(feat) - provider budget improvements - ensure provider budgets work with multiple proxy instances + improve latency to ~90ms (#6886)

* use 1 file for duration_in_seconds

* add to readme.md

* re use duration_in_seconds

* fix importing _extract_from_regex, get_last_day_of_month

* fix import

* update provider budget routing

* fix - remove dup test

* add support for using in multi instance environments

* test_in_memory_redis_sync_e2e

* test_in_memory_redis_sync_e2e

* fix test_in_memory_redis_sync_e2e

* fix code quality check

* fix test provider budgets

* working provider budget tests

* add fixture for provider budget routing

* fix router testing for provider budgets

* add comments on provider budget routing

* use RedisPipelineIncrementOperation

* add redis async_increment_pipeline

* use redis async_increment_pipeline

* use lower value for testing

* use redis async_increment_pipeline

* use consistent key name for increment op

* add handling for budget windows

* fix typing async_increment_pipeline

* fix set attr

* add clear doc strings

* unit testing for provider budgets

* test_redis_increment_pipeline
This commit is contained in:
Ishaan Jaff 2024-11-24 16:36:19 -08:00 committed by GitHub
parent 34bfebe470
commit c73ce95c01
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
7 changed files with 638 additions and 52 deletions

View file

@ -16,9 +16,6 @@ model_list:
api_key: os.environ/OPENAI_API_KEY
router_settings:
redis_host: <your-redis-host>
redis_password: <your-redis-password>
redis_port: <your-redis-port>
provider_budget_config:
openai:
budget_limit: 0.000000000001 # float of $ value budget for time period
@ -36,6 +33,11 @@ router_settings:
budget_limit: 100
time_period: 12d
# OPTIONAL: Set Redis Host, Port, and Password if using multiple instance of LiteLLM
redis_host: os.environ/REDIS_HOST
redis_port: os.environ/REDIS_PORT
redis_password: os.environ/REDIS_PASSWORD
general_settings:
master_key: sk-1234
```
@ -132,6 +134,31 @@ This metric indicates the remaining budget for a provider in dollars (USD)
litellm_provider_remaining_budget_metric{api_provider="openai"} 10
```
## Multi-instance setup
If you are using a multi-instance setup, you will need to set the Redis host, port, and password in the `proxy_config.yaml` file. Redis is used to sync the spend across LiteLLM instances.
```yaml
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: openai/gpt-3.5-turbo
api_key: os.environ/OPENAI_API_KEY
router_settings:
provider_budget_config:
openai:
budget_limit: 0.000000000001 # float of $ value budget for time period
time_period: 1d # can be 1d, 2d, 30d, 1mo, 2mo
# 👇 Add this: Set Redis Host, Port, and Password if using multiple instance of LiteLLM
redis_host: os.environ/REDIS_HOST
redis_port: os.environ/REDIS_PORT
redis_password: os.environ/REDIS_PASSWORD
general_settings:
master_key: sk-1234
```
## Spec for provider_budget_config

View file

@ -20,6 +20,7 @@ from typing import TYPE_CHECKING, Any, List, Optional, Tuple
import litellm
from litellm._logging import print_verbose, verbose_logger
from litellm.litellm_core_utils.core_helpers import _get_parent_otel_span_from_kwargs
from litellm.types.caching import RedisPipelineIncrementOperation
from litellm.types.services import ServiceLoggerPayload, ServiceTypes
from litellm.types.utils import all_litellm_params
@ -890,3 +891,92 @@ class RedisCache(BaseCache):
def delete_cache(self, key):
self.redis_client.delete(key)
async def _pipeline_increment_helper(
self,
pipe: pipeline,
increment_list: List[RedisPipelineIncrementOperation],
) -> Optional[List[float]]:
"""Helper function for pipeline increment operations"""
# Iterate through each increment operation and add commands to pipeline
for increment_op in increment_list:
cache_key = self.check_and_fix_namespace(key=increment_op["key"])
print_verbose(
f"Increment ASYNC Redis Cache PIPELINE: key: {cache_key}\nValue {increment_op['increment_value']}\nttl={increment_op['ttl']}"
)
pipe.incrbyfloat(cache_key, increment_op["increment_value"])
if increment_op["ttl"] is not None:
_td = timedelta(seconds=increment_op["ttl"])
pipe.expire(cache_key, _td)
# Execute the pipeline and return results
results = await pipe.execute()
print_verbose(f"Increment ASYNC Redis Cache PIPELINE: results: {results}")
return results
async def async_increment_pipeline(
self, increment_list: List[RedisPipelineIncrementOperation], **kwargs
) -> Optional[List[float]]:
"""
Use Redis Pipelines for bulk increment operations
Args:
increment_list: List of RedisPipelineIncrementOperation dicts containing:
- key: str
- increment_value: float
- ttl_seconds: int
"""
# don't waste a network request if there's nothing to increment
if len(increment_list) == 0:
return None
from redis.asyncio import Redis
_redis_client: Redis = self.init_async_client() # type: ignore
start_time = time.time()
print_verbose(
f"Increment Async Redis Cache Pipeline: increment list: {increment_list}"
)
try:
async with _redis_client as redis_client:
async with redis_client.pipeline(transaction=True) as pipe:
results = await self._pipeline_increment_helper(
pipe, increment_list
)
print_verbose(f"pipeline increment results: {results}")
## LOGGING ##
end_time = time.time()
_duration = end_time - start_time
asyncio.create_task(
self.service_logger_obj.async_service_success_hook(
service=ServiceTypes.REDIS,
duration=_duration,
call_type="async_increment_pipeline",
start_time=start_time,
end_time=end_time,
parent_otel_span=_get_parent_otel_span_from_kwargs(kwargs),
)
)
return results
except Exception as e:
## LOGGING ##
end_time = time.time()
_duration = end_time - start_time
asyncio.create_task(
self.service_logger_obj.async_service_failure_hook(
service=ServiceTypes.REDIS,
duration=_duration,
error=e,
call_type="async_increment_pipeline",
start_time=start_time,
end_time=end_time,
parent_otel_span=_get_parent_otel_span_from_kwargs(kwargs),
)
)
verbose_logger.error(
"LiteLLM Redis Caching: async increment_pipeline() - Got exception from REDIS %s",
str(e),
)
raise e

View file

@ -2,8 +2,23 @@ model_list:
- model_name: gpt-4o
litellm_params:
model: openai/gpt-4o
api_key: os.environ/OPENAI_API_KEY
api_base: https://exampleopenaiendpoint-production.up.railway.app/
- model_name: fake-anthropic-endpoint
litellm_params:
model: anthropic/fake
api_base: https://exampleanthropicendpoint-production.up.railway.app/
default_vertex_config:
vertex_project: "adroit-crow-413218"
vertex_location: "us-central1"
router_settings:
provider_budget_config:
openai:
budget_limit: 0.3 # float of $ value budget for time period
time_period: 1d # can be 1d, 2d, 30d
anthropic:
budget_limit: 5
time_period: 1d
redis_host: os.environ/REDIS_HOST
redis_port: os.environ/REDIS_PORT
redis_password: os.environ/REDIS_PASSWORD
litellm_settings:
callbacks: ["prometheus"]

View file

@ -18,11 +18,14 @@ anthropic:
```
"""
import asyncio
from datetime import datetime, timezone
from typing import TYPE_CHECKING, Any, Dict, List, Optional, TypedDict, Union
import litellm
from litellm._logging import verbose_router_logger
from litellm.caching.caching import DualCache
from litellm.caching.redis_cache import RedisPipelineIncrementOperation
from litellm.integrations.custom_logger import CustomLogger
from litellm.litellm_core_utils.core_helpers import _get_parent_otel_span_from_kwargs
from litellm.litellm_core_utils.duration_parser import duration_in_seconds
@ -44,10 +47,14 @@ if TYPE_CHECKING:
else:
Span = Any
DEFAULT_REDIS_SYNC_INTERVAL = 1
class ProviderBudgetLimiting(CustomLogger):
def __init__(self, router_cache: DualCache, provider_budget_config: dict):
self.router_cache = router_cache
self.redis_increment_operation_queue: List[RedisPipelineIncrementOperation] = []
asyncio.create_task(self.periodic_sync_in_memory_spend_with_redis())
# cast elements of provider_budget_config to ProviderBudgetInfo
for provider, config in provider_budget_config.items():
@ -173,19 +180,76 @@ class ProviderBudgetLimiting(CustomLogger):
return potential_deployments
async def _get_or_set_budget_start_time(
self, start_time_key: str, current_time: float, ttl_seconds: int
) -> float:
"""
Checks if the key = `provider_budget_start_time:{provider}` exists in cache.
If it does, return the value.
If it does not, set the key to `current_time` and return the value.
"""
budget_start = await self.router_cache.async_get_cache(start_time_key)
if budget_start is None:
await self.router_cache.async_set_cache(
key=start_time_key, value=current_time, ttl=ttl_seconds
)
return current_time
return float(budget_start)
async def _handle_new_budget_window(
self,
spend_key: str,
start_time_key: str,
current_time: float,
response_cost: float,
ttl_seconds: int,
) -> float:
"""
Handle start of new budget window by resetting spend and start time
Enters this when:
- The budget does not exist in cache, so we need to set it
- The budget window has expired, so we need to reset everything
Does 2 things:
- stores key: `provider_spend:{provider}:1d`, value: response_cost
- stores key: `provider_budget_start_time:{provider}`, value: current_time.
This stores the start time of the new budget window
"""
await self.router_cache.async_set_cache(
key=spend_key, value=response_cost, ttl=ttl_seconds
)
await self.router_cache.async_set_cache(
key=start_time_key, value=current_time, ttl=ttl_seconds
)
return current_time
async def _increment_spend_in_current_window(
self, spend_key: str, response_cost: float, ttl: int
):
"""
Increment spend within existing budget window
Runs once the budget start time exists in Redis Cache (on the 2nd and subsequent requests to the same provider)
- Increments the spend in memory cache (so spend instantly updated in memory)
- Queues the increment operation to Redis Pipeline (using batched pipeline to optimize performance. Using Redis for multi instance environment of LiteLLM)
"""
await self.router_cache.in_memory_cache.async_increment(
key=spend_key,
value=response_cost,
ttl=ttl,
)
increment_op = RedisPipelineIncrementOperation(
key=spend_key,
increment_value=response_cost,
ttl=ttl,
)
self.redis_increment_operation_queue.append(increment_op)
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
"""
Increment provider spend in DualCache (InMemory + Redis)
Handles saving current provider spend to Redis.
Spend is stored as:
provider_spend:{provider}:{time_period}
ex. provider_spend:openai:1d
ex. provider_spend:anthropic:7d
The time period is tracked for time_periods set in the provider budget config.
"""
"""Original method now uses helper functions"""
verbose_router_logger.debug("in ProviderBudgetLimiting.async_log_success_event")
standard_logging_payload: Optional[StandardLoggingPayload] = kwargs.get(
"standard_logging_object", None
@ -208,18 +272,144 @@ class ProviderBudgetLimiting(CustomLogger):
)
spend_key = f"provider_spend:{custom_llm_provider}:{budget_config.time_period}"
ttl_seconds = duration_in_seconds(duration=budget_config.time_period)
verbose_router_logger.debug(
f"Incrementing spend for {spend_key} by {response_cost}, ttl: {ttl_seconds}"
start_time_key = f"provider_budget_start_time:{custom_llm_provider}"
current_time = datetime.now(timezone.utc).timestamp()
ttl_seconds = duration_in_seconds(budget_config.time_period)
budget_start = await self._get_or_set_budget_start_time(
start_time_key=start_time_key,
current_time=current_time,
ttl_seconds=ttl_seconds,
)
# Increment the spend in Redis and set TTL
await self.router_cache.async_increment_cache(
key=spend_key,
value=response_cost,
ttl=ttl_seconds,
if budget_start is None:
# First spend for this provider
budget_start = await self._handle_new_budget_window(
spend_key=spend_key,
start_time_key=start_time_key,
current_time=current_time,
response_cost=response_cost,
ttl_seconds=ttl_seconds,
)
elif (current_time - budget_start) > ttl_seconds:
# Budget window expired - reset everything
verbose_router_logger.debug("Budget window expired - resetting everything")
budget_start = await self._handle_new_budget_window(
spend_key=spend_key,
start_time_key=start_time_key,
current_time=current_time,
response_cost=response_cost,
ttl_seconds=ttl_seconds,
)
else:
# Within existing window - increment spend
remaining_time = ttl_seconds - (current_time - budget_start)
ttl_for_increment = int(remaining_time)
await self._increment_spend_in_current_window(
spend_key=spend_key, response_cost=response_cost, ttl=ttl_for_increment
)
verbose_router_logger.debug(
f"Incremented spend for {spend_key} by {response_cost}"
)
async def periodic_sync_in_memory_spend_with_redis(self):
"""
Handler that triggers sync_in_memory_spend_with_redis every DEFAULT_REDIS_SYNC_INTERVAL seconds
Required for multi-instance environment usage of provider budgets
"""
while True:
try:
await self._sync_in_memory_spend_with_redis()
await asyncio.sleep(
DEFAULT_REDIS_SYNC_INTERVAL
) # Wait for DEFAULT_REDIS_SYNC_INTERVAL seconds before next sync
except Exception as e:
verbose_router_logger.error(f"Error in periodic sync task: {str(e)}")
await asyncio.sleep(
DEFAULT_REDIS_SYNC_INTERVAL
) # Still wait DEFAULT_REDIS_SYNC_INTERVAL seconds on error before retrying
async def _push_in_memory_increments_to_redis(self):
"""
How this works:
- async_log_success_event collects all provider spend increments in `redis_increment_operation_queue`
- This function pushes all increments to Redis in a batched pipeline to optimize performance
Only runs if Redis is initialized
"""
try:
if not self.router_cache.redis_cache:
return # Redis is not initialized
verbose_router_logger.debug(
"Pushing Redis Increment Pipeline for queue: %s",
self.redis_increment_operation_queue,
)
if len(self.redis_increment_operation_queue) > 0:
asyncio.create_task(
self.router_cache.redis_cache.async_increment_pipeline(
increment_list=self.redis_increment_operation_queue,
)
)
self.redis_increment_operation_queue = []
except Exception as e:
verbose_router_logger.error(
f"Error syncing in-memory cache with Redis: {str(e)}"
)
async def _sync_in_memory_spend_with_redis(self):
"""
Ensures in-memory cache is updated with latest Redis values for all provider spends.
Why Do we need this?
- Optimization to hit sub 100ms latency. Performance was impacted when redis was used for read/write per request
- Use provider budgets in multi-instance environment, we use Redis to sync spend across all instances
What this does:
1. Push all provider spend increments to Redis
2. Fetch all current provider spend from Redis to update in-memory cache
"""
try:
# No need to sync if Redis cache is not initialized
if self.router_cache.redis_cache is None:
return
# 1. Push all provider spend increments to Redis
await self._push_in_memory_increments_to_redis()
# 2. Fetch all current provider spend from Redis to update in-memory cache
cache_keys = []
for provider, config in self.provider_budget_config.items():
if config is None:
continue
cache_keys.append(f"provider_spend:{provider}:{config.time_period}")
# Batch fetch current spend values from Redis
redis_values = await self.router_cache.redis_cache.async_batch_get_cache(
key_list=cache_keys
)
# Update in-memory cache with Redis values
if isinstance(redis_values, dict): # Check if redis_values is a dictionary
for key, value in redis_values.items():
if value is not None:
await self.router_cache.in_memory_cache.async_set_cache(
key=key, value=float(value)
)
verbose_router_logger.debug(
f"Incremented spend for {spend_key} by {response_cost}, ttl: {ttl_seconds}"
f"Updated in-memory cache for {key}: {value}"
)
except Exception as e:
verbose_router_logger.error(
f"Error syncing in-memory cache with Redis: {str(e)}"
)
def _get_budget_config_for_provider(

View file

@ -1,5 +1,5 @@
from enum import Enum
from typing import Literal
from typing import Literal, Optional, TypedDict
class LiteLLMCacheType(str, Enum):
@ -23,3 +23,13 @@ CachingSupportedCallTypes = Literal[
"arerank",
"rerank",
]
class RedisPipelineIncrementOperation(TypedDict):
"""
TypeDict for 1 Redis Pipeline Increment Operation
"""
key: str
increment_value: float
ttl: Optional[int]

View file

@ -2433,3 +2433,48 @@ async def test_dual_cache_caching_batch_get_cache():
await dc.async_batch_get_cache(keys=["test_key1", "test_key2"])
assert mock_async_get_cache.call_count == 1
@pytest.mark.asyncio
async def test_redis_increment_pipeline():
"""Test Redis increment pipeline functionality"""
try:
from litellm.caching.redis_cache import RedisCache
litellm.set_verbose = True
redis_cache = RedisCache(
host=os.environ["REDIS_HOST"],
port=os.environ["REDIS_PORT"],
password=os.environ["REDIS_PASSWORD"],
)
# Create test increment operations
increment_list = [
{"key": "test_key1", "increment_value": 1.5, "ttl": 60},
{"key": "test_key1", "increment_value": 1.1, "ttl": 58},
{"key": "test_key1", "increment_value": 0.4, "ttl": 55},
{"key": "test_key2", "increment_value": 2.5, "ttl": 60},
]
# Test pipeline increment
results = await redis_cache.async_increment_pipeline(increment_list)
# Verify results
assert len(results) == 8 # 4 increment operations + 4 expire operations
# Verify the values were actually set in Redis
value1 = await redis_cache.async_get_cache("test_key1")
print("result in cache for key=test_key1", value1)
value2 = await redis_cache.async_get_cache("test_key2")
print("result in cache for key=test_key2", value2)
assert float(value1) == 3.0
assert float(value2) == 2.5
# Clean up
await redis_cache.async_delete_cache("test_key1")
await redis_cache.async_delete_cache("test_key2")
except Exception as e:
print(f"Error occurred: {str(e)}")
raise e

View file

@ -17,7 +17,7 @@ from litellm.types.router import (
ProviderBudgetConfigType,
ProviderBudgetInfo,
)
from litellm.caching.caching import DualCache
from litellm.caching.caching import DualCache, RedisCache
import logging
from litellm._logging import verbose_router_logger
import litellm
@ -25,6 +25,27 @@ import litellm
verbose_router_logger.setLevel(logging.DEBUG)
def cleanup_redis():
"""Cleanup Redis cache before each test"""
try:
import redis
print("cleaning up redis..")
redis_client = redis.Redis(
host=os.getenv("REDIS_HOST"),
port=int(os.getenv("REDIS_PORT")),
password=os.getenv("REDIS_PASSWORD"),
)
print("scan iter result", redis_client.scan_iter("provider_spend:*"))
# Delete all provider spend keys
for key in redis_client.scan_iter("provider_spend:*"):
print("deleting key", key)
redis_client.delete(key)
except Exception as e:
print(f"Error cleaning up Redis: {str(e)}")
@pytest.mark.asyncio
async def test_provider_budgets_e2e_test():
"""
@ -34,6 +55,8 @@ async def test_provider_budgets_e2e_test():
- Next 3 requests all go to Azure
"""
cleanup_redis()
# Modify for test
provider_budget_config: ProviderBudgetConfigType = {
"openai": ProviderBudgetInfo(time_period="1d", budget_limit=0.000000000001),
"azure": ProviderBudgetInfo(time_period="1d", budget_limit=100),
@ -71,7 +94,7 @@ async def test_provider_budgets_e2e_test():
)
print(response)
await asyncio.sleep(0.5)
await asyncio.sleep(2.5)
for _ in range(3):
response = await router.acompletion(
@ -94,6 +117,7 @@ async def test_provider_budgets_e2e_test_expect_to_fail():
- first request passes, all subsequent requests fail
"""
cleanup_redis()
# Note: We intentionally use a dictionary with string keys for budget_limit and time_period
# we want to test that the router can handle type conversion, since the proxy config yaml passes these values as a dictionary
@ -125,7 +149,7 @@ async def test_provider_budgets_e2e_test_expect_to_fail():
)
print(response)
await asyncio.sleep(0.5)
await asyncio.sleep(2.5)
for _ in range(3):
with pytest.raises(Exception) as exc_info:
@ -142,11 +166,13 @@ async def test_provider_budgets_e2e_test_expect_to_fail():
assert "Exceeded budget for provider" in str(exc_info.value)
def test_get_llm_provider_for_deployment():
@pytest.mark.asyncio
async def test_get_llm_provider_for_deployment():
"""
Test the _get_llm_provider_for_deployment helper method
"""
cleanup_redis()
provider_budget = ProviderBudgetLimiting(
router_cache=DualCache(), provider_budget_config={}
)
@ -172,11 +198,13 @@ def test_get_llm_provider_for_deployment():
assert provider_budget._get_llm_provider_for_deployment(unknown_deployment) is None
def test_get_budget_config_for_provider():
@pytest.mark.asyncio
async def test_get_budget_config_for_provider():
"""
Test the _get_budget_config_for_provider helper method
"""
cleanup_redis()
config = {
"openai": ProviderBudgetInfo(time_period="1d", budget_limit=100),
"anthropic": ProviderBudgetInfo(time_period="7d", budget_limit=500),
@ -206,6 +234,7 @@ async def test_prometheus_metric_tracking():
"""
Test that the Prometheus metric for provider budget is tracked correctly
"""
cleanup_redis()
from unittest.mock import MagicMock
from litellm.integrations.prometheus import PrometheusLogger
@ -263,7 +292,187 @@ async def test_prometheus_metric_tracking():
except Exception as e:
print("error", e)
await asyncio.sleep(0.5)
await asyncio.sleep(2.5)
# Verify the mock was called correctly
mock_prometheus.track_provider_remaining_budget.assert_called_once()
@pytest.mark.asyncio
async def test_handle_new_budget_window():
"""
Test _handle_new_budget_window helper method
Current
"""
cleanup_redis()
provider_budget = ProviderBudgetLimiting(
router_cache=DualCache(), provider_budget_config={}
)
spend_key = "provider_spend:openai:7d"
start_time_key = "provider_budget_start_time:openai"
current_time = 1000.0
response_cost = 0.5
ttl_seconds = 86400 # 1 day
# Test handling new budget window
new_start_time = await provider_budget._handle_new_budget_window(
spend_key=spend_key,
start_time_key=start_time_key,
current_time=current_time,
response_cost=response_cost,
ttl_seconds=ttl_seconds,
)
assert new_start_time == current_time
# Verify the spend was set correctly
spend = await provider_budget.router_cache.async_get_cache(spend_key)
print("spend in cache for key", spend_key, "is", spend)
assert float(spend) == response_cost
# Verify start time was set correctly
start_time = await provider_budget.router_cache.async_get_cache(start_time_key)
print("start time in cache for key", start_time_key, "is", start_time)
assert float(start_time) == current_time
@pytest.mark.asyncio
async def test_get_or_set_budget_start_time():
"""
Test _get_or_set_budget_start_time helper method
scenario 1: no existing start time in cache, should return current time
scenario 2: existing start time in cache, should return existing start time
"""
cleanup_redis()
provider_budget = ProviderBudgetLimiting(
router_cache=DualCache(), provider_budget_config={}
)
start_time_key = "test_start_time"
current_time = 1000.0
ttl_seconds = 86400 # 1 day
# When there is no existing start time, we should set it to the current time
start_time = await provider_budget._get_or_set_budget_start_time(
start_time_key=start_time_key,
current_time=current_time,
ttl_seconds=ttl_seconds,
)
print("budget start time when no existing start time is in cache", start_time)
assert start_time == current_time
# When there is an existing start time, we should return it even if the current time is later
new_current_time = 2000.0
existing_start_time = await provider_budget._get_or_set_budget_start_time(
start_time_key=start_time_key,
current_time=new_current_time,
ttl_seconds=ttl_seconds,
)
print(
"budget start time when existing start time is in cache, but current time is later",
existing_start_time,
)
assert existing_start_time == current_time # Should return the original start time
@pytest.mark.asyncio
async def test_increment_spend_in_current_window():
"""
Test _increment_spend_in_current_window helper method
Expected behavior:
- Increment the spend in memory cache
- Queue the increment operation to Redis
"""
cleanup_redis()
provider_budget = ProviderBudgetLimiting(
router_cache=DualCache(), provider_budget_config={}
)
spend_key = "provider_spend:openai:1d"
response_cost = 0.5
ttl = 86400 # 1 day
# Set initial spend
await provider_budget.router_cache.async_set_cache(
key=spend_key, value=1.0, ttl=ttl
)
# Test incrementing spend
await provider_budget._increment_spend_in_current_window(
spend_key=spend_key,
response_cost=response_cost,
ttl=ttl,
)
# Verify the spend was incremented correctly in memory
spend = await provider_budget.router_cache.async_get_cache(spend_key)
assert float(spend) == 1.5
# Verify the increment operation was queued for Redis
print(
"redis_increment_operation_queue",
provider_budget.redis_increment_operation_queue,
)
assert len(provider_budget.redis_increment_operation_queue) == 1
queued_op = provider_budget.redis_increment_operation_queue[0]
assert queued_op["key"] == spend_key
assert queued_op["increment_value"] == response_cost
assert queued_op["ttl"] == ttl
@pytest.mark.asyncio
async def test_sync_in_memory_spend_with_redis():
"""
Test _sync_in_memory_spend_with_redis helper method
Expected behavior:
- Push all provider spend increments to Redis
- Fetch all current provider spend from Redis to update in-memory cache
"""
cleanup_redis()
provider_budget_config = {
"openai": ProviderBudgetInfo(time_period="1d", budget_limit=100),
"anthropic": ProviderBudgetInfo(time_period="1d", budget_limit=200),
}
provider_budget = ProviderBudgetLimiting(
router_cache=DualCache(
redis_cache=RedisCache(
host=os.getenv("REDIS_HOST"),
port=int(os.getenv("REDIS_PORT")),
password=os.getenv("REDIS_PASSWORD"),
)
),
provider_budget_config=provider_budget_config,
)
# Set some values in Redis
spend_key_openai = "provider_spend:openai:1d"
spend_key_anthropic = "provider_spend:anthropic:1d"
await provider_budget.router_cache.redis_cache.async_set_cache(
key=spend_key_openai, value=50.0
)
await provider_budget.router_cache.redis_cache.async_set_cache(
key=spend_key_anthropic, value=75.0
)
# Test syncing with Redis
await provider_budget._sync_in_memory_spend_with_redis()
# Verify in-memory cache was updated
openai_spend = await provider_budget.router_cache.in_memory_cache.async_get_cache(
spend_key_openai
)
anthropic_spend = (
await provider_budget.router_cache.in_memory_cache.async_get_cache(
spend_key_anthropic
)
)
assert float(openai_spend) == 50.0
assert float(anthropic_spend) == 75.0