forked from phoenix/litellm-mirror
(docs) custom callbacks proxy
This commit is contained in:
parent
bfe0172108
commit
c5b92837c2
2 changed files with 128 additions and 11 deletions
|
@ -1,5 +1,125 @@
|
|||
# Logging - OpenTelemetry, Langfuse, ElasticSearch
|
||||
Log Proxy Input, Output, Exceptions to Langfuse, OpenTelemetry
|
||||
# Logging - Custom Callbacks, OpenTelemetry, Langfuse, ElasticSearch
|
||||
Log Proxy Input, Output, Exceptions using Custom Callbacks, Langfuse, OpenTelemetry
|
||||
|
||||
## Custom Callbacks
|
||||
Use this when you want to run custom callbacks in `python`
|
||||
|
||||
### Step 1 - Create your custom `litellm` callback class
|
||||
We use `litellm.integrations.custom_logger` for this, **more details about litellm custom callbacks [here](https://docs.litellm.ai/docs/observability/custom_callback)**
|
||||
|
||||
Define your custom callback class in a python file.
|
||||
|
||||
Here's an example custom logger for tracking `key, user, model, prompt, response, tokens, cost`. We create a file called `custom_callbacks.py` and initialize `proxy_handler_instance`
|
||||
|
||||
```python
|
||||
from litellm.integrations.custom_logger import CustomLogger
|
||||
import litellm
|
||||
|
||||
# This file includes the custom callbacks for LiteLLM Proxy
|
||||
# Once defined, these can be passed in proxy_config.yaml
|
||||
class MyCustomHandler(CustomLogger):
|
||||
def log_pre_api_call(self, model, messages, kwargs):
|
||||
print(f"Pre-API Call")
|
||||
|
||||
def log_post_api_call(self, kwargs, response_obj, start_time, end_time):
|
||||
print(f"Post-API Call")
|
||||
|
||||
def log_stream_event(self, kwargs, response_obj, start_time, end_time):
|
||||
print(f"On Stream")
|
||||
|
||||
def log_success_event(self, kwargs, response_obj, start_time, end_time):
|
||||
# log: key, user, model, prompt, response, tokens, cost
|
||||
print("\nOn Success")
|
||||
### Access kwargs passed to litellm.completion()
|
||||
model = kwargs.get("model", None)
|
||||
messages = kwargs.get("messages", None)
|
||||
user = kwargs.get("user", None)
|
||||
|
||||
#### Access litellm_params passed to litellm.completion(), example access `metadata`
|
||||
litellm_params = kwargs.get("litellm_params", {})
|
||||
metadata = litellm_params.get("metadata", {}) # headers passed to LiteLLM proxy, can be found here
|
||||
#################################################
|
||||
|
||||
##### Calculate cost using litellm.completion_cost() #######################
|
||||
cost = litellm.completion_cost(completion_response=response_obj)
|
||||
response = response_obj
|
||||
# tokens used in response
|
||||
usage = response_obj["usage"]
|
||||
|
||||
print(
|
||||
f"""
|
||||
Model: {model},
|
||||
Messages: {messages},
|
||||
User: {user},
|
||||
Usage: {usage},
|
||||
Cost: {cost},
|
||||
Response: {response}
|
||||
Proxy Metadata: {metadata}
|
||||
"""
|
||||
)
|
||||
return
|
||||
|
||||
def log_failure_event(self, kwargs, response_obj, start_time, end_time):
|
||||
print(f"On Failure")
|
||||
|
||||
proxy_handler_instance = MyCustomHandler()
|
||||
|
||||
# need to set litellm.callbacks = [customHandler] # on the proxy
|
||||
|
||||
|
||||
```
|
||||
|
||||
### Step 2 - Pass your custom callback class in `config.yaml`
|
||||
We pass the custom callback class defined in **Step1** to the config.yaml.
|
||||
|
||||
Set `callbacks` to `python_filename.logger_instance_name`
|
||||
|
||||
In the config below, the custom callback is defined in a file`custom_callbacks.py` and has an instance of `proxy_handler_instance = MyCustomHandler()`.
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: gpt-3.5-turbo
|
||||
litellm_params:
|
||||
model: gpt-3.5-turbo
|
||||
|
||||
litellm_settings:
|
||||
callbacks: custom_callbacks.proxy_handler_instance # sets litellm.callbacks = [module.module_variable]
|
||||
|
||||
```
|
||||
|
||||
### Step 3 - Start proxy + test request
|
||||
```shell
|
||||
litellm --config proxy_config.yaml
|
||||
```
|
||||
|
||||
```shell
|
||||
curl --location 'http://0.0.0.0:8000/chat/completions' \
|
||||
--header 'Authorization: Bearer sk-1234' \
|
||||
--data ' {
|
||||
"model": "gpt-3.5-turbo",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "good morning good sir"
|
||||
}
|
||||
],
|
||||
"user": "ishaan-app",
|
||||
"temperature": 0.2
|
||||
}'
|
||||
```
|
||||
|
||||
#### Resulting Log on Proxy
|
||||
```shell
|
||||
On Success
|
||||
Model: gpt-3.5-turbo,
|
||||
Messages: [{'role': 'user', 'content': 'good morning good sir'}],
|
||||
User: ishaan-app,
|
||||
Usage: {'completion_tokens': 10, 'prompt_tokens': 11, 'total_tokens': 21},
|
||||
Cost: 3.65e-05,
|
||||
Response: {'id': 'chatcmpl-8S8avKJ1aVBg941y5xzGMSKrYCMvN', 'choices': [{'finish_reason': 'stop', 'index': 0, 'message': {'content': 'Good morning! How can I assist you today?', 'role': 'assistant'}}], 'created': 1701716913, 'model': 'gpt-3.5-turbo-0613', 'object': 'chat.completion', 'system_fingerprint': None, 'usage': {'completion_tokens': 10, 'prompt_tokens': 11, 'total_tokens': 21}}
|
||||
Proxy Metadata: {'user_api_key': None, 'headers': Headers({'host': '0.0.0.0:8000', 'user-agent': 'curl/7.88.1', 'accept': '*/*', 'authorization': 'Bearer sk-1234', 'content-length': '199', 'content-type': 'application/x-www-form-urlencoded'}), 'model_group': 'gpt-3.5-turbo', 'deployment': 'gpt-3.5-turbo-ModelID-gpt-3.5-turbo'}
|
||||
```
|
||||
|
||||
## OpenTelemetry, ElasticSearch
|
||||
|
||||
### Step 1 Start OpenTelemetry Collecter Docker Container
|
||||
|
|
|
@ -15,19 +15,18 @@ class MyCustomHandler(CustomLogger):
|
|||
|
||||
def log_success_event(self, kwargs, response_obj, start_time, end_time):
|
||||
# log: key, user, model, prompt, response, tokens, cost
|
||||
print("\nOn Success\n")
|
||||
print("\n kwargs\n")
|
||||
print(kwargs)
|
||||
print("\nOn Success")
|
||||
### Access kwargs passed to litellm.completion()
|
||||
model = kwargs["model"]
|
||||
messages = kwargs["messages"]
|
||||
model = kwargs.get("model", None)
|
||||
messages = kwargs.get("messages", None)
|
||||
user = kwargs.get("user", None)
|
||||
|
||||
#### Access litellm_params passed to litellm.completion(), example access `metadata`
|
||||
litellm_params = kwargs.get("litellm_params", {})
|
||||
metadata = litellm_params.get("metadata", {}) # headers passed to LiteLLM proxy, can be found here
|
||||
#################################################
|
||||
|
||||
### Calculate cost #######################
|
||||
##### Calculate cost using litellm.completion_cost() #######################
|
||||
cost = litellm.completion_cost(completion_response=response_obj)
|
||||
response = response_obj
|
||||
# tokens used in response
|
||||
|
@ -44,9 +43,7 @@ class MyCustomHandler(CustomLogger):
|
|||
Proxy Metadata: {metadata}
|
||||
"""
|
||||
)
|
||||
|
||||
print(usage)
|
||||
|
||||
return
|
||||
|
||||
def log_failure_event(self, kwargs, response_obj, start_time, end_time):
|
||||
print(f"On Failure")
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue