forked from phoenix/litellm-mirror
(feat) Add support for using @google/generative-ai JS with LiteLLM Proxy (#6899)
* feat - allow using gemini js SDK with LiteLLM * add auth for gemini_proxy_route * basic local test for js * test cost tagging gemini js requests * add js sdk test for gemini with litellm * add docs on gemini JS SDK * run node.js tests * fix google ai studio tests * fix vertex js spend test
This commit is contained in:
parent
f77bf49772
commit
c60261c3bc
8 changed files with 323 additions and 12 deletions
|
@ -1191,6 +1191,7 @@ jobs:
|
|||
-e DATABASE_URL=$PROXY_DATABASE_URL \
|
||||
-e LITELLM_MASTER_KEY="sk-1234" \
|
||||
-e OPENAI_API_KEY=$OPENAI_API_KEY \
|
||||
-e GEMINI_API_KEY=$GEMINI_API_KEY \
|
||||
-e ANTHROPIC_API_KEY=$ANTHROPIC_API_KEY \
|
||||
-e LITELLM_LICENSE=$LITELLM_LICENSE \
|
||||
--name my-app \
|
||||
|
@ -1228,12 +1229,13 @@ jobs:
|
|||
name: Install Node.js dependencies
|
||||
command: |
|
||||
npm install @google-cloud/vertexai
|
||||
npm install @google/generative-ai
|
||||
npm install --save-dev jest
|
||||
|
||||
- run:
|
||||
name: Run Vertex AI tests
|
||||
name: Run Vertex AI, Google AI Studio Node.js tests
|
||||
command: |
|
||||
npx jest tests/pass_through_tests/test_vertex.test.js --verbose
|
||||
npx jest tests/pass_through_tests --verbose
|
||||
no_output_timeout: 30m
|
||||
- run:
|
||||
name: Run tests
|
||||
|
|
|
@ -1,12 +1,21 @@
|
|||
import Image from '@theme/IdealImage';
|
||||
import Tabs from '@theme/Tabs';
|
||||
import TabItem from '@theme/TabItem';
|
||||
|
||||
|
||||
# Google AI Studio SDK
|
||||
|
||||
Pass-through endpoints for Google AI Studio - call provider-specific endpoint, in native format (no translation).
|
||||
|
||||
Just replace `https://generativelanguage.googleapis.com` with `LITELLM_PROXY_BASE_URL/gemini` 🚀
|
||||
Just replace `https://generativelanguage.googleapis.com` with `LITELLM_PROXY_BASE_URL/gemini`
|
||||
|
||||
#### **Example Usage**
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="curl" label="curl">
|
||||
|
||||
```bash
|
||||
http://0.0.0.0:4000/gemini/v1beta/models/gemini-1.5-flash:countTokens?key=sk-anything' \
|
||||
curl 'http://0.0.0.0:4000/gemini/v1beta/models/gemini-1.5-flash:countTokens?key=sk-anything' \
|
||||
-H 'Content-Type: application/json' \
|
||||
-d '{
|
||||
"contents": [{
|
||||
|
@ -17,6 +26,53 @@ http://0.0.0.0:4000/gemini/v1beta/models/gemini-1.5-flash:countTokens?key=sk-any
|
|||
}'
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="js" label="Google AI Node.js SDK">
|
||||
|
||||
```javascript
|
||||
const { GoogleGenerativeAI } = require("@google/generative-ai");
|
||||
|
||||
const modelParams = {
|
||||
model: 'gemini-pro',
|
||||
};
|
||||
|
||||
const requestOptions = {
|
||||
baseUrl: 'http://localhost:4000/gemini', // http://<proxy-base-url>/gemini
|
||||
};
|
||||
|
||||
const genAI = new GoogleGenerativeAI("sk-1234"); // litellm proxy API key
|
||||
const model = genAI.getGenerativeModel(modelParams, requestOptions);
|
||||
|
||||
async function main() {
|
||||
try {
|
||||
const result = await model.generateContent("Explain how AI works");
|
||||
console.log(result.response.text());
|
||||
} catch (error) {
|
||||
console.error('Error:', error);
|
||||
}
|
||||
}
|
||||
|
||||
// For streaming responses
|
||||
async function main_streaming() {
|
||||
try {
|
||||
const streamingResult = await model.generateContentStream("Explain how AI works");
|
||||
for await (const chunk of streamingResult.stream) {
|
||||
console.log('Stream chunk:', JSON.stringify(chunk));
|
||||
}
|
||||
const aggregatedResponse = await streamingResult.response;
|
||||
console.log('Aggregated response:', JSON.stringify(aggregatedResponse));
|
||||
} catch (error) {
|
||||
console.error('Error:', error);
|
||||
}
|
||||
}
|
||||
|
||||
main();
|
||||
// main_streaming();
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
Supports **ALL** Google AI Studio Endpoints (including streaming).
|
||||
|
||||
[**See All Google AI Studio Endpoints**](https://ai.google.dev/api)
|
||||
|
@ -166,14 +222,14 @@ curl -X POST "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5
|
|||
```
|
||||
|
||||
|
||||
## Advanced - Use with Virtual Keys
|
||||
## Advanced
|
||||
|
||||
Pre-requisites
|
||||
- [Setup proxy with DB](../proxy/virtual_keys.md#setup)
|
||||
|
||||
Use this, to avoid giving developers the raw Google AI Studio key, but still letting them use Google AI Studio endpoints.
|
||||
|
||||
### Usage
|
||||
### Use with Virtual Keys
|
||||
|
||||
1. Setup environment
|
||||
|
||||
|
@ -221,3 +277,65 @@ http://0.0.0.0:4000/gemini/v1beta/models/gemini-1.5-flash:countTokens?key=sk-123
|
|||
}]
|
||||
}'
|
||||
```
|
||||
|
||||
|
||||
### Send `tags` in request headers
|
||||
|
||||
Use this if you want `tags` to be tracked in the LiteLLM DB and on logging callbacks.
|
||||
|
||||
Pass tags in request headers as a comma separated list. In the example below the following tags will be tracked
|
||||
|
||||
```
|
||||
tags: ["gemini-js-sdk", "pass-through-endpoint"]
|
||||
```
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="curl" label="curl">
|
||||
|
||||
```bash
|
||||
curl 'http://0.0.0.0:4000/gemini/v1beta/models/gemini-1.5-flash:generateContent?key=sk-anything' \
|
||||
-H 'Content-Type: application/json' \
|
||||
-H 'tags: gemini-js-sdk,pass-through-endpoint' \
|
||||
-d '{
|
||||
"contents": [{
|
||||
"parts":[{
|
||||
"text": "The quick brown fox jumps over the lazy dog."
|
||||
}]
|
||||
}]
|
||||
}'
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="js" label="Google AI Node.js SDK">
|
||||
|
||||
```javascript
|
||||
const { GoogleGenerativeAI } = require("@google/generative-ai");
|
||||
|
||||
const modelParams = {
|
||||
model: 'gemini-pro',
|
||||
};
|
||||
|
||||
const requestOptions = {
|
||||
baseUrl: 'http://localhost:4000/gemini', // http://<proxy-base-url>/gemini
|
||||
customHeaders: {
|
||||
"tags": "gemini-js-sdk,pass-through-endpoint"
|
||||
}
|
||||
};
|
||||
|
||||
const genAI = new GoogleGenerativeAI("sk-1234");
|
||||
const model = genAI.getGenerativeModel(modelParams, requestOptions);
|
||||
|
||||
async function main() {
|
||||
try {
|
||||
const result = await model.generateContent("Explain how AI works");
|
||||
console.log(result.response.text());
|
||||
} catch (error) {
|
||||
console.error('Error:', error);
|
||||
}
|
||||
}
|
||||
|
||||
main();
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
|
|
@ -2111,6 +2111,7 @@ class SpecialHeaders(enum.Enum):
|
|||
openai_authorization = "Authorization"
|
||||
azure_authorization = "API-Key"
|
||||
anthropic_authorization = "x-api-key"
|
||||
google_ai_studio_authorization = "x-goog-api-key"
|
||||
|
||||
|
||||
class LitellmDataForBackendLLMCall(TypedDict, total=False):
|
||||
|
|
|
@ -95,6 +95,11 @@ anthropic_api_key_header = APIKeyHeader(
|
|||
auto_error=False,
|
||||
description="If anthropic client used.",
|
||||
)
|
||||
google_ai_studio_api_key_header = APIKeyHeader(
|
||||
name=SpecialHeaders.google_ai_studio_authorization.value,
|
||||
auto_error=False,
|
||||
description="If google ai studio client used.",
|
||||
)
|
||||
|
||||
|
||||
def _get_bearer_token(
|
||||
|
@ -197,6 +202,9 @@ async def user_api_key_auth( # noqa: PLR0915
|
|||
anthropic_api_key_header: Optional[str] = fastapi.Security(
|
||||
anthropic_api_key_header
|
||||
),
|
||||
google_ai_studio_api_key_header: Optional[str] = fastapi.Security(
|
||||
google_ai_studio_api_key_header
|
||||
),
|
||||
) -> UserAPIKeyAuth:
|
||||
from litellm.proxy.proxy_server import (
|
||||
general_settings,
|
||||
|
@ -233,6 +241,8 @@ async def user_api_key_auth( # noqa: PLR0915
|
|||
api_key = azure_api_key_header
|
||||
elif isinstance(anthropic_api_key_header, str):
|
||||
api_key = anthropic_api_key_header
|
||||
elif isinstance(google_ai_studio_api_key_header, str):
|
||||
api_key = google_ai_studio_api_key_header
|
||||
elif pass_through_endpoints is not None:
|
||||
for endpoint in pass_through_endpoints:
|
||||
if endpoint.get("path", "") == route:
|
||||
|
|
|
@ -61,10 +61,12 @@ async def gemini_proxy_route(
|
|||
fastapi_response: Response,
|
||||
):
|
||||
## CHECK FOR LITELLM API KEY IN THE QUERY PARAMS - ?..key=LITELLM_API_KEY
|
||||
api_key = request.query_params.get("key")
|
||||
google_ai_studio_api_key = request.query_params.get("key") or request.headers.get(
|
||||
"x-goog-api-key"
|
||||
)
|
||||
|
||||
user_api_key_dict = await user_api_key_auth(
|
||||
request=request, api_key="Bearer {}".format(api_key)
|
||||
request=request, api_key=f"Bearer {google_ai_studio_api_key}"
|
||||
)
|
||||
|
||||
base_target_url = "https://generativelanguage.googleapis.com"
|
||||
|
|
123
tests/pass_through_tests/test_gemini_with_spend.test.js
Normal file
123
tests/pass_through_tests/test_gemini_with_spend.test.js
Normal file
|
@ -0,0 +1,123 @@
|
|||
const { GoogleGenerativeAI } = require("@google/generative-ai");
|
||||
const fs = require('fs');
|
||||
const path = require('path');
|
||||
|
||||
// Import fetch if the SDK uses it
|
||||
const originalFetch = global.fetch || require('node-fetch');
|
||||
|
||||
let lastCallId;
|
||||
|
||||
// Monkey-patch the fetch used internally
|
||||
global.fetch = async function patchedFetch(url, options) {
|
||||
const response = await originalFetch(url, options);
|
||||
|
||||
// Store the call ID if it exists
|
||||
lastCallId = response.headers.get('x-litellm-call-id');
|
||||
|
||||
return response;
|
||||
};
|
||||
|
||||
describe('Gemini AI Tests', () => {
|
||||
test('should successfully generate non-streaming content with tags', async () => {
|
||||
const genAI = new GoogleGenerativeAI("sk-1234"); // litellm proxy API key
|
||||
|
||||
const requestOptions = {
|
||||
baseUrl: 'http://127.0.0.1:4000/gemini',
|
||||
customHeaders: {
|
||||
"tags": "gemini-js-sdk,pass-through-endpoint"
|
||||
}
|
||||
};
|
||||
|
||||
const model = genAI.getGenerativeModel({
|
||||
model: 'gemini-pro'
|
||||
}, requestOptions);
|
||||
|
||||
const prompt = 'Say "hello test" and nothing else';
|
||||
|
||||
const result = await model.generateContent(prompt);
|
||||
expect(result).toBeDefined();
|
||||
|
||||
// Use the captured callId
|
||||
const callId = lastCallId;
|
||||
console.log("Captured Call ID:", callId);
|
||||
|
||||
// Wait for spend to be logged
|
||||
await new Promise(resolve => setTimeout(resolve, 15000));
|
||||
|
||||
// Check spend logs
|
||||
const spendResponse = await fetch(
|
||||
`http://127.0.0.1:4000/spend/logs?request_id=${callId}`,
|
||||
{
|
||||
headers: {
|
||||
'Authorization': 'Bearer sk-1234'
|
||||
}
|
||||
}
|
||||
);
|
||||
|
||||
const spendData = await spendResponse.json();
|
||||
console.log("spendData", spendData)
|
||||
expect(spendData).toBeDefined();
|
||||
expect(spendData[0].request_id).toBe(callId);
|
||||
expect(spendData[0].call_type).toBe('pass_through_endpoint');
|
||||
expect(spendData[0].request_tags).toEqual(['gemini-js-sdk', 'pass-through-endpoint']);
|
||||
expect(spendData[0].metadata).toHaveProperty('user_api_key');
|
||||
expect(spendData[0].model).toContain('gemini');
|
||||
expect(spendData[0].spend).toBeGreaterThan(0);
|
||||
}, 25000);
|
||||
|
||||
test('should successfully generate streaming content with tags', async () => {
|
||||
const genAI = new GoogleGenerativeAI("sk-1234"); // litellm proxy API key
|
||||
|
||||
const requestOptions = {
|
||||
baseUrl: 'http://127.0.0.1:4000/gemini',
|
||||
customHeaders: {
|
||||
"tags": "gemini-js-sdk,pass-through-endpoint"
|
||||
}
|
||||
};
|
||||
|
||||
const model = genAI.getGenerativeModel({
|
||||
model: 'gemini-pro'
|
||||
}, requestOptions);
|
||||
|
||||
const prompt = 'Say "hello test" and nothing else';
|
||||
|
||||
const streamingResult = await model.generateContentStream(prompt);
|
||||
expect(streamingResult).toBeDefined();
|
||||
|
||||
for await (const chunk of streamingResult.stream) {
|
||||
console.log('stream chunk:', JSON.stringify(chunk));
|
||||
expect(chunk).toBeDefined();
|
||||
}
|
||||
|
||||
const aggregatedResponse = await streamingResult.response;
|
||||
console.log('aggregated response:', JSON.stringify(aggregatedResponse));
|
||||
expect(aggregatedResponse).toBeDefined();
|
||||
|
||||
// Use the captured callId
|
||||
const callId = lastCallId;
|
||||
console.log("Captured Call ID:", callId);
|
||||
|
||||
// Wait for spend to be logged
|
||||
await new Promise(resolve => setTimeout(resolve, 15000));
|
||||
|
||||
// Check spend logs
|
||||
const spendResponse = await fetch(
|
||||
`http://127.0.0.1:4000/spend/logs?request_id=${callId}`,
|
||||
{
|
||||
headers: {
|
||||
'Authorization': 'Bearer sk-1234'
|
||||
}
|
||||
}
|
||||
);
|
||||
|
||||
const spendData = await spendResponse.json();
|
||||
console.log("spendData", spendData)
|
||||
expect(spendData).toBeDefined();
|
||||
expect(spendData[0].request_id).toBe(callId);
|
||||
expect(spendData[0].call_type).toBe('pass_through_endpoint');
|
||||
expect(spendData[0].request_tags).toEqual(['gemini-js-sdk', 'pass-through-endpoint']);
|
||||
expect(spendData[0].metadata).toHaveProperty('user_api_key');
|
||||
expect(spendData[0].model).toContain('gemini');
|
||||
expect(spendData[0].spend).toBeGreaterThan(0);
|
||||
}, 25000);
|
||||
});
|
55
tests/pass_through_tests/test_local_gemini.js
Normal file
55
tests/pass_through_tests/test_local_gemini.js
Normal file
|
@ -0,0 +1,55 @@
|
|||
const { GoogleGenerativeAI, ModelParams, RequestOptions } = require("@google/generative-ai");
|
||||
|
||||
const modelParams = {
|
||||
model: 'gemini-pro',
|
||||
};
|
||||
|
||||
const requestOptions = {
|
||||
baseUrl: 'http://127.0.0.1:4000/gemini',
|
||||
customHeaders: {
|
||||
"tags": "gemini-js-sdk,gemini-pro"
|
||||
}
|
||||
};
|
||||
|
||||
const genAI = new GoogleGenerativeAI("sk-1234"); // litellm proxy API key
|
||||
const model = genAI.getGenerativeModel(modelParams, requestOptions);
|
||||
|
||||
const testPrompt = "Explain how AI works";
|
||||
|
||||
async function main() {
|
||||
console.log("making request")
|
||||
try {
|
||||
const result = await model.generateContent(testPrompt);
|
||||
console.log(result.response.text());
|
||||
} catch (error) {
|
||||
console.error('Error details:', {
|
||||
name: error.name,
|
||||
message: error.message,
|
||||
cause: error.cause,
|
||||
// Check if there's a network error
|
||||
isNetworkError: error instanceof TypeError && error.message === 'fetch failed'
|
||||
});
|
||||
|
||||
// Check if the server is running
|
||||
if (error instanceof TypeError && error.message === 'fetch failed') {
|
||||
console.error('Make sure your local server is running at http://localhost:4000');
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
async function main_streaming() {
|
||||
try {
|
||||
const streamingResult = await model.generateContentStream(testPrompt);
|
||||
for await (const item of streamingResult.stream) {
|
||||
console.log('stream chunk: ', JSON.stringify(item));
|
||||
}
|
||||
const aggregatedResponse = await streamingResult.response;
|
||||
console.log('aggregated response: ', JSON.stringify(aggregatedResponse));
|
||||
} catch (error) {
|
||||
console.error('Error details:', error);
|
||||
}
|
||||
}
|
||||
|
||||
// main();
|
||||
main_streaming();
|
|
@ -60,9 +60,9 @@ function loadVertexAiCredentials() {
|
|||
}
|
||||
|
||||
// Run credential loading before tests
|
||||
// beforeAll(() => {
|
||||
// loadVertexAiCredentials();
|
||||
// });
|
||||
beforeAll(() => {
|
||||
loadVertexAiCredentials();
|
||||
});
|
||||
|
||||
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue