(docs) custom callbacks proxy

This commit is contained in:
ishaan-jaff 2023-12-04 11:20:27 -08:00
parent bfe0172108
commit c5b92837c2
2 changed files with 128 additions and 11 deletions

View file

@ -1,5 +1,125 @@
# Logging - OpenTelemetry, Langfuse, ElasticSearch
Log Proxy Input, Output, Exceptions to Langfuse, OpenTelemetry
# Logging - Custom Callbacks, OpenTelemetry, Langfuse, ElasticSearch
Log Proxy Input, Output, Exceptions using Custom Callbacks, Langfuse, OpenTelemetry
## Custom Callbacks
Use this when you want to run custom callbacks in `python`
### Step 1 - Create your custom `litellm` callback class
We use `litellm.integrations.custom_logger` for this, **more details about litellm custom callbacks [here](https://docs.litellm.ai/docs/observability/custom_callback)**
Define your custom callback class in a python file.
Here's an example custom logger for tracking `key, user, model, prompt, response, tokens, cost`. We create a file called `custom_callbacks.py` and initialize `proxy_handler_instance`
```python
from litellm.integrations.custom_logger import CustomLogger
import litellm
# This file includes the custom callbacks for LiteLLM Proxy
# Once defined, these can be passed in proxy_config.yaml
class MyCustomHandler(CustomLogger):
def log_pre_api_call(self, model, messages, kwargs):
print(f"Pre-API Call")
def log_post_api_call(self, kwargs, response_obj, start_time, end_time):
print(f"Post-API Call")
def log_stream_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Stream")
def log_success_event(self, kwargs, response_obj, start_time, end_time):
# log: key, user, model, prompt, response, tokens, cost
print("\nOn Success")
### Access kwargs passed to litellm.completion()
model = kwargs.get("model", None)
messages = kwargs.get("messages", None)
user = kwargs.get("user", None)
#### Access litellm_params passed to litellm.completion(), example access `metadata`
litellm_params = kwargs.get("litellm_params", {})
metadata = litellm_params.get("metadata", {}) # headers passed to LiteLLM proxy, can be found here
#################################################
##### Calculate cost using litellm.completion_cost() #######################
cost = litellm.completion_cost(completion_response=response_obj)
response = response_obj
# tokens used in response
usage = response_obj["usage"]
print(
f"""
Model: {model},
Messages: {messages},
User: {user},
Usage: {usage},
Cost: {cost},
Response: {response}
Proxy Metadata: {metadata}
"""
)
return
def log_failure_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Failure")
proxy_handler_instance = MyCustomHandler()
# need to set litellm.callbacks = [customHandler] # on the proxy
```
### Step 2 - Pass your custom callback class in `config.yaml`
We pass the custom callback class defined in **Step1** to the config.yaml.
Set `callbacks` to `python_filename.logger_instance_name`
In the config below, the custom callback is defined in a file`custom_callbacks.py` and has an instance of `proxy_handler_instance = MyCustomHandler()`.
```yaml
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: gpt-3.5-turbo
litellm_settings:
callbacks: custom_callbacks.proxy_handler_instance # sets litellm.callbacks = [module.module_variable]
```
### Step 3 - Start proxy + test request
```shell
litellm --config proxy_config.yaml
```
```shell
curl --location 'http://0.0.0.0:8000/chat/completions' \
--header 'Authorization: Bearer sk-1234' \
--data ' {
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": "good morning good sir"
}
],
"user": "ishaan-app",
"temperature": 0.2
}'
```
#### Resulting Log on Proxy
```shell
On Success
Model: gpt-3.5-turbo,
Messages: [{'role': 'user', 'content': 'good morning good sir'}],
User: ishaan-app,
Usage: {'completion_tokens': 10, 'prompt_tokens': 11, 'total_tokens': 21},
Cost: 3.65e-05,
Response: {'id': 'chatcmpl-8S8avKJ1aVBg941y5xzGMSKrYCMvN', 'choices': [{'finish_reason': 'stop', 'index': 0, 'message': {'content': 'Good morning! How can I assist you today?', 'role': 'assistant'}}], 'created': 1701716913, 'model': 'gpt-3.5-turbo-0613', 'object': 'chat.completion', 'system_fingerprint': None, 'usage': {'completion_tokens': 10, 'prompt_tokens': 11, 'total_tokens': 21}}
Proxy Metadata: {'user_api_key': None, 'headers': Headers({'host': '0.0.0.0:8000', 'user-agent': 'curl/7.88.1', 'accept': '*/*', 'authorization': 'Bearer sk-1234', 'content-length': '199', 'content-type': 'application/x-www-form-urlencoded'}), 'model_group': 'gpt-3.5-turbo', 'deployment': 'gpt-3.5-turbo-ModelID-gpt-3.5-turbo'}
```
## OpenTelemetry, ElasticSearch
### Step 1 Start OpenTelemetry Collecter Docker Container

View file

@ -15,19 +15,18 @@ class MyCustomHandler(CustomLogger):
def log_success_event(self, kwargs, response_obj, start_time, end_time):
# log: key, user, model, prompt, response, tokens, cost
print("\nOn Success\n")
print("\n kwargs\n")
print(kwargs)
print("\nOn Success")
### Access kwargs passed to litellm.completion()
model = kwargs["model"]
messages = kwargs["messages"]
model = kwargs.get("model", None)
messages = kwargs.get("messages", None)
user = kwargs.get("user", None)
#### Access litellm_params passed to litellm.completion(), example access `metadata`
litellm_params = kwargs.get("litellm_params", {})
metadata = litellm_params.get("metadata", {}) # headers passed to LiteLLM proxy, can be found here
#################################################
### Calculate cost #######################
##### Calculate cost using litellm.completion_cost() #######################
cost = litellm.completion_cost(completion_response=response_obj)
response = response_obj
# tokens used in response
@ -44,9 +43,7 @@ class MyCustomHandler(CustomLogger):
Proxy Metadata: {metadata}
"""
)
print(usage)
return
def log_failure_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Failure")