updated oobabooga to new api and support for embeddings

This commit is contained in:
dan 2023-12-26 19:45:28 -05:00
parent 31fbb095c2
commit c4dfd9be7c
2 changed files with 86 additions and 59 deletions

View file

@ -7,7 +7,6 @@ from typing import Callable, Optional
from litellm.utils import ModelResponse, Usage
from .prompt_templates.factory import prompt_factory, custom_prompt
class OobaboogaError(Exception):
def __init__(self, status_code, message):
self.status_code = status_code
@ -16,7 +15,6 @@ class OobaboogaError(Exception):
self.message
) # Call the base class constructor with the parameters it needs
def validate_environment(api_key):
headers = {
"accept": "application/json",
@ -26,7 +24,6 @@ def validate_environment(api_key):
headers["Authorization"] = f"Token {api_key}"
return headers
def completion(
model: str,
messages: list,
@ -47,93 +44,113 @@ def completion(
completion_url = model
elif api_base:
completion_url = api_base
else:
raise OobaboogaError(
status_code=404,
message="API Base not set. Set one via completion(..,api_base='your-api-url')",
)
else:
raise OobaboogaError(status_code=404, message="API Base not set. Set one via completion(..,api_base='your-api-url')")
model = model
if model in custom_prompt_dict:
# check if the model has a registered custom prompt
model_prompt_details = custom_prompt_dict[model]
prompt = custom_prompt(
role_dict=model_prompt_details["roles"],
initial_prompt_value=model_prompt_details["initial_prompt_value"],
final_prompt_value=model_prompt_details["final_prompt_value"],
messages=messages,
)
else:
prompt = prompt_factory(model=model, messages=messages)
completion_url = completion_url + "/api/v1/generate"
completion_url = completion_url + "/v1/chat/completions"
data = {
"prompt": prompt,
"messages": messages,
**optional_params,
}
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key=api_key,
additional_args={"complete_input_dict": data},
)
input=messages,
api_key=api_key,
additional_args={"complete_input_dict": data},
)
## COMPLETION CALL
response = requests.post(
completion_url,
headers=headers,
data=json.dumps(data),
stream=optional_params["stream"] if "stream" in optional_params else False,
completion_url, headers=headers, data=json.dumps(data), stream=optional_params["stream"] if "stream" in optional_params else False
)
if "stream" in optional_params and optional_params["stream"] == True:
return response.iter_lines()
else:
## LOGGING
logging_obj.post_call(
input=prompt,
api_key=api_key,
original_response=response.text,
additional_args={"complete_input_dict": data},
)
input=messages,
api_key=api_key,
original_response=response.text,
additional_args={"complete_input_dict": data},
)
print_verbose(f"raw model_response: {response.text}")
## RESPONSE OBJECT
try:
completion_response = response.json()
except:
raise OobaboogaError(
message=response.text, status_code=response.status_code
)
raise OobaboogaError(message=response.text, status_code=response.status_code)
if "error" in completion_response:
raise OobaboogaError(
message=completion_response["error"],
status_code=response.status_code,
)
raise OobaboogaError(message=completion_response["error"],status_code=response.status_code,)
else:
try:
model_response["choices"][0]["message"][
"content"
] = completion_response["results"][0]["text"]
model_response["choices"][0]["message"]["content"] = completion_response["choices"][0]["message"]["content"]
except:
raise OobaboogaError(
message=json.dumps(completion_response),
status_code=response.status_code,
)
raise OobaboogaError(message=json.dumps(completion_response), status_code=response.status_code)
## CALCULATING USAGE
prompt_tokens = len(encoding.encode(prompt))
completion_tokens = len(
encoding.encode(model_response["choices"][0]["message"]["content"])
)
model_response["created"] = int(time.time())
model_response["model"] = model
usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
prompt_tokens=completion_response["usage"]["prompt_tokens"],
completion_tokens=completion_response["usage"]["completion_tokens"],
total_tokens=completion_response["usage"]["total_tokens"],
)
model_response.usage = usage
return model_response
def embedding():
# logic for parsing in - calling - parsing out model embedding calls
pass
def embedding(
model: str,
input: list,
api_key: Optional[str] = None,
api_base: str = None,
logging_obj=None,
model_response=None,
optional_params=None,
encoding=None,
):
# Create completion URL
if "https" in model:
embeddings_url = model
elif api_base:
embeddings_url = f"{api_base}/v1/embeddings"
else:
raise OobaboogaError(status_code=404, message="API Base not set. Set one via completion(..,api_base='your-api-url')")
# Prepare request data
data = {"input": input}
if optional_params:
data.update(optional_params)
# Logging before API call
if logging_obj:
logging_obj.pre_call(input=input, api_key=api_key, additional_args={"complete_input_dict": data})
# Send POST request
headers = validate_environment(api_key)
response = requests.post(embeddings_url, headers=headers, json=data)
if not response.ok:
raise OobaboogaError(message=response.text, status_code=response.status_code)
completion_response = response.json()
# Check for errors in response
if "error" in completion_response:
raise OobaboogaError(message=completion_response["error"], status_code=completion_response.get('status_code', 500))
# Process response data
model_response["data"]=[{"embedding": completion_response["data"][0]["embedding"], "index": 0, "object": "embedding"}]
num_tokens = len(completion_response["data"][0]["embedding"])
#Adding metadata to response
model_response.usage = Usage(prompt_tokens=num_tokens,total_tokens=num_tokens)
model_response["object"]="list"
model_response["model"]=model
return model_response

View file

@ -2313,6 +2313,16 @@ def embedding(
optional_params=optional_params,
model_response=EmbeddingResponse(),
)
elif custom_llm_provider == "oobabooga":
response = oobabooga.embedding(
model=model,
input=input,
encoding=encoding,
api_base=api_base,
logging_obj=logging,
optional_params=optional_params,
model_response= EmbeddingResponse()
)
elif custom_llm_provider == "ollama":
if aembedding == True:
response = ollama.ollama_aembeddings(