CustomBatchLogger):
|
|||
f"Langsmith Layer Error - {traceback.format_exc()}"
|
||||
)
|
||||
|
||||
def _group_batches_by_credentials(self) -> Dict[CredentialsKey, BatchGroup]:
|
||||
"""Groups queue objects by credentials using a proper key structure"""
|
||||
log_queue_by_credentials: Dict[CredentialsKey, BatchGroup] = {}
|
||||
|
||||
for queue_object in self.log_queue:
|
||||
credentials = queue_object["credentials"]
|
||||
key = CredentialsKey(
|
||||
api_key=credentials["LANGSMITH_API_KEY"],
|
||||
project=credentials["LANGSMITH_PROJECT"],
|
||||
base_url=credentials["LANGSMITH_BASE_URL"],
|
||||
)
|
||||
|
||||
if key not in log_queue_by_credentials:
|
||||
log_queue_by_credentials[key] = BatchGroup(
|
||||
credentials=credentials, queue_objects=[]
|
||||
)
|
||||
|
||||
log_queue_by_credentials[key].queue_objects.append(queue_object)
|
||||
|
||||
return log_queue_by_credentials
|
||||
|
||||
def _get_credentials_to_use_for_request(
|
||||
self, kwargs: Dict[str, Any]
|
||||
) -> LangsmithCredentialsObject:
|
||||
"""
|
||||
Handles key/team based logging
|
||||
|
||||
If standard_callback_dynamic_params are provided, use those credentials.
|
||||
|
||||
Otherwise, use the default credentials.
|
||||
"""
|
||||
standard_callback_dynamic_params: Optional[StandardCallbackDynamicParams] = (
|
||||
kwargs.get("standard_callback_dynamic_params", None)
|
||||
)
|
||||
if standard_callback_dynamic_params is not None:
|
||||
credentials = self.get_credentials_from_env(
|
||||
langsmith_api_key=standard_callback_dynamic_params.get(
|
||||
"langsmith_api_key", None
|
||||
),
|
||||
langsmith_project=standard_callback_dynamic_params.get(
|
||||
"langsmith_project", None
|
||||
),
|
||||
langsmith_base_url=standard_callback_dynamic_params.get(
|
||||
"langsmith_base_url", None
|
||||
),
|
||||
)
|
||||
else:
|
||||
credentials = self.default_credentials
|
||||
return credentials
|
||||
|
||||
def _send_batch(self):
|
||||
"""Calls async_send_batch in an event loop"""
|
||||
if not self.log_queue:
|
||||
return
|
||||
|
||||
try:
|
||||
# Try to get the existing event loop
|
||||
loop = asyncio.get_event_loop()
|
||||
if loop.is_running():
|
||||
# If we're already in an event loop, create a task
|
||||
asyncio.create_task(self.async_send_batch())
|
||||
else:
|
||||
# If no event loop is running, run the coroutine directly
|
||||
loop.run_until_complete(self.async_send_batch())
|
||||
except RuntimeError:
|
||||
# If we can't get an event loop, create a new one
|
||||
asyncio.run(self.async_send_batch())
|
||||
|
||||
def get_run_by_id(self, run_id):
|
||||
|
||||
langsmith_api_key = self.default_credentials["LANGSMITH_API_KEY"]
|
||||
|
|
|
@ -6,5 +6,7 @@ model_list:
|
|||
api_base: https://exampleopenaiendpoint-production.up.railway.app/
|
||||
|
||||
|
||||
|
||||
litellm_settings:
|
||||
callbacks: ["gcs_bucket"]
|
||||
|
||||
|
|
61
litellm/types/integrations/langsmith.py
Normal file
61
litellm/types/integrations/langsmith.py
Normal file
|
@ -0,0 +1,61 @@
|
|||
from dataclasses import dataclass
|
||||
from datetime import datetime
|
||||
from typing import Any, Dict, List, NamedTuple, Optional, TypedDict
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class LangsmithInputs(BaseModel):
|
||||
model: Optional[str] = None
|
||||
messages: Optional[List[Any]] = None
|
||||
stream: Optional[bool] = None
|
||||
call_type: Optional[str] = None
|
||||
litellm_call_id: Optional[str] = None
|
||||
completion_start_time: Optional[datetime] = None
|
||||
temperature: Optional[float] = None
|
||||
max_tokens: Optional[int] = None
|
||||
custom_llm_provider: Optional[str] = None
|
||||
input: Optional[List[Any]] = None
|
||||
log_event_type: Optional[str] = None
|
||||
original_response: Optional[Any] = None
|
||||
response_cost: Optional[float] = None
|
||||
|
||||
# LiteLLM Virtual Key specific fields
|
||||
user_api_key: Optional[str] = None
|
||||
user_api_key_user_id: Optional[str] = None
|
||||
user_api_key_team_alias: Optional[str] = None
|
||||
|
||||
|
||||
class LangsmithCredentialsObject(TypedDict):
|
||||
LANGSMITH_API_KEY: str
|
||||
LANGSMITH_PROJECT: str
|
||||
LANGSMITH_BASE_URL: str
|
||||
|
||||
|
||||
class LangsmithQueueObject(TypedDict):
|
||||
"""
|
||||
Langsmith Queue Object - this is what gets stored in the internal system queue before flushing to Langsmith
|
||||
|
||||
We need to store:
|
||||
- data[Dict] - data that should get logged on langsmith
|
||||
- credentials[LangsmithCredentialsObject] - credentials to use for logging to langsmith
|
||||
"""
|
||||
|
||||
data: Dict
|
||||
credentials: LangsmithCredentialsObject
|
||||
|
||||
|
||||
class CredentialsKey(NamedTuple):
|
||||
"""Immutable key for grouping credentials"""
|
||||
|
||||
api_key: str
|
||||
project: str
|
||||
base_url: str
|
||||
|
||||
|
||||
@dataclass
|
||||
class BatchGroup:
|
||||
"""Groups credentials with their associated queue objects"""
|
||||
|
||||
credentials: LangsmithCredentialsObject
|
||||
queue_objects: List[LangsmithQueueObject]
|
|
@ -1595,3 +1595,8 @@ class StandardCallbackDynamicParams(TypedDict, total=False):
|
|||
# GCS dynamic params
|
||||
gcs_bucket_name: Optional[str]
|
||||
gcs_path_service_account: Optional[str]
|
||||
|
||||
# Langsmith dynamic params
|
||||
langsmith_api_key: Optional[str]
|
||||
langsmith_project: Optional[str]
|
||||
langsmith_base_url: Optional[str]
|
||||
|
|
|
@ -22,61 +22,6 @@ litellm.set_verbose = True
|
|||
import time
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_langsmith_queue_logging():
|
||||
try:
|
||||
# Initialize LangsmithLogger
|
||||
test_langsmith_logger = LangsmithLogger()
|
||||
|
||||
litellm.callbacks = [test_langsmith_logger]
|
||||
test_langsmith_logger.batch_size = 6
|
||||
litellm.set_verbose = True
|
||||
|
||||
# Make multiple calls to ensure we don't hit the batch size
|
||||
for _ in range(5):
|
||||
response = await litellm.acompletion(
|
||||
model="gpt-3.5-turbo",
|
||||
messages=[{"role": "user", "content": "Test message"}],
|
||||
max_tokens=10,
|
||||
temperature=0.2,
|
||||
mock_response="This is a mock response",
|
||||
)
|
||||
|
||||
await asyncio.sleep(3)
|
||||
|
||||
# Check that logs are in the queue
|
||||
assert len(test_langsmith_logger.log_queue) == 5
|
||||
|
||||
# Now make calls to exceed the batch size
|
||||
for _ in range(3):
|
||||
response = await litellm.acompletion(
|
||||
model="gpt-3.5-turbo",
|
||||
messages=[{"role": "user", "content": "Test message"}],
|
||||
max_tokens=10,
|
||||
temperature=0.2,
|
||||
mock_response="This is a mock response",
|
||||
)
|
||||
|
||||
# Wait a short time for any asynchronous operations to complete
|
||||
await asyncio.sleep(1)
|
||||
|
||||
print(
|
||||
"Length of langsmith log queue: {}".format(
|
||||
len(test_langsmith_logger.log_queue)
|
||||
)
|
||||
)
|
||||
# Check that the queue was flushed after exceeding batch size
|
||||
assert len(test_langsmith_logger.log_queue) < 5
|
||||
|
||||
# Clean up
|
||||
for cb in litellm.callbacks:
|
||||
if isinstance(cb, LangsmithLogger):
|
||||
await cb.async_httpx_client.client.aclose()
|
||||
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
||||
# test_langsmith_logging()
|
||||
|
||||
|
||||
|
|
394
tests/logging_callback_tests/test_langsmith_unit_test.py
Normal file
394
tests/logging_callback_tests/test_langsmith_unit_test.py
Normal file
|
@ -0,0 +1,394 @@
|
|||
import io
|
||||
import os
|
||||
import sys
|
||||
|
||||
|
||||
sys.path.insert(0, os.path.abspath("../.."))
|
||||
|
||||
import asyncio
|
||||
import gzip
|
||||
import json
|
||||
import logging
|
||||
import time
|
||||
from unittest.mock import AsyncMock, patch, MagicMock
|
||||
import pytest
|
||||
from datetime import datetime, timezone
|
||||
from litellm.integrations.langsmith import (
|
||||
LangsmithLogger,
|
||||
LangsmithQueueObject,
|
||||
CredentialsKey,
|
||||
BatchGroup,
|
||||
)
|
||||
|
||||
import litellm
|
||||
|
||||
|
||||
# Test get_credentials_from_env
|
||||
@pytest.mark.asyncio
|
||||
async def test_get_credentials_from_env():
|
||||
# Test with direct parameters
|
||||
logger = LangsmithLogger(
|
||||
langsmith_api_key="test-key",
|
||||
langsmith_project="test-project",
|
||||
langsmith_base_url="http://test-url",
|
||||
)
|
||||
|
||||
credentials = logger.get_credentials_from_env(
|
||||
langsmith_api_key="custom-key",
|
||||
langsmith_project="custom-project",
|
||||
langsmith_base_url="http://custom-url",
|
||||
)
|
||||
|
||||
assert credentials["LANGSMITH_API_KEY"] == "custom-key"
|
||||
assert credentials["LANGSMITH_PROJECT"] == "custom-project"
|
||||
assert credentials["LANGSMITH_BASE_URL"] == "http://custom-url"
|
||||
|
||||
# assert that the default api base is used if not provided
|
||||
credentials = logger.get_credentials_from_env()
|
||||
assert credentials["LANGSMITH_BASE_URL"] == "https://api.smith.langchain.com"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_group_batches_by_credentials():
|
||||
|
||||
logger = LangsmithLogger(langsmith_api_key="test-key")
|
||||
|
||||
# Create test queue objects
|
||||
queue_obj1 = LangsmithQueueObject(
|
||||
data={"test": "data1"},
|
||||
credentials={
|
||||
"LANGSMITH_API_KEY": "key1",
|
||||
"LANGSMITH_PROJECT": "proj1",
|
||||
"LANGSMITH_BASE_URL": "url1",
|
||||
},
|
||||
)
|
||||
|
||||
queue_obj2 = LangsmithQueueObject(
|
||||
data={"test": "data2"},
|
||||
credentials={
|
||||
"LANGSMITH_API_KEY": "key1",
|
||||
"LANGSMITH_PROJECT": "proj1",
|
||||
"LANGSMITH_BASE_URL": "url1",
|
||||
},
|
||||
)
|
||||
|
||||
logger.log_queue = [queue_obj1, queue_obj2]
|
||||
|
||||
grouped = logger._group_batches_by_credentials()
|
||||
|
||||
# Check grouping
|
||||
assert len(grouped) == 1 # Should have one group since credentials are same
|
||||
key = list(grouped.keys())[0]
|
||||
assert isinstance(key, CredentialsKey)
|
||||
assert len(grouped[key].queue_objects) == 2
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_group_batches_by_credentials_multiple_credentials():
|
||||
|
||||
# Test with multiple different credentials
|
||||
logger = LangsmithLogger(langsmith_api_key="test-key")
|
||||
|
||||
queue_obj1 = LangsmithQueueObject(
|
||||
data={"test": "data1"},
|
||||
credentials={
|
||||
"LANGSMITH_API_KEY": "key1",
|
||||
"LANGSMITH_PROJECT": "proj1",
|
||||
"LANGSMITH_BASE_URL": "url1",
|
||||
},
|
||||
)
|
||||
|
||||
queue_obj2 = LangsmithQueueObject(
|
||||
data={"test": "data2"},
|
||||
credentials={
|
||||
"LANGSMITH_API_KEY": "key2", # Different API key
|
||||
"LANGSMITH_PROJECT": "proj1",
|
||||
"LANGSMITH_BASE_URL": "url1",
|
||||
},
|
||||
)
|
||||
|
||||
queue_obj3 = LangsmithQueueObject(
|
||||
data={"test": "data3"},
|
||||
credentials={
|
||||
"LANGSMITH_API_KEY": "key1",
|
||||
"LANGSMITH_PROJECT": "proj2", # Different project
|
||||
"LANGSMITH_BASE_URL": "url1",
|
||||
},
|
||||
)
|
||||
|
||||
logger.log_queue = [queue_obj1, queue_obj2, queue_obj3]
|
||||
|
||||
grouped = logger._group_batches_by_credentials()
|
||||
|
||||
# Check grouping
|
||||
assert len(grouped) == 3 # Should have three groups since credentials differ
|
||||
for key, batch_group in grouped.items():
|
||||
assert isinstance(key, CredentialsKey)
|
||||
assert len(batch_group.queue_objects) == 1 # Each group should have one object
|
||||
|
||||
|
||||
# Test make_dot_order
|
||||
@pytest.mark.asyncio
|
||||
async def test_make_dot_order():
|
||||
logger = LangsmithLogger(langsmith_api_key="test-key")
|
||||
run_id = "729cff0e-f30c-4336-8b79-45d6b61c64b4"
|
||||
dot_order = logger.make_dot_order(run_id)
|
||||
|
||||
print("dot_order=", dot_order)
|
||||
|
||||
# Check format: YYYYMMDDTHHMMSSfffZ + run_id
|
||||
# Check the timestamp portion (first 23 characters)
|
||||
timestamp_part = dot_order[:-36] # 36 is length of run_id
|
||||
assert len(timestamp_part) == 22
|
||||
assert timestamp_part[8] == "T" # Check T separator
|
||||
assert timestamp_part[-1] == "Z" # Check Z suffix
|
||||
|
||||
# Verify timestamp format
|
||||
try:
|
||||
# Parse the timestamp portion (removing the Z)
|
||||
datetime.strptime(timestamp_part[:-1], "%Y%m%dT%H%M%S%f")
|
||||
except ValueError:
|
||||
pytest.fail("Timestamp portion is not in correct format")
|
||||
|
||||
# Verify run_id portion
|
||||
assert dot_order[-36:] == run_id
|
||||
|
||||
|
||||
# Test is_serializable
|
||||
@pytest.mark.asyncio
|
||||
async def test_is_serializable():
|
||||
from litellm.integrations.langsmith import is_serializable
|
||||
from pydantic import BaseModel
|
||||
|
||||
# Test basic types
|
||||
assert is_serializable("string") is True
|
||||
assert is_serializable(123) is True
|
||||
assert is_serializable({"key": "value"}) is True
|
||||
|
||||
# Test non-serializable types
|
||||
async def async_func():
|
||||
pass
|
||||
|
||||
assert is_serializable(async_func) is False
|
||||
|
||||
class TestModel(BaseModel):
|
||||
field: str
|
||||
|
||||
assert is_serializable(TestModel(field="test")) is False
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_async_send_batch():
|
||||
logger = LangsmithLogger(langsmith_api_key="test-key")
|
||||
|
||||
# Mock the httpx client
|
||||
mock_response = AsyncMock()
|
||||
mock_response.status_code = 200
|
||||
logger.async_httpx_client = AsyncMock()
|
||||
logger.async_httpx_client.post.return_value = mock_response
|
||||
|
||||
# Add test data to queue
|
||||
logger.log_queue = [
|
||||
LangsmithQueueObject(
|
||||
data={"test": "data"}, credentials=logger.default_credentials
|
||||
)
|
||||
]
|
||||
|
||||
await logger.async_send_batch()
|
||||
|
||||
# Verify the API call
|
||||
logger.async_httpx_client.post.assert_called_once()
|
||||
call_args = logger.async_httpx_client.post.call_args
|
||||
assert "runs/batch" in call_args[1]["url"]
|
||||
assert "x-api-key" in call_args[1]["headers"]
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_langsmith_key_based_logging(mocker):
|
||||
"""
|
||||
In key based logging langsmith_api_key and langsmith_project are passed directly to litellm.acompletion
|
||||
"""
|
||||
try:
|
||||
# Mock the httpx post request
|
||||
mock_post = mocker.patch(
|
||||
"litellm.llms.custom_httpx.http_handler.AsyncHTTPHandler.post"
|
||||
)
|
||||
mock_post.return_value.status_code = 200
|
||||
mock_post.return_value.raise_for_status = lambda: None
|
||||
litellm.set_verbose = True
|
||||
|
||||
litellm.callbacks = [LangsmithLogger()]
|
||||
response = await litellm.acompletion(
|
||||
model="gpt-3.5-turbo",
|
||||
messages=[{"role": "user", "content": "Test message"}],
|
||||
max_tokens=10,
|
||||
temperature=0.2,
|
||||
mock_response="This is a mock response",
|
||||
langsmith_api_key="fake_key_project2",
|
||||
langsmith_project="fake_project2",
|
||||
)
|
||||
print("Waiting for logs to be flushed to Langsmith.....")
|
||||
await asyncio.sleep(15)
|
||||
|
||||
print("done sleeping 15 seconds...")
|
||||
|
||||
# Verify the post request was made with correct parameters
|
||||
mock_post.assert_called_once()
|
||||
call_args = mock_post.call_args
|
||||
|
||||
print("call_args", call_args)
|
||||
|
||||
# Check URL contains /runs/batch
|
||||
assert "/runs/batch" in call_args[1]["url"]
|
||||
|
||||
# Check headers contain the correct API key
|
||||
assert call_args[1]["headers"]["x-api-key"] == "fake_key_project2"
|
||||
|
||||
# Verify the request body contains the expected data
|
||||
request_body = call_args[1]["json"]
|
||||
assert "post" in request_body
|
||||
assert len(request_body["post"]) == 1 # Should contain one run
|
||||
|
||||
# EXPECTED BODY
|
||||
expected_body = {
|
||||
"post": [
|
||||
{
|
||||
"name": "LLMRun",
|
||||
"run_type": "llm",
|
||||
"inputs": {
|
||||
"id": "chatcmpl-82699ee4-7932-4fc0-9585-76abc8caeafa",
|
||||
"call_type": "acompletion",
|
||||
"model": "gpt-3.5-turbo",
|
||||
"messages": [{"role": "user", "content": "Test message"}],
|
||||
"model_parameters": {
|
||||
"temperature": 0.2,
|
||||
"max_tokens": 10,
|
||||
"extra_body": {},
|
||||
},
|
||||
},
|
||||
"outputs": {
|
||||
"id": "chatcmpl-82699ee4-7932-4fc0-9585-76abc8caeafa",
|
||||
"model": "gpt-3.5-turbo",
|
||||
"choices": [
|
||||
{
|
||||
"finish_reason": "stop",
|
||||
"index": 0,
|
||||
"message": {
|
||||
"content": "This is a mock response",
|
||||
"role": "assistant",
|
||||
"tool_calls": None,
|
||||
"function_call": None,
|
||||
},
|
||||
}
|
||||
],
|
||||
"usage": {
|
||||
"completion_tokens": 20,
|
||||
"prompt_tokens": 10,
|
||||
"total_tokens": 30,
|
||||
},
|
||||
},
|
||||
"session_name": "fake_project2",
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
# Print both bodies for debugging
|
||||
actual_body = call_args[1]["json"]
|
||||
print("\nExpected body:")
|
||||
print(json.dumps(expected_body, indent=2))
|
||||
print("\nActual body:")
|
||||
print(json.dumps(actual_body, indent=2))
|
||||
|
||||
assert len(actual_body["post"]) == 1
|
||||
|
||||
# Assert only the critical parts we care about
|
||||
assert actual_body["post"][0]["name"] == expected_body["post"][0]["name"]
|
||||
assert (
|
||||
actual_body["post"][0]["run_type"] == expected_body["post"][0]["run_type"]
|
||||
)
|
||||
assert (
|
||||
actual_body["post"][0]["inputs"]["messages"]
|
||||
== expected_body["post"][0]["inputs"]["messages"]
|
||||
)
|
||||
assert (
|
||||
actual_body["post"][0]["inputs"]["model_parameters"]
|
||||
== expected_body["post"][0]["inputs"]["model_parameters"]
|
||||
)
|
||||
assert (
|
||||
actual_body["post"][0]["outputs"]["choices"]
|
||||
== expected_body["post"][0]["outputs"]["choices"]
|
||||
)
|
||||
assert (
|
||||
actual_body["post"][0]["outputs"]["usage"]["completion_tokens"]
|
||||
== expected_body["post"][0]["outputs"]["usage"]["completion_tokens"]
|
||||
)
|
||||
assert (
|
||||
actual_body["post"][0]["outputs"]["usage"]["prompt_tokens"]
|
||||
== expected_body["post"][0]["outputs"]["usage"]["prompt_tokens"]
|
||||
)
|
||||
assert (
|
||||
actual_body["post"][0]["outputs"]["usage"]["total_tokens"]
|
||||
== expected_body["post"][0]["outputs"]["usage"]["total_tokens"]
|
||||
)
|
||||
assert (
|
||||
actual_body["post"][0]["session_name"]
|
||||
== expected_body["post"][0]["session_name"]
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_langsmith_queue_logging():
|
||||
try:
|
||||
# Initialize LangsmithLogger
|
||||
test_langsmith_logger = LangsmithLogger()
|
||||
|
||||
litellm.callbacks = [test_langsmith_logger]
|
||||
test_langsmith_logger.batch_size = 6
|
||||
litellm.set_verbose = True
|
||||
|
||||
# Make multiple calls to ensure we don't hit the batch size
|
||||
for _ in range(5):
|
||||
response = await litellm.acompletion(
|
||||
model="gpt-3.5-turbo",
|
||||
messages=[{"role": "user", "content": "Test message"}],
|
||||
max_tokens=10,
|
||||
temperature=0.2,
|
||||
mock_response="This is a mock response",
|
||||
)
|
||||
|
||||
await asyncio.sleep(3)
|
||||
|
||||
# Check that logs are in the queue
|
||||
assert len(test_langsmith_logger.log_queue) == 5
|
||||
|
||||
# Now make calls to exceed the batch size
|
||||
for _ in range(3):
|
||||
response = await litellm.acompletion(
|
||||
model="gpt-3.5-turbo",
|
||||
messages=[{"role": "user", "content": "Test message"}],
|
||||
max_tokens=10,
|
||||
temperature=0.2,
|
||||
mock_response="This is a mock response",
|
||||
)
|
||||
|
||||
# Wait a short time for any asynchronous operations to complete
|
||||
await asyncio.sleep(1)
|
||||
|
||||
print(
|
||||
"Length of langsmith log queue: {}".format(
|
||||
len(test_langsmith_logger.log_queue)
|
||||
)
|
||||
)
|
||||
# Check that the queue was flushed after exceeding batch size
|
||||
assert len(test_langsmith_logger.log_queue) < 5
|
||||
|
||||
# Clean up
|
||||
for cb in litellm.callbacks:
|
||||
if isinstance(cb, LangsmithLogger):
|
||||
await cb.async_httpx_client.client.aclose()
|
||||
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
|
@ -1632,6 +1632,139 @@ async def test_add_callback_via_key_litellm_pre_call_utils_gcs_bucket(
|
|||
assert new_data["failure_callback"] == expected_failure_callbacks
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize(
|
||||
"callback_type, expected_success_callbacks, expected_failure_callbacks",
|
||||
[
|
||||
("success", ["langsmith"], []),
|
||||
("failure", [], ["langsmith"]),
|
||||
("success_and_failure", ["langsmith"], ["langsmith"]),
|
||||
],
|
||||
)
|
||||
async def test_add_callback_via_key_litellm_pre_call_utils_langsmith(
|
||||
prisma_client, callback_type, expected_success_callbacks, expected_failure_callbacks
|
||||
):
|
||||
import json
|
||||
|
||||
from fastapi import HTTPException, Request, Response
|
||||
from starlette.datastructures import URL
|
||||
|
||||
from litellm.proxy.litellm_pre_call_utils import add_litellm_data_to_request
|
||||
|
||||
setattr(litellm.proxy.proxy_server, "prisma_client", prisma_client)
|
||||
setattr(litellm.proxy.proxy_server, "master_key", "sk-1234")
|
||||
await litellm.proxy.proxy_server.prisma_client.connect()
|
||||
|
||||
proxy_config = getattr(litellm.proxy.proxy_server, "proxy_config")
|
||||
|
||||
request = Request(scope={"type": "http", "method": "POST", "headers": {}})
|
||||
request._url = URL(url="/chat/completions")
|
||||
|
||||
test_data = {
|
||||
"model": "azure/chatgpt-v-2",
|
||||
"messages": [
|
||||
{"role": "user", "content": "write 1 sentence poem"},
|
||||
],
|
||||
"max_tokens": 10,
|
||||
"mock_response": "Hello world",
|
||||
"api_key": "my-fake-key",
|
||||
}
|
||||
|
||||
json_bytes = json.dumps(test_data).encode("utf-8")
|
||||
|
||||
request._body = json_bytes
|
||||
|
||||
data = {
|
||||
"data": {
|
||||
"model": "azure/chatgpt-v-2",
|
||||
"messages": [{"role": "user", "content": "write 1 sentence poem"}],
|
||||
"max_tokens": 10,
|
||||
"mock_response": "Hello world",
|
||||
"api_key": "my-fake-key",
|
||||
},
|
||||
"request": request,
|
||||
"user_api_key_dict": UserAPIKeyAuth(
|
||||
token=None,
|
||||
key_name=None,
|
||||
key_alias=None,
|
||||
spend=0.0,
|
||||
max_budget=None,
|
||||
expires=None,
|
||||
models=[],
|
||||
aliases={},
|
||||
config={},
|
||||
user_id=None,
|
||||
team_id=None,
|
||||
max_parallel_requests=None,
|
||||
metadata={
|
||||
"logging": [
|
||||
{
|
||||
"callback_name": "langsmith",
|
||||
"callback_type": callback_type,
|
||||
"callback_vars": {
|
||||
"langsmith_api_key": "ls-1234",
|
||||
"langsmith_project": "pr-brief-resemblance-72",
|
||||
"langsmith_base_url": "https://api.smith.langchain.com",
|
||||
},
|
||||
}
|
||||
]
|
||||
},
|
||||
tpm_limit=None,
|
||||
rpm_limit=None,
|
||||
budget_duration=None,
|
||||
budget_reset_at=None,
|
||||
allowed_cache_controls=[],
|
||||
permissions={},
|
||||
model_spend={},
|
||||
model_max_budget={},
|
||||
soft_budget_cooldown=False,
|
||||
litellm_budget_table=None,
|
||||
org_id=None,
|
||||
team_spend=None,
|
||||
team_alias=None,
|
||||
team_tpm_limit=None,
|
||||
team_rpm_limit=None,
|
||||
team_max_budget=None,
|
||||
team_models=[],
|
||||
team_blocked=False,
|
||||
soft_budget=None,
|
||||
team_model_aliases=None,
|
||||
team_member_spend=None,
|
||||
team_metadata=None,
|
||||
end_user_id=None,
|
||||
end_user_tpm_limit=None,
|
||||
end_user_rpm_limit=None,
|
||||
end_user_max_budget=None,
|
||||
last_refreshed_at=None,
|
||||
api_key=None,
|
||||
user_role=None,
|
||||
allowed_model_region=None,
|
||||
parent_otel_span=None,
|
||||
),
|
||||
"proxy_config": proxy_config,
|
||||
"general_settings": {},
|
||||
"version": "0.0.0",
|
||||
}
|
||||
|
||||
new_data = await add_litellm_data_to_request(**data)
|
||||
print("NEW DATA: {}".format(new_data))
|
||||
|
||||
assert "langsmith_api_key" in new_data
|
||||
assert new_data["langsmith_api_key"] == "ls-1234"
|
||||
assert "langsmith_project" in new_data
|
||||
assert new_data["langsmith_project"] == "pr-brief-resemblance-72"
|
||||
assert "langsmith_base_url" in new_data
|
||||
assert new_data["langsmith_base_url"] == "https://api.smith.langchain.com"
|
||||
|
||||
if expected_success_callbacks:
|
||||
assert "success_callback" in new_data
|
||||
assert new_data["success_callback"] == expected_success_callbacks
|
||||
|
||||
if expected_failure_callbacks:
|
||||
assert "failure_callback" in new_data
|
||||
assert new_data["failure_callback"] == expected_failure_callbacks
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_gemini_pass_through_endpoint():
|
||||
from starlette.datastructures import URL
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue