Merge branch 'BerriAI:main' into main

This commit is contained in:
Nandesh Guru 2024-04-18 09:44:31 -07:00 committed by GitHub
commit c8b8f93184
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
50 changed files with 792 additions and 382 deletions

View file

@ -3,8 +3,6 @@ import TabItem from '@theme/TabItem';
# Azure AI Studio # Azure AI Studio
## Sample Usage
**Ensure the following:** **Ensure the following:**
1. The API Base passed ends in the `/v1/` prefix 1. The API Base passed ends in the `/v1/` prefix
example: example:
@ -14,8 +12,11 @@ import TabItem from '@theme/TabItem';
2. The `model` passed is listed in [supported models](#supported-models). You **DO NOT** Need to pass your deployment name to litellm. Example `model=azure/Mistral-large-nmefg` 2. The `model` passed is listed in [supported models](#supported-models). You **DO NOT** Need to pass your deployment name to litellm. Example `model=azure/Mistral-large-nmefg`
## Usage
<Tabs>
<TabItem value="sdk" label="SDK">
**Quick Start**
```python ```python
import litellm import litellm
response = litellm.completion( response = litellm.completion(
@ -26,6 +27,9 @@ response = litellm.completion(
) )
``` ```
</TabItem>
<TabItem value="proxy" label="PROXY">
## Sample Usage - LiteLLM Proxy ## Sample Usage - LiteLLM Proxy
1. Add models to your config.yaml 1. Add models to your config.yaml
@ -99,6 +103,107 @@ response = litellm.completion(
</Tabs> </Tabs>
</TabItem>
</Tabs>
## Function Calling
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import completion
# set env
os.environ["AZURE_MISTRAL_API_KEY"] = "your-api-key"
os.environ["AZURE_MISTRAL_API_BASE"] = "your-api-base"
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
},
}
]
messages = [{"role": "user", "content": "What's the weather like in Boston today?"}]
response = completion(
model="azure/mistral-large-latest",
api_base=os.getenv("AZURE_MISTRAL_API_BASE")
api_key=os.getenv("AZURE_MISTRAL_API_KEY")
messages=messages,
tools=tools,
tool_choice="auto",
)
# Add any assertions, here to check response args
print(response)
assert isinstance(response.choices[0].message.tool_calls[0].function.name, str)
assert isinstance(
response.choices[0].message.tool_calls[0].function.arguments, str
)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
```bash
curl http://0.0.0.0:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $YOUR_API_KEY" \
-d '{
"model": "mistral",
"messages": [
{
"role": "user",
"content": "What'\''s the weather like in Boston today?"
}
],
"tools": [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"]
}
},
"required": ["location"]
}
}
}
],
"tool_choice": "auto"
}'
```
</TabItem>
</Tabs>
## Supported Models ## Supported Models
| Model Name | Function Call | | Model Name | Function Call |

View file

@ -50,6 +50,7 @@ All models listed here https://docs.mistral.ai/platform/endpoints are supported.
| mistral-small | `completion(model="mistral/mistral-small", messages)` | | mistral-small | `completion(model="mistral/mistral-small", messages)` |
| mistral-medium | `completion(model="mistral/mistral-medium", messages)` | | mistral-medium | `completion(model="mistral/mistral-medium", messages)` |
| mistral-large-latest | `completion(model="mistral/mistral-large-latest", messages)` | | mistral-large-latest | `completion(model="mistral/mistral-large-latest", messages)` |
| open-mixtral-8x22b | `completion(model="mistral/open-mixtral-8x22b", messages)` |
## Sample Usage - Embedding ## Sample Usage - Embedding

View file

@ -253,6 +253,7 @@ litellm.vertex_location = "us-central1 # Your Location
## Anthropic ## Anthropic
| Model Name | Function Call | | Model Name | Function Call |
|------------------|--------------------------------------| |------------------|--------------------------------------|
| claude-3-opus@20240229 | `completion('vertex_ai/claude-3-opus@20240229', messages)` |
| claude-3-sonnet@20240229 | `completion('vertex_ai/claude-3-sonnet@20240229', messages)` | | claude-3-sonnet@20240229 | `completion('vertex_ai/claude-3-sonnet@20240229', messages)` |
| claude-3-haiku@20240307 | `completion('vertex_ai/claude-3-haiku@20240307', messages)` | | claude-3-haiku@20240307 | `completion('vertex_ai/claude-3-haiku@20240307', messages)` |

View file

@ -87,6 +87,60 @@ class VertexAIConfig:
and v is not None and v is not None
} }
def get_supported_openai_params(self):
return [
"temperature",
"top_p",
"max_tokens",
"stream",
"tools",
"tool_choice",
"response_format",
"n",
"stop",
]
def map_openai_params(self, non_default_params: dict, optional_params: dict):
for param, value in non_default_params.items():
if param == "temperature":
optional_params["temperature"] = value
if param == "top_p":
optional_params["top_p"] = value
if param == "stream":
optional_params["stream"] = value
if param == "n":
optional_params["candidate_count"] = value
if param == "stop":
if isinstance(value, str):
optional_params["stop_sequences"] = [value]
elif isinstance(value, list):
optional_params["stop_sequences"] = value
if param == "max_tokens":
optional_params["max_output_tokens"] = value
if param == "response_format" and value["type"] == "json_object":
optional_params["response_mime_type"] = "application/json"
if param == "tools" and isinstance(value, list):
from vertexai.preview import generative_models
gtool_func_declarations = []
for tool in value:
gtool_func_declaration = generative_models.FunctionDeclaration(
name=tool["function"]["name"],
description=tool["function"].get("description", ""),
parameters=tool["function"].get("parameters", {}),
)
gtool_func_declarations.append(gtool_func_declaration)
optional_params["tools"] = [
generative_models.Tool(
function_declarations=gtool_func_declarations
)
]
if param == "tool_choice" and (
isinstance(value, str) or isinstance(value, dict)
):
pass
return optional_params
import asyncio import asyncio
@ -822,8 +876,8 @@ async def async_completion(
tools=tools, tools=tools,
) )
if tools is not None and hasattr( if tools is not None and bool(
response.candidates[0].content.parts[0], "function_call" getattr(response.candidates[0].content.parts[0], "function_call", None)
): ):
function_call = response.candidates[0].content.parts[0].function_call function_call = response.candidates[0].content.parts[0].function_call
args_dict = {} args_dict = {}

View file

@ -12,7 +12,6 @@ from typing import Any, Literal, Union, BinaryIO
from functools import partial from functools import partial
import dotenv, traceback, random, asyncio, time, contextvars import dotenv, traceback, random, asyncio, time, contextvars
from copy import deepcopy from copy import deepcopy
import httpx import httpx
import litellm import litellm
from ._logging import verbose_logger from ._logging import verbose_logger

View file

@ -708,6 +708,16 @@
"mode": "chat", "mode": "chat",
"supports_function_calling": true "supports_function_calling": true
}, },
"mistral/open-mixtral-8x7b": {
"max_tokens": 8191,
"max_input_tokens": 32000,
"max_output_tokens": 8191,
"input_cost_per_token": 0.000002,
"output_cost_per_token": 0.000006,
"litellm_provider": "mistral",
"mode": "chat",
"supports_function_calling": true
},
"mistral/mistral-embed": { "mistral/mistral-embed": {
"max_tokens": 8192, "max_tokens": 8192,
"max_input_tokens": 8192, "max_input_tokens": 8192,
@ -1012,6 +1022,7 @@
"litellm_provider": "vertex_ai-language-models", "litellm_provider": "vertex_ai-language-models",
"mode": "chat", "mode": "chat",
"supports_function_calling": true, "supports_function_calling": true,
"supports_tool_choice": true,
"source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#foundation_models" "source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#foundation_models"
}, },
"gemini-1.5-pro-preview-0215": { "gemini-1.5-pro-preview-0215": {
@ -1023,6 +1034,7 @@
"litellm_provider": "vertex_ai-language-models", "litellm_provider": "vertex_ai-language-models",
"mode": "chat", "mode": "chat",
"supports_function_calling": true, "supports_function_calling": true,
"supports_tool_choice": true,
"source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#foundation_models" "source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#foundation_models"
}, },
"gemini-1.5-pro-preview-0409": { "gemini-1.5-pro-preview-0409": {
@ -1034,6 +1046,7 @@
"litellm_provider": "vertex_ai-language-models", "litellm_provider": "vertex_ai-language-models",
"mode": "chat", "mode": "chat",
"supports_function_calling": true, "supports_function_calling": true,
"supports_tool_choice": true,
"source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#foundation_models" "source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#foundation_models"
}, },
"gemini-experimental": { "gemini-experimental": {
@ -1045,6 +1058,7 @@
"litellm_provider": "vertex_ai-language-models", "litellm_provider": "vertex_ai-language-models",
"mode": "chat", "mode": "chat",
"supports_function_calling": false, "supports_function_calling": false,
"supports_tool_choice": true,
"source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#foundation_models" "source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#foundation_models"
}, },
"gemini-pro-vision": { "gemini-pro-vision": {
@ -1271,6 +1285,7 @@
"mode": "chat", "mode": "chat",
"supports_function_calling": true, "supports_function_calling": true,
"supports_vision": true, "supports_vision": true,
"supports_tool_choice": true,
"source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#foundation_models" "source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#foundation_models"
}, },
"gemini/gemini-1.5-pro-latest": { "gemini/gemini-1.5-pro-latest": {
@ -1283,6 +1298,7 @@
"mode": "chat", "mode": "chat",
"supports_function_calling": true, "supports_function_calling": true,
"supports_vision": true, "supports_vision": true,
"supports_tool_choice": true,
"source": "https://ai.google.dev/models/gemini" "source": "https://ai.google.dev/models/gemini"
}, },
"gemini/gemini-pro-vision": { "gemini/gemini-pro-vision": {

File diff suppressed because one or more lines are too long

View file

@ -1 +1 @@
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[185],{11837:function(n,e,t){Promise.resolve().then(t.t.bind(t,99646,23)),Promise.resolve().then(t.t.bind(t,63385,23))},63385:function(){},99646:function(n){n.exports={style:{fontFamily:"'__Inter_c23dc8', '__Inter_Fallback_c23dc8'",fontStyle:"normal"},className:"__className_c23dc8"}}},function(n){n.O(0,[971,69,744],function(){return n(n.s=11837)}),_N_E=n.O()}]); (self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[185],{87421:function(n,e,t){Promise.resolve().then(t.t.bind(t,99646,23)),Promise.resolve().then(t.t.bind(t,63385,23))},63385:function(){},99646:function(n){n.exports={style:{fontFamily:"'__Inter_c23dc8', '__Inter_Fallback_c23dc8'",fontStyle:"normal"},className:"__className_c23dc8"}}},function(n){n.O(0,[971,69,744],function(){return n(n.s=87421)}),_N_E=n.O()}]);

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View file

@ -1 +1 @@
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[744],{70377:function(e,n,t){Promise.resolve().then(t.t.bind(t,47690,23)),Promise.resolve().then(t.t.bind(t,48955,23)),Promise.resolve().then(t.t.bind(t,5613,23)),Promise.resolve().then(t.t.bind(t,11902,23)),Promise.resolve().then(t.t.bind(t,31778,23)),Promise.resolve().then(t.t.bind(t,77831,23))}},function(e){var n=function(n){return e(e.s=n)};e.O(0,[971,69],function(){return n(35317),n(70377)}),_N_E=e.O()}]); (self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[744],{32028:function(e,n,t){Promise.resolve().then(t.t.bind(t,47690,23)),Promise.resolve().then(t.t.bind(t,48955,23)),Promise.resolve().then(t.t.bind(t,5613,23)),Promise.resolve().then(t.t.bind(t,11902,23)),Promise.resolve().then(t.t.bind(t,31778,23)),Promise.resolve().then(t.t.bind(t,77831,23))}},function(e){var n=function(n){return e(e.s=n)};e.O(0,[971,69],function(){return n(35317),n(32028)}),_N_E=e.O()}]);

View file

@ -1 +1 @@
!function(){"use strict";var e,t,n,r,o,u,i,c,f,a={},l={};function d(e){var t=l[e];if(void 0!==t)return t.exports;var n=l[e]={id:e,loaded:!1,exports:{}},r=!0;try{a[e](n,n.exports,d),r=!1}finally{r&&delete l[e]}return n.loaded=!0,n.exports}d.m=a,e=[],d.O=function(t,n,r,o){if(n){o=o||0;for(var u=e.length;u>0&&e[u-1][2]>o;u--)e[u]=e[u-1];e[u]=[n,r,o];return}for(var i=1/0,u=0;u<e.length;u++){for(var n=e[u][0],r=e[u][1],o=e[u][2],c=!0,f=0;f<n.length;f++)i>=o&&Object.keys(d.O).every(function(e){return d.O[e](n[f])})?n.splice(f--,1):(c=!1,o<i&&(i=o));if(c){e.splice(u--,1);var a=r();void 0!==a&&(t=a)}}return t},d.n=function(e){var t=e&&e.__esModule?function(){return e.default}:function(){return e};return d.d(t,{a:t}),t},n=Object.getPrototypeOf?function(e){return Object.getPrototypeOf(e)}:function(e){return e.__proto__},d.t=function(e,r){if(1&r&&(e=this(e)),8&r||"object"==typeof e&&e&&(4&r&&e.__esModule||16&r&&"function"==typeof e.then))return e;var o=Object.create(null);d.r(o);var u={};t=t||[null,n({}),n([]),n(n)];for(var i=2&r&&e;"object"==typeof i&&!~t.indexOf(i);i=n(i))Object.getOwnPropertyNames(i).forEach(function(t){u[t]=function(){return e[t]}});return u.default=function(){return e},d.d(o,u),o},d.d=function(e,t){for(var n in t)d.o(t,n)&&!d.o(e,n)&&Object.defineProperty(e,n,{enumerable:!0,get:t[n]})},d.f={},d.e=function(e){return Promise.all(Object.keys(d.f).reduce(function(t,n){return d.f[n](e,t),t},[]))},d.u=function(e){},d.miniCssF=function(e){return"static/css/11cfce8bfdf6e8f1.css"},d.g=function(){if("object"==typeof globalThis)return globalThis;try{return this||Function("return this")()}catch(e){if("object"==typeof window)return window}}(),d.o=function(e,t){return Object.prototype.hasOwnProperty.call(e,t)},r={},o="_N_E:",d.l=function(e,t,n,u){if(r[e]){r[e].push(t);return}if(void 0!==n)for(var i,c,f=document.getElementsByTagName("script"),a=0;a<f.length;a++){var l=f[a];if(l.getAttribute("src")==e||l.getAttribute("data-webpack")==o+n){i=l;break}}i||(c=!0,(i=document.createElement("script")).charset="utf-8",i.timeout=120,d.nc&&i.setAttribute("nonce",d.nc),i.setAttribute("data-webpack",o+n),i.src=d.tu(e)),r[e]=[t];var s=function(t,n){i.onerror=i.onload=null,clearTimeout(p);var o=r[e];if(delete r[e],i.parentNode&&i.parentNode.removeChild(i),o&&o.forEach(function(e){return e(n)}),t)return t(n)},p=setTimeout(s.bind(null,void 0,{type:"timeout",target:i}),12e4);i.onerror=s.bind(null,i.onerror),i.onload=s.bind(null,i.onload),c&&document.head.appendChild(i)},d.r=function(e){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(e,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(e,"__esModule",{value:!0})},d.nmd=function(e){return e.paths=[],e.children||(e.children=[]),e},d.tt=function(){return void 0===u&&(u={createScriptURL:function(e){return e}},"undefined"!=typeof trustedTypes&&trustedTypes.createPolicy&&(u=trustedTypes.createPolicy("nextjs#bundler",u))),u},d.tu=function(e){return d.tt().createScriptURL(e)},d.p="/ui/_next/",i={272:0},d.f.j=function(e,t){var n=d.o(i,e)?i[e]:void 0;if(0!==n){if(n)t.push(n[2]);else if(272!=e){var r=new Promise(function(t,r){n=i[e]=[t,r]});t.push(n[2]=r);var o=d.p+d.u(e),u=Error();d.l(o,function(t){if(d.o(i,e)&&(0!==(n=i[e])&&(i[e]=void 0),n)){var r=t&&("load"===t.type?"missing":t.type),o=t&&t.target&&t.target.src;u.message="Loading chunk "+e+" failed.\n("+r+": "+o+")",u.name="ChunkLoadError",u.type=r,u.request=o,n[1](u)}},"chunk-"+e,e)}else i[e]=0}},d.O.j=function(e){return 0===i[e]},c=function(e,t){var n,r,o=t[0],u=t[1],c=t[2],f=0;if(o.some(function(e){return 0!==i[e]})){for(n in u)d.o(u,n)&&(d.m[n]=u[n]);if(c)var a=c(d)}for(e&&e(t);f<o.length;f++)r=o[f],d.o(i,r)&&i[r]&&i[r][0](),i[r]=0;return d.O(a)},(f=self.webpackChunk_N_E=self.webpackChunk_N_E||[]).forEach(c.bind(null,0)),f.push=c.bind(null,f.push.bind(f))}(); !function(){"use strict";var e,t,n,r,o,u,i,c,f,a={},l={};function d(e){var t=l[e];if(void 0!==t)return t.exports;var n=l[e]={id:e,loaded:!1,exports:{}},r=!0;try{a[e](n,n.exports,d),r=!1}finally{r&&delete l[e]}return n.loaded=!0,n.exports}d.m=a,e=[],d.O=function(t,n,r,o){if(n){o=o||0;for(var u=e.length;u>0&&e[u-1][2]>o;u--)e[u]=e[u-1];e[u]=[n,r,o];return}for(var i=1/0,u=0;u<e.length;u++){for(var n=e[u][0],r=e[u][1],o=e[u][2],c=!0,f=0;f<n.length;f++)i>=o&&Object.keys(d.O).every(function(e){return d.O[e](n[f])})?n.splice(f--,1):(c=!1,o<i&&(i=o));if(c){e.splice(u--,1);var a=r();void 0!==a&&(t=a)}}return t},d.n=function(e){var t=e&&e.__esModule?function(){return e.default}:function(){return e};return d.d(t,{a:t}),t},n=Object.getPrototypeOf?function(e){return Object.getPrototypeOf(e)}:function(e){return e.__proto__},d.t=function(e,r){if(1&r&&(e=this(e)),8&r||"object"==typeof e&&e&&(4&r&&e.__esModule||16&r&&"function"==typeof e.then))return e;var o=Object.create(null);d.r(o);var u={};t=t||[null,n({}),n([]),n(n)];for(var i=2&r&&e;"object"==typeof i&&!~t.indexOf(i);i=n(i))Object.getOwnPropertyNames(i).forEach(function(t){u[t]=function(){return e[t]}});return u.default=function(){return e},d.d(o,u),o},d.d=function(e,t){for(var n in t)d.o(t,n)&&!d.o(e,n)&&Object.defineProperty(e,n,{enumerable:!0,get:t[n]})},d.f={},d.e=function(e){return Promise.all(Object.keys(d.f).reduce(function(t,n){return d.f[n](e,t),t},[]))},d.u=function(e){},d.miniCssF=function(e){return"static/css/dc347b0d22ffde5d.css"},d.g=function(){if("object"==typeof globalThis)return globalThis;try{return this||Function("return this")()}catch(e){if("object"==typeof window)return window}}(),d.o=function(e,t){return Object.prototype.hasOwnProperty.call(e,t)},r={},o="_N_E:",d.l=function(e,t,n,u){if(r[e]){r[e].push(t);return}if(void 0!==n)for(var i,c,f=document.getElementsByTagName("script"),a=0;a<f.length;a++){var l=f[a];if(l.getAttribute("src")==e||l.getAttribute("data-webpack")==o+n){i=l;break}}i||(c=!0,(i=document.createElement("script")).charset="utf-8",i.timeout=120,d.nc&&i.setAttribute("nonce",d.nc),i.setAttribute("data-webpack",o+n),i.src=d.tu(e)),r[e]=[t];var s=function(t,n){i.onerror=i.onload=null,clearTimeout(p);var o=r[e];if(delete r[e],i.parentNode&&i.parentNode.removeChild(i),o&&o.forEach(function(e){return e(n)}),t)return t(n)},p=setTimeout(s.bind(null,void 0,{type:"timeout",target:i}),12e4);i.onerror=s.bind(null,i.onerror),i.onload=s.bind(null,i.onload),c&&document.head.appendChild(i)},d.r=function(e){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(e,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(e,"__esModule",{value:!0})},d.nmd=function(e){return e.paths=[],e.children||(e.children=[]),e},d.tt=function(){return void 0===u&&(u={createScriptURL:function(e){return e}},"undefined"!=typeof trustedTypes&&trustedTypes.createPolicy&&(u=trustedTypes.createPolicy("nextjs#bundler",u))),u},d.tu=function(e){return d.tt().createScriptURL(e)},d.p="/ui/_next/",i={272:0},d.f.j=function(e,t){var n=d.o(i,e)?i[e]:void 0;if(0!==n){if(n)t.push(n[2]);else if(272!=e){var r=new Promise(function(t,r){n=i[e]=[t,r]});t.push(n[2]=r);var o=d.p+d.u(e),u=Error();d.l(o,function(t){if(d.o(i,e)&&(0!==(n=i[e])&&(i[e]=void 0),n)){var r=t&&("load"===t.type?"missing":t.type),o=t&&t.target&&t.target.src;u.message="Loading chunk "+e+" failed.\n("+r+": "+o+")",u.name="ChunkLoadError",u.type=r,u.request=o,n[1](u)}},"chunk-"+e,e)}else i[e]=0}},d.O.j=function(e){return 0===i[e]},c=function(e,t){var n,r,o=t[0],u=t[1],c=t[2],f=0;if(o.some(function(e){return 0!==i[e]})){for(n in u)d.o(u,n)&&(d.m[n]=u[n]);if(c)var a=c(d)}for(e&&e(t);f<o.length;f++)r=o[f],d.o(i,r)&&i[r]&&i[r][0](),i[r]=0;return d.O(a)},(f=self.webpackChunk_N_E=self.webpackChunk_N_E||[]).forEach(c.bind(null,0)),f.push=c.bind(null,f.push.bind(f))}();

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View file

@ -1 +1 @@
<!DOCTYPE html><html id="__next_error__"><head><meta charSet="utf-8"/><meta name="viewport" content="width=device-width, initial-scale=1"/><link rel="preload" as="script" fetchPriority="low" href="/ui/_next/static/chunks/webpack-59f93936973f5f5a.js" crossorigin=""/><script src="/ui/_next/static/chunks/fd9d1056-bcf69420342937de.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/69-442a9c01c3fd20f9.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/main-app-096338c8e1915716.js" async="" crossorigin=""></script><title>LiteLLM Dashboard</title><meta name="description" content="LiteLLM Proxy Admin UI"/><link rel="icon" href="/ui/favicon.ico" type="image/x-icon" sizes="16x16"/><meta name="next-size-adjust"/><script src="/ui/_next/static/chunks/polyfills-c67a75d1b6f99dc8.js" crossorigin="" noModule=""></script></head><body><script src="/ui/_next/static/chunks/webpack-59f93936973f5f5a.js" crossorigin="" async=""></script><script>(self.__next_f=self.__next_f||[]).push([0]);self.__next_f.push([2,null])</script><script>self.__next_f.push([1,"1:HL[\"/ui/_next/static/media/c9a5bc6a7c948fb0-s.p.woff2\",\"font\",{\"crossOrigin\":\"\",\"type\":\"font/woff2\"}]\n2:HL[\"/ui/_next/static/css/11cfce8bfdf6e8f1.css\",\"style\",{\"crossOrigin\":\"\"}]\n0:\"$L3\"\n"])</script><script>self.__next_f.push([1,"4:I[47690,[],\"\"]\n6:I[77831,[],\"\"]\n7:I[88740,[\"289\",\"static/chunks/289-04be6cb9636840d2.js\",\"931\",\"static/chunks/app/page-2c0827b33aed42d7.js\"],\"\"]\n8:I[5613,[],\"\"]\n9:I[31778,[],\"\"]\nb:I[48955,[],\"\"]\nc:[]\n"])</script><script>self.__next_f.push([1,"3:[[[\"$\",\"link\",\"0\",{\"rel\":\"stylesheet\",\"href\":\"/ui/_next/static/css/11cfce8bfdf6e8f1.css\",\"precedence\":\"next\",\"crossOrigin\":\"\"}]],[\"$\",\"$L4\",null,{\"buildId\":\"TqpzjpOA_s5IXVzgrYZ-F\",\"assetPrefix\":\"/ui\",\"initialCanonicalUrl\":\"/\",\"initialTree\":[\"\",{\"children\":[\"__PAGE__\",{}]},\"$undefined\",\"$undefined\",true],\"initialSeedData\":[\"\",{\"children\":[\"__PAGE__\",{},[\"$L5\",[\"$\",\"$L6\",null,{\"propsForComponent\":{\"params\":{}},\"Component\":\"$7\",\"isStaticGeneration\":true}],null]]},[null,[\"$\",\"html\",null,{\"lang\":\"en\",\"children\":[\"$\",\"body\",null,{\"className\":\"__className_c23dc8\",\"children\":[\"$\",\"$L8\",null,{\"parallelRouterKey\":\"children\",\"segmentPath\":[\"children\"],\"loading\":\"$undefined\",\"loadingStyles\":\"$undefined\",\"loadingScripts\":\"$undefined\",\"hasLoading\":false,\"error\":\"$undefined\",\"errorStyles\":\"$undefined\",\"errorScripts\":\"$undefined\",\"template\":[\"$\",\"$L9\",null,{}],\"templateStyles\":\"$undefined\",\"templateScripts\":\"$undefined\",\"notFound\":[[\"$\",\"title\",null,{\"children\":\"404: This page could not be found.\"}],[\"$\",\"div\",null,{\"style\":{\"fontFamily\":\"system-ui,\\\"Segoe UI\\\",Roboto,Helvetica,Arial,sans-serif,\\\"Apple Color Emoji\\\",\\\"Segoe UI Emoji\\\"\",\"height\":\"100vh\",\"textAlign\":\"center\",\"display\":\"flex\",\"flexDirection\":\"column\",\"alignItems\":\"center\",\"justifyContent\":\"center\"},\"children\":[\"$\",\"div\",null,{\"children\":[[\"$\",\"style\",null,{\"dangerouslySetInnerHTML\":{\"__html\":\"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}\"}}],[\"$\",\"h1\",null,{\"className\":\"next-error-h1\",\"style\":{\"display\":\"inline-block\",\"margin\":\"0 20px 0 0\",\"padding\":\"0 23px 0 0\",\"fontSize\":24,\"fontWeight\":500,\"verticalAlign\":\"top\",\"lineHeight\":\"49px\"},\"children\":\"404\"}],[\"$\",\"div\",null,{\"style\":{\"display\":\"inline-block\"},\"children\":[\"$\",\"h2\",null,{\"style\":{\"fontSize\":14,\"fontWeight\":400,\"lineHeight\":\"49px\",\"margin\":0},\"children\":\"This page could not be found.\"}]}]]}]}]],\"notFoundStyles\":[],\"styles\":null}]}]}],null]],\"initialHead\":[false,\"$La\"],\"globalErrorComponent\":\"$b\",\"missingSlots\":\"$Wc\"}]]\n"])</script><script>self.__next_f.push([1,"a:[[\"$\",\"meta\",\"0\",{\"name\":\"viewport\",\"content\":\"width=device-width, initial-scale=1\"}],[\"$\",\"meta\",\"1\",{\"charSet\":\"utf-8\"}],[\"$\",\"title\",\"2\",{\"children\":\"LiteLLM Dashboard\"}],[\"$\",\"meta\",\"3\",{\"name\":\"description\",\"content\":\"LiteLLM Proxy Admin UI\"}],[\"$\",\"link\",\"4\",{\"rel\":\"icon\",\"href\":\"/ui/favicon.ico\",\"type\":\"image/x-icon\",\"sizes\":\"16x16\"}],[\"$\",\"meta\",\"5\",{\"name\":\"next-size-adjust\"}]]\n5:null\n"])</script><script>self.__next_f.push([1,""])</script></body></html> <!DOCTYPE html><html id="__next_error__"><head><meta charSet="utf-8"/><meta name="viewport" content="width=device-width, initial-scale=1"/><link rel="preload" as="script" fetchPriority="low" href="/ui/_next/static/chunks/webpack-75b5d58291566cf9.js" crossorigin=""/><script src="/ui/_next/static/chunks/fd9d1056-bcf69420342937de.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/69-442a9c01c3fd20f9.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/main-app-9b4fb13a7db53edf.js" async="" crossorigin=""></script><title>LiteLLM Dashboard</title><meta name="description" content="LiteLLM Proxy Admin UI"/><link rel="icon" href="/ui/favicon.ico" type="image/x-icon" sizes="16x16"/><meta name="next-size-adjust"/><script src="/ui/_next/static/chunks/polyfills-c67a75d1b6f99dc8.js" crossorigin="" noModule=""></script></head><body><script src="/ui/_next/static/chunks/webpack-75b5d58291566cf9.js" crossorigin="" async=""></script><script>(self.__next_f=self.__next_f||[]).push([0]);self.__next_f.push([2,null])</script><script>self.__next_f.push([1,"1:HL[\"/ui/_next/static/media/c9a5bc6a7c948fb0-s.p.woff2\",\"font\",{\"crossOrigin\":\"\",\"type\":\"font/woff2\"}]\n2:HL[\"/ui/_next/static/css/dc347b0d22ffde5d.css\",\"style\",{\"crossOrigin\":\"\"}]\n0:\"$L3\"\n"])</script><script>self.__next_f.push([1,"4:I[47690,[],\"\"]\n6:I[77831,[],\"\"]\n7:I[21225,[\"289\",\"static/chunks/289-04be6cb9636840d2.js\",\"931\",\"static/chunks/app/page-cb85da9a307105a0.js\"],\"\"]\n8:I[5613,[],\"\"]\n9:I[31778,[],\"\"]\nb:I[48955,[],\"\"]\nc:[]\n"])</script><script>self.__next_f.push([1,"3:[[[\"$\",\"link\",\"0\",{\"rel\":\"stylesheet\",\"href\":\"/ui/_next/static/css/dc347b0d22ffde5d.css\",\"precedence\":\"next\",\"crossOrigin\":\"\"}]],[\"$\",\"$L4\",null,{\"buildId\":\"y7Wf8hfvd5KooOO87je1n\",\"assetPrefix\":\"/ui\",\"initialCanonicalUrl\":\"/\",\"initialTree\":[\"\",{\"children\":[\"__PAGE__\",{}]},\"$undefined\",\"$undefined\",true],\"initialSeedData\":[\"\",{\"children\":[\"__PAGE__\",{},[\"$L5\",[\"$\",\"$L6\",null,{\"propsForComponent\":{\"params\":{}},\"Component\":\"$7\",\"isStaticGeneration\":true}],null]]},[null,[\"$\",\"html\",null,{\"lang\":\"en\",\"children\":[\"$\",\"body\",null,{\"className\":\"__className_c23dc8\",\"children\":[\"$\",\"$L8\",null,{\"parallelRouterKey\":\"children\",\"segmentPath\":[\"children\"],\"loading\":\"$undefined\",\"loadingStyles\":\"$undefined\",\"loadingScripts\":\"$undefined\",\"hasLoading\":false,\"error\":\"$undefined\",\"errorStyles\":\"$undefined\",\"errorScripts\":\"$undefined\",\"template\":[\"$\",\"$L9\",null,{}],\"templateStyles\":\"$undefined\",\"templateScripts\":\"$undefined\",\"notFound\":[[\"$\",\"title\",null,{\"children\":\"404: This page could not be found.\"}],[\"$\",\"div\",null,{\"style\":{\"fontFamily\":\"system-ui,\\\"Segoe UI\\\",Roboto,Helvetica,Arial,sans-serif,\\\"Apple Color Emoji\\\",\\\"Segoe UI Emoji\\\"\",\"height\":\"100vh\",\"textAlign\":\"center\",\"display\":\"flex\",\"flexDirection\":\"column\",\"alignItems\":\"center\",\"justifyContent\":\"center\"},\"children\":[\"$\",\"div\",null,{\"children\":[[\"$\",\"style\",null,{\"dangerouslySetInnerHTML\":{\"__html\":\"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}\"}}],[\"$\",\"h1\",null,{\"className\":\"next-error-h1\",\"style\":{\"display\":\"inline-block\",\"margin\":\"0 20px 0 0\",\"padding\":\"0 23px 0 0\",\"fontSize\":24,\"fontWeight\":500,\"verticalAlign\":\"top\",\"lineHeight\":\"49px\"},\"children\":\"404\"}],[\"$\",\"div\",null,{\"style\":{\"display\":\"inline-block\"},\"children\":[\"$\",\"h2\",null,{\"style\":{\"fontSize\":14,\"fontWeight\":400,\"lineHeight\":\"49px\",\"margin\":0},\"children\":\"This page could not be found.\"}]}]]}]}]],\"notFoundStyles\":[],\"styles\":null}]}]}],null]],\"initialHead\":[false,\"$La\"],\"globalErrorComponent\":\"$b\",\"missingSlots\":\"$Wc\"}]]\n"])</script><script>self.__next_f.push([1,"a:[[\"$\",\"meta\",\"0\",{\"name\":\"viewport\",\"content\":\"width=device-width, initial-scale=1\"}],[\"$\",\"meta\",\"1\",{\"charSet\":\"utf-8\"}],[\"$\",\"title\",\"2\",{\"children\":\"LiteLLM Dashboard\"}],[\"$\",\"meta\",\"3\",{\"name\":\"description\",\"content\":\"LiteLLM Proxy Admin UI\"}],[\"$\",\"link\",\"4\",{\"rel\":\"icon\",\"href\":\"/ui/favicon.ico\",\"type\":\"image/x-icon\",\"sizes\":\"16x16\"}],[\"$\",\"meta\",\"5\",{\"name\":\"next-size-adjust\"}]]\n5:null\n"])</script><script>self.__next_f.push([1,""])</script></body></html>

View file

@ -1,7 +1,7 @@
2:I[77831,[],""] 2:I[77831,[],""]
3:I[88740,["289","static/chunks/289-04be6cb9636840d2.js","931","static/chunks/app/page-2c0827b33aed42d7.js"],""] 3:I[21225,["289","static/chunks/289-04be6cb9636840d2.js","931","static/chunks/app/page-cb85da9a307105a0.js"],""]
4:I[5613,[],""] 4:I[5613,[],""]
5:I[31778,[],""] 5:I[31778,[],""]
0:["TqpzjpOA_s5IXVzgrYZ-F",[[["",{"children":["__PAGE__",{}]},"$undefined","$undefined",true],["",{"children":["__PAGE__",{},["$L1",["$","$L2",null,{"propsForComponent":{"params":{}},"Component":"$3","isStaticGeneration":true}],null]]},[null,["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_c23dc8","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[],"styles":null}]}]}],null]],[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/11cfce8bfdf6e8f1.css","precedence":"next","crossOrigin":""}]],"$L6"]]]] 0:["y7Wf8hfvd5KooOO87je1n",[[["",{"children":["__PAGE__",{}]},"$undefined","$undefined",true],["",{"children":["__PAGE__",{},["$L1",["$","$L2",null,{"propsForComponent":{"params":{}},"Component":"$3","isStaticGeneration":true}],null]]},[null,["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_c23dc8","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[],"styles":null}]}]}],null]],[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/dc347b0d22ffde5d.css","precedence":"next","crossOrigin":""}]],"$L6"]]]]
6:[["$","meta","0",{"name":"viewport","content":"width=device-width, initial-scale=1"}],["$","meta","1",{"charSet":"utf-8"}],["$","title","2",{"children":"LiteLLM Dashboard"}],["$","meta","3",{"name":"description","content":"LiteLLM Proxy Admin UI"}],["$","link","4",{"rel":"icon","href":"/ui/favicon.ico","type":"image/x-icon","sizes":"16x16"}],["$","meta","5",{"name":"next-size-adjust"}]] 6:[["$","meta","0",{"name":"viewport","content":"width=device-width, initial-scale=1"}],["$","meta","1",{"charSet":"utf-8"}],["$","title","2",{"children":"LiteLLM Dashboard"}],["$","meta","3",{"name":"description","content":"LiteLLM Proxy Admin UI"}],["$","link","4",{"rel":"icon","href":"/ui/favicon.ico","type":"image/x-icon","sizes":"16x16"}],["$","meta","5",{"name":"next-size-adjust"}]]
1:null 1:null

View file

@ -3,7 +3,8 @@ model_list:
litellm_params: litellm_params:
model: openai/my-fake-model model: openai/my-fake-model
api_key: my-fake-key api_key: my-fake-key
api_base: https://openai-function-calling-workers.tasslexyz.workers.dev/ # api_base: https://openai-function-calling-workers.tasslexyz.workers.dev/
api_base: http://0.0.0.0:8080
stream_timeout: 0.001 stream_timeout: 0.001
rpm: 10 rpm: 10
- litellm_params: - litellm_params:

View file

@ -800,6 +800,10 @@ class UserAPIKeyAuth(
def check_api_key(cls, values): def check_api_key(cls, values):
if values.get("api_key") is not None: if values.get("api_key") is not None:
values.update({"token": hash_token(values.get("api_key"))}) values.update({"token": hash_token(values.get("api_key"))})
if isinstance(values.get("api_key"), str) and values.get(
"api_key"
).startswith("sk-"):
values.update({"api_key": hash_token(values.get("api_key"))})
return values return values

View file

@ -10,17 +10,7 @@ model_list:
api_key: os.environ/OPENAI_API_KEY api_key: os.environ/OPENAI_API_KEY
litellm_settings:
default_team_settings:
- team_id: team-1
success_callback: ["langfuse"]
langfuse_public_key: os.environ/LANGFUSE_PROJECT1_PUBLIC # Project 1
langfuse_secret: os.environ/LANGFUSE_PROJECT1_SECRET # Project 1
- team_id: team-2
success_callback: ["langfuse"]
langfuse_public_key: os.environ/LANGFUSE_PROJECT2_PUBLIC # Project 2
langfuse_secret: os.environ/LANGFUSE_PROJECT2_SECRET # Project 2
general_settings: general_settings:
store_model_in_db: true store_model_in_db: true
master_key: sk-1234 master_key: sk-1234
alerting: ["slack"]

View file

@ -7199,6 +7199,7 @@ async def model_info_v2(
"/model/metrics", "/model/metrics",
description="View number of requests & avg latency per model on config.yaml", description="View number of requests & avg latency per model on config.yaml",
tags=["model management"], tags=["model management"],
include_in_schema=False,
dependencies=[Depends(user_api_key_auth)], dependencies=[Depends(user_api_key_auth)],
) )
async def model_metrics( async def model_metrics(

View file

@ -360,22 +360,25 @@ class ProxyLogging:
f"Budget Alerts: Percent left: {percent_left} for {user_info}" f"Budget Alerts: Percent left: {percent_left} for {user_info}"
) )
# check if crossed budget
if user_current_spend >= user_max_budget:
verbose_proxy_logger.debug("Budget Crossed for %s", user_info)
message = "Budget Crossed for" + user_info
await self.alerting_handler(
message=message,
level="High",
)
return
## PREVENTITIVE ALERTING ## - https://github.com/BerriAI/litellm/issues/2727 ## PREVENTITIVE ALERTING ## - https://github.com/BerriAI/litellm/issues/2727
# - Alert once within 28d period # - Alert once within 28d period
# - Cache this information # - Cache this information
# - Don't re-alert, if alert already sent # - Don't re-alert, if alert already sent
_cache: DualCache = self.internal_usage_cache _cache: DualCache = self.internal_usage_cache
# check if crossed budget
if user_current_spend >= user_max_budget:
verbose_proxy_logger.debug("Budget Crossed for %s", user_info)
message = "Budget Crossed for" + user_info
result = await _cache.async_get_cache(key=message)
if result is None:
await self.alerting_handler(
message=message,
level="High",
)
await _cache.async_set_cache(key=message, value="SENT", ttl=2419200)
return
# check if 5% of max budget is left # check if 5% of max budget is left
if percent_left <= 0.05: if percent_left <= 0.05:
message = "5% budget left for" + user_info message = "5% budget left for" + user_info
@ -426,9 +429,8 @@ class ProxyLogging:
# Get the current timestamp # Get the current timestamp
current_time = datetime.now().strftime("%H:%M:%S") current_time = datetime.now().strftime("%H:%M:%S")
formatted_message = ( _proxy_base_url = os.getenv("PROXY_BASE_URL", "None")
f"Level: `{level}`\nTimestamp: `{current_time}`\n\nMessage: {message}" formatted_message = f"Level: `{level}`\nTimestamp: `{current_time}`\n\nMessage: {message} \n\nProxy URL: `{_proxy_base_url}`"
)
if self.alerting is None: if self.alerting is None:
return return

View file

@ -19,7 +19,7 @@ from litellm.proxy.enterprise.enterprise_hooks.banned_keywords import (
_ENTERPRISE_BannedKeywords, _ENTERPRISE_BannedKeywords,
) )
from litellm import Router, mock_completion from litellm import Router, mock_completion
from litellm.proxy.utils import ProxyLogging from litellm.proxy.utils import ProxyLogging, hash_token
from litellm.proxy._types import UserAPIKeyAuth from litellm.proxy._types import UserAPIKeyAuth
from litellm.caching import DualCache from litellm.caching import DualCache
@ -36,6 +36,7 @@ async def test_banned_keywords_check():
banned_keywords_obj = _ENTERPRISE_BannedKeywords() banned_keywords_obj = _ENTERPRISE_BannedKeywords()
_api_key = "sk-12345" _api_key = "sk-12345"
_api_key = hash_token("sk-12345")
user_api_key_dict = UserAPIKeyAuth(api_key=_api_key) user_api_key_dict = UserAPIKeyAuth(api_key=_api_key)
local_cache = DualCache() local_cache = DualCache()

View file

@ -20,7 +20,7 @@ from litellm.proxy.enterprise.enterprise_hooks.blocked_user_list import (
_ENTERPRISE_BlockedUserList, _ENTERPRISE_BlockedUserList,
) )
from litellm import Router, mock_completion from litellm import Router, mock_completion
from litellm.proxy.utils import ProxyLogging from litellm.proxy.utils import ProxyLogging, hash_token
from litellm.proxy._types import UserAPIKeyAuth from litellm.proxy._types import UserAPIKeyAuth
from litellm.caching import DualCache from litellm.caching import DualCache
from litellm.proxy.utils import PrismaClient, ProxyLogging, hash_token from litellm.proxy.utils import PrismaClient, ProxyLogging, hash_token
@ -106,6 +106,7 @@ async def test_block_user_check(prisma_client):
) )
_api_key = "sk-12345" _api_key = "sk-12345"
_api_key = hash_token("sk-12345")
user_api_key_dict = UserAPIKeyAuth(api_key=_api_key) user_api_key_dict = UserAPIKeyAuth(api_key=_api_key)
local_cache = DualCache() local_cache = DualCache()

View file

@ -33,6 +33,22 @@ def reset_callbacks():
litellm.callbacks = [] litellm.callbacks = []
@pytest.mark.skip(reason="Local test")
def test_response_model_none():
"""
Addresses - https://github.com/BerriAI/litellm/issues/2972
"""
x = completion(
model="mymodel",
custom_llm_provider="openai",
messages=[{"role": "user", "content": "Hello!"}],
api_base="http://0.0.0.0:8080",
api_key="my-api-key",
)
print(f"x: {x}")
assert isinstance(x, litellm.ModelResponse)
def test_completion_custom_provider_model_name(): def test_completion_custom_provider_model_name():
try: try:
litellm.cache = None litellm.cache = None
@ -399,6 +415,51 @@ def test_completion_claude_3_function_plus_image():
print(response) print(response)
def test_completion_azure_mistral_large_function_calling():
"""
This primarily tests if the 'Function()' pydantic object correctly handles argument param passed in as a dict vs. string
"""
litellm.set_verbose = True
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
},
}
]
messages = [
{
"role": "user",
"content": "What's the weather like in Boston today in Fahrenheit?",
}
]
response = completion(
model="azure/mistral-large-latest",
api_base=os.getenv("AZURE_MISTRAL_API_BASE"),
api_key=os.getenv("AZURE_MISTRAL_API_KEY"),
messages=messages,
tools=tools,
tool_choice="auto",
)
# Add any assertions, here to check response args
print(response)
assert isinstance(response.choices[0].message.tool_calls[0].function.name, str)
assert isinstance(response.choices[0].message.tool_calls[0].function.arguments, str)
def test_completion_mistral_api(): def test_completion_mistral_api():
try: try:
litellm.set_verbose = True litellm.set_verbose = True

View file

@ -266,47 +266,50 @@ def test_groq_parallel_function_call():
) )
print("Response\n", response) print("Response\n", response)
response_message = response.choices[0].message response_message = response.choices[0].message
tool_calls = response_message.tool_calls if hasattr(response_message, "tool_calls"):
tool_calls = response_message.tool_calls
assert isinstance(response.choices[0].message.tool_calls[0].function.name, str) assert isinstance(
assert isinstance( response.choices[0].message.tool_calls[0].function.name, str
response.choices[0].message.tool_calls[0].function.arguments, str )
) assert isinstance(
response.choices[0].message.tool_calls[0].function.arguments, str
)
print("length of tool calls", len(tool_calls)) print("length of tool calls", len(tool_calls))
# Step 2: check if the model wanted to call a function # Step 2: check if the model wanted to call a function
if tool_calls: if tool_calls:
# Step 3: call the function # Step 3: call the function
# Note: the JSON response may not always be valid; be sure to handle errors # Note: the JSON response may not always be valid; be sure to handle errors
available_functions = { available_functions = {
"get_current_weather": get_current_weather, "get_current_weather": get_current_weather,
} # only one function in this example, but you can have multiple } # only one function in this example, but you can have multiple
messages.append(
response_message
) # extend conversation with assistant's reply
print("Response message\n", response_message)
# Step 4: send the info for each function call and function response to the model
for tool_call in tool_calls:
function_name = tool_call.function.name
function_to_call = available_functions[function_name]
function_args = json.loads(tool_call.function.arguments)
function_response = function_to_call(
location=function_args.get("location"),
unit=function_args.get("unit"),
)
messages.append( messages.append(
{ response_message
"tool_call_id": tool_call.id, ) # extend conversation with assistant's reply
"role": "tool", print("Response message\n", response_message)
"name": function_name, # Step 4: send the info for each function call and function response to the model
"content": function_response, for tool_call in tool_calls:
} function_name = tool_call.function.name
) # extend conversation with function response function_to_call = available_functions[function_name]
print(f"messages: {messages}") function_args = json.loads(tool_call.function.arguments)
second_response = litellm.completion( function_response = function_to_call(
model="groq/llama2-70b-4096", messages=messages location=function_args.get("location"),
) # get a new response from the model where it can see the function response unit=function_args.get("unit"),
print("second response\n", second_response) )
messages.append(
{
"tool_call_id": tool_call.id,
"role": "tool",
"name": function_name,
"content": function_response,
}
) # extend conversation with function response
print(f"messages: {messages}")
second_response = litellm.completion(
model="groq/llama2-70b-4096", messages=messages
) # get a new response from the model where it can see the function response
print("second response\n", second_response)
except Exception as e: except Exception as e:
pytest.fail(f"Error occurred: {e}") pytest.fail(f"Error occurred: {e}")

View file

@ -0,0 +1,33 @@
# What is this?
## Unit tests for the 'function_setup()' function
import sys, os
import traceback
from dotenv import load_dotenv
load_dotenv()
import os, io
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the, system path
import pytest, uuid
from litellm.utils import function_setup, Rules
from datetime import datetime
def test_empty_content():
"""
Make a chat completions request with empty content -> expect this to work
"""
rules_obj = Rules()
def completion():
pass
function_setup(
original_function=completion,
rules_obj=rules_obj,
start_time=datetime.now(),
messages=[],
litellm_call_id=str(uuid.uuid4()),
)

View file

@ -0,0 +1,25 @@
# What is this?
## Unit testing for the 'get_model_info()' function
import os, sys, traceback
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import litellm
from litellm import get_model_info
def test_get_model_info_simple_model_name():
"""
tests if model name given, and model exists in model info - the object is returned
"""
model = "claude-3-opus-20240229"
litellm.get_model_info(model)
def test_get_model_info_custom_llm_with_model_name():
"""
Tests if {custom_llm_provider}/{model_name} name given, and model exists in model info, the object is returned
"""
model = "anthropic/claude-3-opus-20240229"
litellm.get_model_info(model)

View file

@ -1925,3 +1925,46 @@ async def test_proxy_load_test_db(prisma_client):
raise Exception(f"it worked! key={key.key}") raise Exception(f"it worked! key={key.key}")
except Exception as e: except Exception as e:
pytest.fail(f"An exception occurred - {str(e)}") pytest.fail(f"An exception occurred - {str(e)}")
@pytest.mark.asyncio()
async def test_master_key_hashing(prisma_client):
try:
print("prisma client=", prisma_client)
master_key = "sk-1234"
setattr(litellm.proxy.proxy_server, "prisma_client", prisma_client)
setattr(litellm.proxy.proxy_server, "master_key", master_key)
await litellm.proxy.proxy_server.prisma_client.connect()
from litellm.proxy.proxy_server import user_api_key_cache
_response = await new_user(
data=NewUserRequest(
models=["azure-gpt-3.5"],
team_id="ishaans-special-team",
tpm_limit=20,
)
)
print(_response)
assert _response.models == ["azure-gpt-3.5"]
assert _response.team_id == "ishaans-special-team"
assert _response.tpm_limit == 20
bearer_token = "Bearer " + master_key
request = Request(scope={"type": "http"})
request._url = URL(url="/chat/completions")
# use generated key to auth in
result: UserAPIKeyAuth = await user_api_key_auth(
request=request, api_key=bearer_token
)
assert result.api_key == hash_token(master_key)
except Exception as e:
print("Got Exception", e)
pytest.fail(f"Got exception {e}")

View file

@ -18,7 +18,7 @@ import pytest
import litellm import litellm
from litellm.proxy.enterprise.enterprise_hooks.llm_guard import _ENTERPRISE_LLMGuard from litellm.proxy.enterprise.enterprise_hooks.llm_guard import _ENTERPRISE_LLMGuard
from litellm import Router, mock_completion from litellm import Router, mock_completion
from litellm.proxy.utils import ProxyLogging from litellm.proxy.utils import ProxyLogging, hash_token
from litellm.proxy._types import UserAPIKeyAuth from litellm.proxy._types import UserAPIKeyAuth
from litellm.caching import DualCache from litellm.caching import DualCache
@ -40,6 +40,7 @@ async def test_llm_guard_valid_response():
) )
_api_key = "sk-12345" _api_key = "sk-12345"
_api_key = hash_token("sk-12345")
user_api_key_dict = UserAPIKeyAuth(api_key=_api_key) user_api_key_dict = UserAPIKeyAuth(api_key=_api_key)
local_cache = DualCache() local_cache = DualCache()
@ -76,6 +77,7 @@ async def test_llm_guard_error_raising():
) )
_api_key = "sk-12345" _api_key = "sk-12345"
_api_key = hash_token("sk-12345")
user_api_key_dict = UserAPIKeyAuth(api_key=_api_key) user_api_key_dict = UserAPIKeyAuth(api_key=_api_key)
local_cache = DualCache() local_cache = DualCache()

View file

@ -16,7 +16,7 @@ sys.path.insert(
import pytest import pytest
import litellm import litellm
from litellm import Router from litellm import Router
from litellm.proxy.utils import ProxyLogging from litellm.proxy.utils import ProxyLogging, hash_token
from litellm.proxy._types import UserAPIKeyAuth from litellm.proxy._types import UserAPIKeyAuth
from litellm.caching import DualCache, RedisCache from litellm.caching import DualCache, RedisCache
from litellm.proxy.hooks.tpm_rpm_limiter import _PROXY_MaxTPMRPMLimiter from litellm.proxy.hooks.tpm_rpm_limiter import _PROXY_MaxTPMRPMLimiter
@ -29,7 +29,7 @@ async def test_pre_call_hook_rpm_limits():
Test if error raised on hitting rpm limits Test if error raised on hitting rpm limits
""" """
litellm.set_verbose = True litellm.set_verbose = True
_api_key = "sk-12345" _api_key = hash_token("sk-12345")
user_api_key_dict = UserAPIKeyAuth(api_key=_api_key, tpm_limit=9, rpm_limit=1) user_api_key_dict = UserAPIKeyAuth(api_key=_api_key, tpm_limit=9, rpm_limit=1)
local_cache = DualCache() local_cache = DualCache()
# redis_usage_cache = RedisCache() # redis_usage_cache = RedisCache()
@ -87,6 +87,7 @@ async def test_pre_call_hook_team_rpm_limits(
"team_id": _team_id, "team_id": _team_id,
} }
user_api_key_dict = UserAPIKeyAuth(**_user_api_key_dict) # type: ignore user_api_key_dict = UserAPIKeyAuth(**_user_api_key_dict) # type: ignore
_api_key = hash_token(_api_key)
local_cache = DualCache() local_cache = DualCache()
local_cache.set_cache(key=_api_key, value=_user_api_key_dict) local_cache.set_cache(key=_api_key, value=_user_api_key_dict)
internal_cache = DualCache(redis_cache=_redis_usage_cache) internal_cache = DualCache(redis_cache=_redis_usage_cache)

View file

@ -15,7 +15,7 @@ sys.path.insert(
import pytest import pytest
import litellm import litellm
from litellm import Router from litellm import Router
from litellm.proxy.utils import ProxyLogging from litellm.proxy.utils import ProxyLogging, hash_token
from litellm.proxy._types import UserAPIKeyAuth from litellm.proxy._types import UserAPIKeyAuth
from litellm.caching import DualCache from litellm.caching import DualCache
from litellm.proxy.hooks.parallel_request_limiter import ( from litellm.proxy.hooks.parallel_request_limiter import (
@ -34,6 +34,7 @@ async def test_pre_call_hook():
Test if cache updated on call being received Test if cache updated on call being received
""" """
_api_key = "sk-12345" _api_key = "sk-12345"
_api_key = hash_token("sk-12345")
user_api_key_dict = UserAPIKeyAuth(api_key=_api_key, max_parallel_requests=1) user_api_key_dict = UserAPIKeyAuth(api_key=_api_key, max_parallel_requests=1)
local_cache = DualCache() local_cache = DualCache()
parallel_request_handler = MaxParallelRequestsHandler() parallel_request_handler = MaxParallelRequestsHandler()
@ -248,6 +249,7 @@ async def test_success_call_hook():
Test if on success, cache correctly decremented Test if on success, cache correctly decremented
""" """
_api_key = "sk-12345" _api_key = "sk-12345"
_api_key = hash_token("sk-12345")
user_api_key_dict = UserAPIKeyAuth(api_key=_api_key, max_parallel_requests=1) user_api_key_dict = UserAPIKeyAuth(api_key=_api_key, max_parallel_requests=1)
local_cache = DualCache() local_cache = DualCache()
parallel_request_handler = MaxParallelRequestsHandler() parallel_request_handler = MaxParallelRequestsHandler()
@ -289,6 +291,7 @@ async def test_failure_call_hook():
Test if on failure, cache correctly decremented Test if on failure, cache correctly decremented
""" """
_api_key = "sk-12345" _api_key = "sk-12345"
_api_key = hash_token(_api_key)
user_api_key_dict = UserAPIKeyAuth(api_key=_api_key, max_parallel_requests=1) user_api_key_dict = UserAPIKeyAuth(api_key=_api_key, max_parallel_requests=1)
local_cache = DualCache() local_cache = DualCache()
parallel_request_handler = MaxParallelRequestsHandler() parallel_request_handler = MaxParallelRequestsHandler()
@ -366,6 +369,7 @@ async def test_normal_router_call():
) # type: ignore ) # type: ignore
_api_key = "sk-12345" _api_key = "sk-12345"
_api_key = hash_token(_api_key)
user_api_key_dict = UserAPIKeyAuth(api_key=_api_key, max_parallel_requests=1) user_api_key_dict = UserAPIKeyAuth(api_key=_api_key, max_parallel_requests=1)
local_cache = DualCache() local_cache = DualCache()
pl = ProxyLogging(user_api_key_cache=local_cache) pl = ProxyLogging(user_api_key_cache=local_cache)
@ -443,6 +447,7 @@ async def test_normal_router_tpm_limit():
) # type: ignore ) # type: ignore
_api_key = "sk-12345" _api_key = "sk-12345"
_api_key = hash_token("sk-12345")
user_api_key_dict = UserAPIKeyAuth( user_api_key_dict = UserAPIKeyAuth(
api_key=_api_key, max_parallel_requests=10, tpm_limit=10 api_key=_api_key, max_parallel_requests=10, tpm_limit=10
) )
@ -524,6 +529,7 @@ async def test_streaming_router_call():
) # type: ignore ) # type: ignore
_api_key = "sk-12345" _api_key = "sk-12345"
_api_key = hash_token("sk-12345")
user_api_key_dict = UserAPIKeyAuth(api_key=_api_key, max_parallel_requests=1) user_api_key_dict = UserAPIKeyAuth(api_key=_api_key, max_parallel_requests=1)
local_cache = DualCache() local_cache = DualCache()
pl = ProxyLogging(user_api_key_cache=local_cache) pl = ProxyLogging(user_api_key_cache=local_cache)
@ -599,6 +605,7 @@ async def test_streaming_router_tpm_limit():
) # type: ignore ) # type: ignore
_api_key = "sk-12345" _api_key = "sk-12345"
_api_key = hash_token("sk-12345")
user_api_key_dict = UserAPIKeyAuth( user_api_key_dict = UserAPIKeyAuth(
api_key=_api_key, max_parallel_requests=10, tpm_limit=10 api_key=_api_key, max_parallel_requests=10, tpm_limit=10
) )
@ -677,6 +684,7 @@ async def test_bad_router_call():
) # type: ignore ) # type: ignore
_api_key = "sk-12345" _api_key = "sk-12345"
_api_key = hash_token(_api_key)
user_api_key_dict = UserAPIKeyAuth(api_key=_api_key, max_parallel_requests=1) user_api_key_dict = UserAPIKeyAuth(api_key=_api_key, max_parallel_requests=1)
local_cache = DualCache() local_cache = DualCache()
pl = ProxyLogging(user_api_key_cache=local_cache) pl = ProxyLogging(user_api_key_cache=local_cache)
@ -750,6 +758,7 @@ async def test_bad_router_tpm_limit():
) # type: ignore ) # type: ignore
_api_key = "sk-12345" _api_key = "sk-12345"
_api_key = hash_token(_api_key)
user_api_key_dict = UserAPIKeyAuth( user_api_key_dict = UserAPIKeyAuth(
api_key=_api_key, max_parallel_requests=10, tpm_limit=10 api_key=_api_key, max_parallel_requests=10, tpm_limit=10
) )

View file

@ -220,6 +220,17 @@ tools_schema = [
# test_completion_cohere_stream() # test_completion_cohere_stream()
def test_completion_azure_stream_special_char():
litellm.set_verbose = True
messages = [{"role": "user", "content": "hi. respond with the <xml> tag only"}]
response = completion(model="azure/chatgpt-v-2", messages=messages, stream=True)
response_str = ""
for part in response:
response_str += part.choices[0].delta.content or ""
print(f"response_str: {response_str}")
assert len(response_str) > 0
def test_completion_cohere_stream_bad_key(): def test_completion_cohere_stream_bad_key():
try: try:
litellm.cache = None litellm.cache = None

View file

@ -228,6 +228,24 @@ class Function(OpenAIObject):
arguments: str arguments: str
name: Optional[str] = None name: Optional[str] = None
def __init__(
self,
arguments: Union[Dict, str],
name: Optional[str] = None,
**params,
):
if isinstance(arguments, Dict):
arguments = json.dumps(arguments)
else:
arguments = arguments
name = name
# Build a dictionary with the structure your BaseModel expects
data = {"arguments": arguments, "name": name, **params}
super(Function, self).__init__(**data)
class ChatCompletionDeltaToolCall(OpenAIObject): class ChatCompletionDeltaToolCall(OpenAIObject):
id: Optional[str] = None id: Optional[str] = None
@ -2392,210 +2410,202 @@ class Rules:
####### CLIENT ################### ####### CLIENT ###################
# make it easy to log if completion/embedding runs succeeded or failed + see what happened | Non-Blocking # make it easy to log if completion/embedding runs succeeded or failed + see what happened | Non-Blocking
def function_setup(
original_function, rules_obj, start_time, *args, **kwargs
): # just run once to check if user wants to send their data anywhere - PostHog/Sentry/Slack/etc.
try:
global callback_list, add_breadcrumb, user_logger_fn, Logging
function_id = kwargs["id"] if "id" in kwargs else None
if len(litellm.callbacks) > 0:
for callback in litellm.callbacks:
if callback not in litellm.input_callback:
litellm.input_callback.append(callback)
if callback not in litellm.success_callback:
litellm.success_callback.append(callback)
if callback not in litellm.failure_callback:
litellm.failure_callback.append(callback)
if callback not in litellm._async_success_callback:
litellm._async_success_callback.append(callback)
if callback not in litellm._async_failure_callback:
litellm._async_failure_callback.append(callback)
print_verbose(
f"Initialized litellm callbacks, Async Success Callbacks: {litellm._async_success_callback}"
)
if (
len(litellm.input_callback) > 0
or len(litellm.success_callback) > 0
or len(litellm.failure_callback) > 0
) and len(callback_list) == 0:
callback_list = list(
set(
litellm.input_callback
+ litellm.success_callback
+ litellm.failure_callback
)
)
set_callbacks(callback_list=callback_list, function_id=function_id)
## ASYNC CALLBACKS
if len(litellm.input_callback) > 0:
removed_async_items = []
for index, callback in enumerate(litellm.input_callback):
if inspect.iscoroutinefunction(callback):
litellm._async_input_callback.append(callback)
removed_async_items.append(index)
# Pop the async items from input_callback in reverse order to avoid index issues
for index in reversed(removed_async_items):
litellm.input_callback.pop(index)
if len(litellm.success_callback) > 0:
removed_async_items = []
for index, callback in enumerate(litellm.success_callback):
if inspect.iscoroutinefunction(callback):
litellm._async_success_callback.append(callback)
removed_async_items.append(index)
elif callback == "dynamodb":
# dynamo is an async callback, it's used for the proxy and needs to be async
# we only support async dynamo db logging for acompletion/aembedding since that's used on proxy
litellm._async_success_callback.append(callback)
removed_async_items.append(index)
# Pop the async items from success_callback in reverse order to avoid index issues
for index in reversed(removed_async_items):
litellm.success_callback.pop(index)
if len(litellm.failure_callback) > 0:
removed_async_items = []
for index, callback in enumerate(litellm.failure_callback):
if inspect.iscoroutinefunction(callback):
litellm._async_failure_callback.append(callback)
removed_async_items.append(index)
# Pop the async items from failure_callback in reverse order to avoid index issues
for index in reversed(removed_async_items):
litellm.failure_callback.pop(index)
### DYNAMIC CALLBACKS ###
dynamic_success_callbacks = None
dynamic_async_success_callbacks = None
if kwargs.get("success_callback", None) is not None and isinstance(
kwargs["success_callback"], list
):
removed_async_items = []
for index, callback in enumerate(kwargs["success_callback"]):
if (
inspect.iscoroutinefunction(callback)
or callback == "dynamodb"
or callback == "s3"
):
if dynamic_async_success_callbacks is not None and isinstance(
dynamic_async_success_callbacks, list
):
dynamic_async_success_callbacks.append(callback)
else:
dynamic_async_success_callbacks = [callback]
removed_async_items.append(index)
# Pop the async items from success_callback in reverse order to avoid index issues
for index in reversed(removed_async_items):
kwargs["success_callback"].pop(index)
dynamic_success_callbacks = kwargs.pop("success_callback")
if add_breadcrumb:
add_breadcrumb(
category="litellm.llm_call",
message=f"Positional Args: {args}, Keyword Args: {kwargs}",
level="info",
)
if "logger_fn" in kwargs:
user_logger_fn = kwargs["logger_fn"]
# INIT LOGGER - for user-specified integrations
model = args[0] if len(args) > 0 else kwargs.get("model", None)
call_type = original_function.__name__
if (
call_type == CallTypes.completion.value
or call_type == CallTypes.acompletion.value
):
messages = None
if len(args) > 1:
messages = args[1]
elif kwargs.get("messages", None):
messages = kwargs["messages"]
### PRE-CALL RULES ###
if (
isinstance(messages, list)
and len(messages) > 0
and isinstance(messages[0], dict)
and "content" in messages[0]
):
rules_obj.pre_call_rules(
input="".join(
m.get("content", "")
for m in messages
if "content" in m and isinstance(m["content"], str)
),
model=model,
)
elif (
call_type == CallTypes.embedding.value
or call_type == CallTypes.aembedding.value
):
messages = args[1] if len(args) > 1 else kwargs["input"]
elif (
call_type == CallTypes.image_generation.value
or call_type == CallTypes.aimage_generation.value
):
messages = args[0] if len(args) > 0 else kwargs["prompt"]
elif (
call_type == CallTypes.moderation.value
or call_type == CallTypes.amoderation.value
):
messages = args[1] if len(args) > 1 else kwargs["input"]
elif (
call_type == CallTypes.atext_completion.value
or call_type == CallTypes.text_completion.value
):
messages = args[0] if len(args) > 0 else kwargs["prompt"]
elif (
call_type == CallTypes.atranscription.value
or call_type == CallTypes.transcription.value
):
_file_name: BinaryIO = args[1] if len(args) > 1 else kwargs["file"]
messages = "audio_file"
stream = True if "stream" in kwargs and kwargs["stream"] == True else False
logging_obj = Logging(
model=model,
messages=messages,
stream=stream,
litellm_call_id=kwargs["litellm_call_id"],
function_id=function_id,
call_type=call_type,
start_time=start_time,
dynamic_success_callbacks=dynamic_success_callbacks,
dynamic_async_success_callbacks=dynamic_async_success_callbacks,
langfuse_public_key=kwargs.pop("langfuse_public_key", None),
langfuse_secret=kwargs.pop("langfuse_secret", None),
)
## check if metadata is passed in
litellm_params = {"api_base": ""}
if "metadata" in kwargs:
litellm_params["metadata"] = kwargs["metadata"]
logging_obj.update_environment_variables(
model=model,
user="",
optional_params={},
litellm_params=litellm_params,
)
return logging_obj, kwargs
except Exception as e:
import logging
logging.debug(
f"[Non-Blocking] {traceback.format_exc()}; args - {args}; kwargs - {kwargs}"
)
raise e
def client(original_function): def client(original_function):
global liteDebuggerClient, get_all_keys global liteDebuggerClient, get_all_keys
rules_obj = Rules() rules_obj = Rules()
def function_setup(
start_time, *args, **kwargs
): # just run once to check if user wants to send their data anywhere - PostHog/Sentry/Slack/etc.
try:
global callback_list, add_breadcrumb, user_logger_fn, Logging
function_id = kwargs["id"] if "id" in kwargs else None
if litellm.use_client or (
"use_client" in kwargs and kwargs["use_client"] == True
):
if "lite_debugger" not in litellm.input_callback:
litellm.input_callback.append("lite_debugger")
if "lite_debugger" not in litellm.success_callback:
litellm.success_callback.append("lite_debugger")
if "lite_debugger" not in litellm.failure_callback:
litellm.failure_callback.append("lite_debugger")
if len(litellm.callbacks) > 0:
for callback in litellm.callbacks:
if callback not in litellm.input_callback:
litellm.input_callback.append(callback)
if callback not in litellm.success_callback:
litellm.success_callback.append(callback)
if callback not in litellm.failure_callback:
litellm.failure_callback.append(callback)
if callback not in litellm._async_success_callback:
litellm._async_success_callback.append(callback)
if callback not in litellm._async_failure_callback:
litellm._async_failure_callback.append(callback)
print_verbose(
f"Initialized litellm callbacks, Async Success Callbacks: {litellm._async_success_callback}"
)
if (
len(litellm.input_callback) > 0
or len(litellm.success_callback) > 0
or len(litellm.failure_callback) > 0
) and len(callback_list) == 0:
callback_list = list(
set(
litellm.input_callback
+ litellm.success_callback
+ litellm.failure_callback
)
)
set_callbacks(callback_list=callback_list, function_id=function_id)
## ASYNC CALLBACKS
if len(litellm.input_callback) > 0:
removed_async_items = []
for index, callback in enumerate(litellm.input_callback):
if inspect.iscoroutinefunction(callback):
litellm._async_input_callback.append(callback)
removed_async_items.append(index)
# Pop the async items from input_callback in reverse order to avoid index issues
for index in reversed(removed_async_items):
litellm.input_callback.pop(index)
if len(litellm.success_callback) > 0:
removed_async_items = []
for index, callback in enumerate(litellm.success_callback):
if inspect.iscoroutinefunction(callback):
litellm._async_success_callback.append(callback)
removed_async_items.append(index)
elif callback == "dynamodb":
# dynamo is an async callback, it's used for the proxy and needs to be async
# we only support async dynamo db logging for acompletion/aembedding since that's used on proxy
litellm._async_success_callback.append(callback)
removed_async_items.append(index)
# Pop the async items from success_callback in reverse order to avoid index issues
for index in reversed(removed_async_items):
litellm.success_callback.pop(index)
if len(litellm.failure_callback) > 0:
removed_async_items = []
for index, callback in enumerate(litellm.failure_callback):
if inspect.iscoroutinefunction(callback):
litellm._async_failure_callback.append(callback)
removed_async_items.append(index)
# Pop the async items from failure_callback in reverse order to avoid index issues
for index in reversed(removed_async_items):
litellm.failure_callback.pop(index)
### DYNAMIC CALLBACKS ###
dynamic_success_callbacks = None
dynamic_async_success_callbacks = None
if kwargs.get("success_callback", None) is not None and isinstance(
kwargs["success_callback"], list
):
removed_async_items = []
for index, callback in enumerate(kwargs["success_callback"]):
if (
inspect.iscoroutinefunction(callback)
or callback == "dynamodb"
or callback == "s3"
):
if dynamic_async_success_callbacks is not None and isinstance(
dynamic_async_success_callbacks, list
):
dynamic_async_success_callbacks.append(callback)
else:
dynamic_async_success_callbacks = [callback]
removed_async_items.append(index)
# Pop the async items from success_callback in reverse order to avoid index issues
for index in reversed(removed_async_items):
kwargs["success_callback"].pop(index)
dynamic_success_callbacks = kwargs.pop("success_callback")
if add_breadcrumb:
add_breadcrumb(
category="litellm.llm_call",
message=f"Positional Args: {args}, Keyword Args: {kwargs}",
level="info",
)
if "logger_fn" in kwargs:
user_logger_fn = kwargs["logger_fn"]
# INIT LOGGER - for user-specified integrations
model = args[0] if len(args) > 0 else kwargs.get("model", None)
call_type = original_function.__name__
if (
call_type == CallTypes.completion.value
or call_type == CallTypes.acompletion.value
):
messages = None
if len(args) > 1:
messages = args[1]
elif kwargs.get("messages", None):
messages = kwargs["messages"]
### PRE-CALL RULES ###
if (
isinstance(messages, list)
and len(messages) > 0
and isinstance(messages[0], dict)
and "content" in messages[0]
):
rules_obj.pre_call_rules(
input="".join(
m.get("content", "")
for m in messages
if isinstance(m["content"], str)
),
model=model,
)
elif (
call_type == CallTypes.embedding.value
or call_type == CallTypes.aembedding.value
):
messages = args[1] if len(args) > 1 else kwargs["input"]
elif (
call_type == CallTypes.image_generation.value
or call_type == CallTypes.aimage_generation.value
):
messages = args[0] if len(args) > 0 else kwargs["prompt"]
elif (
call_type == CallTypes.moderation.value
or call_type == CallTypes.amoderation.value
):
messages = args[1] if len(args) > 1 else kwargs["input"]
elif (
call_type == CallTypes.atext_completion.value
or call_type == CallTypes.text_completion.value
):
messages = args[0] if len(args) > 0 else kwargs["prompt"]
elif (
call_type == CallTypes.atranscription.value
or call_type == CallTypes.transcription.value
):
_file_name: BinaryIO = args[1] if len(args) > 1 else kwargs["file"]
messages = "audio_file"
stream = True if "stream" in kwargs and kwargs["stream"] == True else False
logging_obj = Logging(
model=model,
messages=messages,
stream=stream,
litellm_call_id=kwargs["litellm_call_id"],
function_id=function_id,
call_type=call_type,
start_time=start_time,
dynamic_success_callbacks=dynamic_success_callbacks,
dynamic_async_success_callbacks=dynamic_async_success_callbacks,
langfuse_public_key=kwargs.pop("langfuse_public_key", None),
langfuse_secret=kwargs.pop("langfuse_secret", None),
)
## check if metadata is passed in
litellm_params = {"api_base": ""}
if "metadata" in kwargs:
litellm_params["metadata"] = kwargs["metadata"]
logging_obj.update_environment_variables(
model=model,
user="",
optional_params={},
litellm_params=litellm_params,
)
return logging_obj, kwargs
except Exception as e:
import logging
logging.debug(
f"[Non-Blocking] {traceback.format_exc()}; args - {args}; kwargs - {kwargs}"
)
raise e
def check_coroutine(value) -> bool: def check_coroutine(value) -> bool:
if inspect.iscoroutine(value): if inspect.iscoroutine(value):
return True return True
@ -2688,7 +2698,9 @@ def client(original_function):
try: try:
if logging_obj is None: if logging_obj is None:
logging_obj, kwargs = function_setup(start_time, *args, **kwargs) logging_obj, kwargs = function_setup(
original_function, rules_obj, start_time, *args, **kwargs
)
kwargs["litellm_logging_obj"] = logging_obj kwargs["litellm_logging_obj"] = logging_obj
# CHECK FOR 'os.environ/' in kwargs # CHECK FOR 'os.environ/' in kwargs
@ -2996,7 +3008,9 @@ def client(original_function):
try: try:
if logging_obj is None: if logging_obj is None:
logging_obj, kwargs = function_setup(start_time, *args, **kwargs) logging_obj, kwargs = function_setup(
original_function, rules_obj, start_time, *args, **kwargs
)
kwargs["litellm_logging_obj"] = logging_obj kwargs["litellm_logging_obj"] = logging_obj
# [OPTIONAL] CHECK BUDGET # [OPTIONAL] CHECK BUDGET
@ -4907,37 +4921,11 @@ def get_optional_params(
) )
_check_valid_arg(supported_params=supported_params) _check_valid_arg(supported_params=supported_params)
if temperature is not None: optional_params = litellm.VertexAIConfig().map_openai_params(
optional_params["temperature"] = temperature non_default_params=non_default_params,
if top_p is not None: optional_params=optional_params,
optional_params["top_p"] = top_p )
if stream:
optional_params["stream"] = stream
if n is not None:
optional_params["candidate_count"] = n
if stop is not None:
if isinstance(stop, str):
optional_params["stop_sequences"] = [stop]
elif isinstance(stop, list):
optional_params["stop_sequences"] = stop
if max_tokens is not None:
optional_params["max_output_tokens"] = max_tokens
if response_format is not None and response_format["type"] == "json_object":
optional_params["response_mime_type"] = "application/json"
if tools is not None and isinstance(tools, list):
from vertexai.preview import generative_models
gtool_func_declarations = []
for tool in tools:
gtool_func_declaration = generative_models.FunctionDeclaration(
name=tool["function"]["name"],
description=tool["function"].get("description", ""),
parameters=tool["function"].get("parameters", {}),
)
gtool_func_declarations.append(gtool_func_declaration)
optional_params["tools"] = [
generative_models.Tool(function_declarations=gtool_func_declarations)
]
print_verbose( print_verbose(
f"(end) INSIDE THE VERTEX AI OPTIONAL PARAM BLOCK - optional_params: {optional_params}" f"(end) INSIDE THE VERTEX AI OPTIONAL PARAM BLOCK - optional_params: {optional_params}"
) )
@ -5639,17 +5627,7 @@ def get_supported_openai_params(model: str, custom_llm_provider: str):
elif custom_llm_provider == "palm" or custom_llm_provider == "gemini": elif custom_llm_provider == "palm" or custom_llm_provider == "gemini":
return ["temperature", "top_p", "stream", "n", "stop", "max_tokens"] return ["temperature", "top_p", "stream", "n", "stop", "max_tokens"]
elif custom_llm_provider == "vertex_ai": elif custom_llm_provider == "vertex_ai":
return [ return litellm.VertexAIConfig().get_supported_openai_params()
"temperature",
"top_p",
"max_tokens",
"stream",
"tools",
"tool_choice",
"response_format",
"n",
"stop",
]
elif custom_llm_provider == "sagemaker": elif custom_llm_provider == "sagemaker":
return ["stream", "temperature", "max_tokens", "top_p", "stop", "n"] return ["stream", "temperature", "max_tokens", "top_p", "stop", "n"]
elif custom_llm_provider == "aleph_alpha": elif custom_llm_provider == "aleph_alpha":
@ -6163,7 +6141,13 @@ def get_model_info(model: str):
"mode": "chat", "mode": "chat",
} }
else: else:
raise Exception() """
Check if model in model cost map
"""
if model in litellm.model_cost:
return litellm.model_cost[model]
else:
raise Exception()
except: except:
raise Exception( raise Exception(
"This model isn't mapped yet. Add it here - https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json" "This model isn't mapped yet. Add it here - https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json"
@ -7868,6 +7852,15 @@ def exception_type(
llm_provider="vertex_ai", llm_provider="vertex_ai",
response=original_exception.response, response=original_exception.response,
) )
elif "None Unknown Error." in error_str:
exception_mapping_worked = True
raise APIError(
message=f"VertexAIException - {error_str}",
status_code=500,
model=model,
llm_provider="vertex_ai",
request=original_exception.request,
)
elif "403" in error_str: elif "403" in error_str:
exception_mapping_worked = True exception_mapping_worked = True
raise BadRequestError( raise BadRequestError(
@ -8882,7 +8875,16 @@ class CustomStreamWrapper:
raise e raise e
def check_special_tokens(self, chunk: str, finish_reason: Optional[str]): def check_special_tokens(self, chunk: str, finish_reason: Optional[str]):
"""
Output parse <s> / </s> special tokens for sagemaker + hf streaming.
"""
hold = False hold = False
if (
self.custom_llm_provider != "huggingface"
and self.custom_llm_provider != "sagemaker"
):
return hold, chunk
if finish_reason: if finish_reason:
for token in self.special_tokens: for token in self.special_tokens:
if token in chunk: if token in chunk:
@ -8898,6 +8900,7 @@ class CustomStreamWrapper:
for token in self.special_tokens: for token in self.special_tokens:
if len(curr_chunk) < len(token) and curr_chunk in token: if len(curr_chunk) < len(token) and curr_chunk in token:
hold = True hold = True
self.holding_chunk = curr_chunk
elif len(curr_chunk) >= len(token): elif len(curr_chunk) >= len(token):
if token in curr_chunk: if token in curr_chunk:
self.holding_chunk = curr_chunk.replace(token, "") self.holding_chunk = curr_chunk.replace(token, "")
@ -9979,6 +9982,7 @@ class CustomStreamWrapper:
f"model_response.choices[0].delta: {model_response.choices[0].delta}; completion_obj: {completion_obj}" f"model_response.choices[0].delta: {model_response.choices[0].delta}; completion_obj: {completion_obj}"
) )
print_verbose(f"self.sent_first_chunk: {self.sent_first_chunk}") print_verbose(f"self.sent_first_chunk: {self.sent_first_chunk}")
## RETURN ARG ## RETURN ARG
if ( if (
"content" in completion_obj "content" in completion_obj
@ -10051,7 +10055,6 @@ class CustomStreamWrapper:
elif self.received_finish_reason is not None: elif self.received_finish_reason is not None:
if self.sent_last_chunk == True: if self.sent_last_chunk == True:
raise StopIteration raise StopIteration
# flush any remaining holding chunk # flush any remaining holding chunk
if len(self.holding_chunk) > 0: if len(self.holding_chunk) > 0:
if model_response.choices[0].delta.content is None: if model_response.choices[0].delta.content is None:
@ -10627,7 +10630,9 @@ def trim_messages(
if max_tokens is None: if max_tokens is None:
# Check if model is valid # Check if model is valid
if model in litellm.model_cost: if model in litellm.model_cost:
max_tokens_for_model = litellm.model_cost[model].get("max_input_tokens", litellm.model_cost[model]["max_tokens"]) max_tokens_for_model = litellm.model_cost[model].get(
"max_input_tokens", litellm.model_cost[model]["max_tokens"]
)
max_tokens = int(max_tokens_for_model * trim_ratio) max_tokens = int(max_tokens_for_model * trim_ratio)
else: else:
# if user did not specify max (input) tokens # if user did not specify max (input) tokens

View file

@ -708,6 +708,16 @@
"mode": "chat", "mode": "chat",
"supports_function_calling": true "supports_function_calling": true
}, },
"mistral/open-mixtral-8x7b": {
"max_tokens": 8191,
"max_input_tokens": 32000,
"max_output_tokens": 8191,
"input_cost_per_token": 0.000002,
"output_cost_per_token": 0.000006,
"litellm_provider": "mistral",
"mode": "chat",
"supports_function_calling": true
},
"mistral/mistral-embed": { "mistral/mistral-embed": {
"max_tokens": 8192, "max_tokens": 8192,
"max_input_tokens": 8192, "max_input_tokens": 8192,
@ -1012,6 +1022,7 @@
"litellm_provider": "vertex_ai-language-models", "litellm_provider": "vertex_ai-language-models",
"mode": "chat", "mode": "chat",
"supports_function_calling": true, "supports_function_calling": true,
"supports_tool_choice": true,
"source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#foundation_models" "source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#foundation_models"
}, },
"gemini-1.5-pro-preview-0215": { "gemini-1.5-pro-preview-0215": {
@ -1023,6 +1034,7 @@
"litellm_provider": "vertex_ai-language-models", "litellm_provider": "vertex_ai-language-models",
"mode": "chat", "mode": "chat",
"supports_function_calling": true, "supports_function_calling": true,
"supports_tool_choice": true,
"source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#foundation_models" "source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#foundation_models"
}, },
"gemini-1.5-pro-preview-0409": { "gemini-1.5-pro-preview-0409": {
@ -1034,6 +1046,7 @@
"litellm_provider": "vertex_ai-language-models", "litellm_provider": "vertex_ai-language-models",
"mode": "chat", "mode": "chat",
"supports_function_calling": true, "supports_function_calling": true,
"supports_tool_choice": true,
"source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#foundation_models" "source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#foundation_models"
}, },
"gemini-experimental": { "gemini-experimental": {
@ -1045,6 +1058,7 @@
"litellm_provider": "vertex_ai-language-models", "litellm_provider": "vertex_ai-language-models",
"mode": "chat", "mode": "chat",
"supports_function_calling": false, "supports_function_calling": false,
"supports_tool_choice": true,
"source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#foundation_models" "source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#foundation_models"
}, },
"gemini-pro-vision": { "gemini-pro-vision": {
@ -1271,6 +1285,7 @@
"mode": "chat", "mode": "chat",
"supports_function_calling": true, "supports_function_calling": true,
"supports_vision": true, "supports_vision": true,
"supports_tool_choice": true,
"source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#foundation_models" "source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#foundation_models"
}, },
"gemini/gemini-1.5-pro-latest": { "gemini/gemini-1.5-pro-latest": {
@ -1283,6 +1298,7 @@
"mode": "chat", "mode": "chat",
"supports_function_calling": true, "supports_function_calling": true,
"supports_vision": true, "supports_vision": true,
"supports_tool_choice": true,
"source": "https://ai.google.dev/models/gemini" "source": "https://ai.google.dev/models/gemini"
}, },
"gemini/gemini-pro-vision": { "gemini/gemini-pro-vision": {

View file

@ -1,6 +1,6 @@
[tool.poetry] [tool.poetry]
name = "litellm" name = "litellm"
version = "1.35.10" version = "1.35.13"
description = "Library to easily interface with LLM API providers" description = "Library to easily interface with LLM API providers"
authors = ["BerriAI"] authors = ["BerriAI"]
license = "MIT" license = "MIT"
@ -80,7 +80,7 @@ requires = ["poetry-core", "wheel"]
build-backend = "poetry.core.masonry.api" build-backend = "poetry.core.masonry.api"
[tool.commitizen] [tool.commitizen]
version = "1.35.10" version = "1.35.13"
version_files = [ version_files = [
"pyproject.toml:^version" "pyproject.toml:^version"
] ]

File diff suppressed because one or more lines are too long

View file

@ -0,0 +1 @@
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[185],{87421:function(n,e,t){Promise.resolve().then(t.t.bind(t,99646,23)),Promise.resolve().then(t.t.bind(t,63385,23))},63385:function(){},99646:function(n){n.exports={style:{fontFamily:"'__Inter_c23dc8', '__Inter_Fallback_c23dc8'",fontStyle:"normal"},className:"__className_c23dc8"}}},function(n){n.O(0,[971,69,744],function(){return n(n.s=87421)}),_N_E=n.O()}]);

File diff suppressed because one or more lines are too long

View file

@ -0,0 +1 @@
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[744],{32028:function(e,n,t){Promise.resolve().then(t.t.bind(t,47690,23)),Promise.resolve().then(t.t.bind(t,48955,23)),Promise.resolve().then(t.t.bind(t,5613,23)),Promise.resolve().then(t.t.bind(t,11902,23)),Promise.resolve().then(t.t.bind(t,31778,23)),Promise.resolve().then(t.t.bind(t,77831,23))}},function(e){var n=function(n){return e(e.s=n)};e.O(0,[971,69],function(){return n(35317),n(32028)}),_N_E=e.O()}]);

View file

@ -1 +1 @@
!function(){"use strict";var e,t,n,r,o,u,i,c,f,a={},l={};function d(e){var t=l[e];if(void 0!==t)return t.exports;var n=l[e]={id:e,loaded:!1,exports:{}},r=!0;try{a[e](n,n.exports,d),r=!1}finally{r&&delete l[e]}return n.loaded=!0,n.exports}d.m=a,e=[],d.O=function(t,n,r,o){if(n){o=o||0;for(var u=e.length;u>0&&e[u-1][2]>o;u--)e[u]=e[u-1];e[u]=[n,r,o];return}for(var i=1/0,u=0;u<e.length;u++){for(var n=e[u][0],r=e[u][1],o=e[u][2],c=!0,f=0;f<n.length;f++)i>=o&&Object.keys(d.O).every(function(e){return d.O[e](n[f])})?n.splice(f--,1):(c=!1,o<i&&(i=o));if(c){e.splice(u--,1);var a=r();void 0!==a&&(t=a)}}return t},d.n=function(e){var t=e&&e.__esModule?function(){return e.default}:function(){return e};return d.d(t,{a:t}),t},n=Object.getPrototypeOf?function(e){return Object.getPrototypeOf(e)}:function(e){return e.__proto__},d.t=function(e,r){if(1&r&&(e=this(e)),8&r||"object"==typeof e&&e&&(4&r&&e.__esModule||16&r&&"function"==typeof e.then))return e;var o=Object.create(null);d.r(o);var u={};t=t||[null,n({}),n([]),n(n)];for(var i=2&r&&e;"object"==typeof i&&!~t.indexOf(i);i=n(i))Object.getOwnPropertyNames(i).forEach(function(t){u[t]=function(){return e[t]}});return u.default=function(){return e},d.d(o,u),o},d.d=function(e,t){for(var n in t)d.o(t,n)&&!d.o(e,n)&&Object.defineProperty(e,n,{enumerable:!0,get:t[n]})},d.f={},d.e=function(e){return Promise.all(Object.keys(d.f).reduce(function(t,n){return d.f[n](e,t),t},[]))},d.u=function(e){},d.miniCssF=function(e){return"static/css/11cfce8bfdf6e8f1.css"},d.g=function(){if("object"==typeof globalThis)return globalThis;try{return this||Function("return this")()}catch(e){if("object"==typeof window)return window}}(),d.o=function(e,t){return Object.prototype.hasOwnProperty.call(e,t)},r={},o="_N_E:",d.l=function(e,t,n,u){if(r[e]){r[e].push(t);return}if(void 0!==n)for(var i,c,f=document.getElementsByTagName("script"),a=0;a<f.length;a++){var l=f[a];if(l.getAttribute("src")==e||l.getAttribute("data-webpack")==o+n){i=l;break}}i||(c=!0,(i=document.createElement("script")).charset="utf-8",i.timeout=120,d.nc&&i.setAttribute("nonce",d.nc),i.setAttribute("data-webpack",o+n),i.src=d.tu(e)),r[e]=[t];var s=function(t,n){i.onerror=i.onload=null,clearTimeout(p);var o=r[e];if(delete r[e],i.parentNode&&i.parentNode.removeChild(i),o&&o.forEach(function(e){return e(n)}),t)return t(n)},p=setTimeout(s.bind(null,void 0,{type:"timeout",target:i}),12e4);i.onerror=s.bind(null,i.onerror),i.onload=s.bind(null,i.onload),c&&document.head.appendChild(i)},d.r=function(e){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(e,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(e,"__esModule",{value:!0})},d.nmd=function(e){return e.paths=[],e.children||(e.children=[]),e},d.tt=function(){return void 0===u&&(u={createScriptURL:function(e){return e}},"undefined"!=typeof trustedTypes&&trustedTypes.createPolicy&&(u=trustedTypes.createPolicy("nextjs#bundler",u))),u},d.tu=function(e){return d.tt().createScriptURL(e)},d.p="/ui/_next/",i={272:0},d.f.j=function(e,t){var n=d.o(i,e)?i[e]:void 0;if(0!==n){if(n)t.push(n[2]);else if(272!=e){var r=new Promise(function(t,r){n=i[e]=[t,r]});t.push(n[2]=r);var o=d.p+d.u(e),u=Error();d.l(o,function(t){if(d.o(i,e)&&(0!==(n=i[e])&&(i[e]=void 0),n)){var r=t&&("load"===t.type?"missing":t.type),o=t&&t.target&&t.target.src;u.message="Loading chunk "+e+" failed.\n("+r+": "+o+")",u.name="ChunkLoadError",u.type=r,u.request=o,n[1](u)}},"chunk-"+e,e)}else i[e]=0}},d.O.j=function(e){return 0===i[e]},c=function(e,t){var n,r,o=t[0],u=t[1],c=t[2],f=0;if(o.some(function(e){return 0!==i[e]})){for(n in u)d.o(u,n)&&(d.m[n]=u[n]);if(c)var a=c(d)}for(e&&e(t);f<o.length;f++)r=o[f],d.o(i,r)&&i[r]&&i[r][0](),i[r]=0;return d.O(a)},(f=self.webpackChunk_N_E=self.webpackChunk_N_E||[]).forEach(c.bind(null,0)),f.push=c.bind(null,f.push.bind(f))}(); !function(){"use strict";var e,t,n,r,o,u,i,c,f,a={},l={};function d(e){var t=l[e];if(void 0!==t)return t.exports;var n=l[e]={id:e,loaded:!1,exports:{}},r=!0;try{a[e](n,n.exports,d),r=!1}finally{r&&delete l[e]}return n.loaded=!0,n.exports}d.m=a,e=[],d.O=function(t,n,r,o){if(n){o=o||0;for(var u=e.length;u>0&&e[u-1][2]>o;u--)e[u]=e[u-1];e[u]=[n,r,o];return}for(var i=1/0,u=0;u<e.length;u++){for(var n=e[u][0],r=e[u][1],o=e[u][2],c=!0,f=0;f<n.length;f++)i>=o&&Object.keys(d.O).every(function(e){return d.O[e](n[f])})?n.splice(f--,1):(c=!1,o<i&&(i=o));if(c){e.splice(u--,1);var a=r();void 0!==a&&(t=a)}}return t},d.n=function(e){var t=e&&e.__esModule?function(){return e.default}:function(){return e};return d.d(t,{a:t}),t},n=Object.getPrototypeOf?function(e){return Object.getPrototypeOf(e)}:function(e){return e.__proto__},d.t=function(e,r){if(1&r&&(e=this(e)),8&r||"object"==typeof e&&e&&(4&r&&e.__esModule||16&r&&"function"==typeof e.then))return e;var o=Object.create(null);d.r(o);var u={};t=t||[null,n({}),n([]),n(n)];for(var i=2&r&&e;"object"==typeof i&&!~t.indexOf(i);i=n(i))Object.getOwnPropertyNames(i).forEach(function(t){u[t]=function(){return e[t]}});return u.default=function(){return e},d.d(o,u),o},d.d=function(e,t){for(var n in t)d.o(t,n)&&!d.o(e,n)&&Object.defineProperty(e,n,{enumerable:!0,get:t[n]})},d.f={},d.e=function(e){return Promise.all(Object.keys(d.f).reduce(function(t,n){return d.f[n](e,t),t},[]))},d.u=function(e){},d.miniCssF=function(e){return"static/css/dc347b0d22ffde5d.css"},d.g=function(){if("object"==typeof globalThis)return globalThis;try{return this||Function("return this")()}catch(e){if("object"==typeof window)return window}}(),d.o=function(e,t){return Object.prototype.hasOwnProperty.call(e,t)},r={},o="_N_E:",d.l=function(e,t,n,u){if(r[e]){r[e].push(t);return}if(void 0!==n)for(var i,c,f=document.getElementsByTagName("script"),a=0;a<f.length;a++){var l=f[a];if(l.getAttribute("src")==e||l.getAttribute("data-webpack")==o+n){i=l;break}}i||(c=!0,(i=document.createElement("script")).charset="utf-8",i.timeout=120,d.nc&&i.setAttribute("nonce",d.nc),i.setAttribute("data-webpack",o+n),i.src=d.tu(e)),r[e]=[t];var s=function(t,n){i.onerror=i.onload=null,clearTimeout(p);var o=r[e];if(delete r[e],i.parentNode&&i.parentNode.removeChild(i),o&&o.forEach(function(e){return e(n)}),t)return t(n)},p=setTimeout(s.bind(null,void 0,{type:"timeout",target:i}),12e4);i.onerror=s.bind(null,i.onerror),i.onload=s.bind(null,i.onload),c&&document.head.appendChild(i)},d.r=function(e){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(e,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(e,"__esModule",{value:!0})},d.nmd=function(e){return e.paths=[],e.children||(e.children=[]),e},d.tt=function(){return void 0===u&&(u={createScriptURL:function(e){return e}},"undefined"!=typeof trustedTypes&&trustedTypes.createPolicy&&(u=trustedTypes.createPolicy("nextjs#bundler",u))),u},d.tu=function(e){return d.tt().createScriptURL(e)},d.p="/ui/_next/",i={272:0},d.f.j=function(e,t){var n=d.o(i,e)?i[e]:void 0;if(0!==n){if(n)t.push(n[2]);else if(272!=e){var r=new Promise(function(t,r){n=i[e]=[t,r]});t.push(n[2]=r);var o=d.p+d.u(e),u=Error();d.l(o,function(t){if(d.o(i,e)&&(0!==(n=i[e])&&(i[e]=void 0),n)){var r=t&&("load"===t.type?"missing":t.type),o=t&&t.target&&t.target.src;u.message="Loading chunk "+e+" failed.\n("+r+": "+o+")",u.name="ChunkLoadError",u.type=r,u.request=o,n[1](u)}},"chunk-"+e,e)}else i[e]=0}},d.O.j=function(e){return 0===i[e]},c=function(e,t){var n,r,o=t[0],u=t[1],c=t[2],f=0;if(o.some(function(e){return 0!==i[e]})){for(n in u)d.o(u,n)&&(d.m[n]=u[n]);if(c)var a=c(d)}for(e&&e(t);f<o.length;f++)r=o[f],d.o(i,r)&&i[r]&&i[r][0](),i[r]=0;return d.O(a)},(f=self.webpackChunk_N_E=self.webpackChunk_N_E||[]).forEach(c.bind(null,0)),f.push=c.bind(null,f.push.bind(f))}();

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View file

@ -0,0 +1 @@
self.__BUILD_MANIFEST={__rewrites:{afterFiles:[],beforeFiles:[],fallback:[]},"/_error":["static/chunks/pages/_error-d6107f1aac0c574c.js"],sortedPages:["/_app","/_error"]},self.__BUILD_MANIFEST_CB&&self.__BUILD_MANIFEST_CB();

View file

@ -0,0 +1 @@
self.__SSG_MANIFEST=new Set([]);self.__SSG_MANIFEST_CB&&self.__SSG_MANIFEST_CB()

View file

@ -1 +1 @@
<!DOCTYPE html><html id="__next_error__"><head><meta charSet="utf-8"/><meta name="viewport" content="width=device-width, initial-scale=1"/><link rel="preload" as="script" fetchPriority="low" href="/ui/_next/static/chunks/webpack-59f93936973f5f5a.js" crossorigin=""/><script src="/ui/_next/static/chunks/fd9d1056-bcf69420342937de.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/69-442a9c01c3fd20f9.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/main-app-096338c8e1915716.js" async="" crossorigin=""></script><title>LiteLLM Dashboard</title><meta name="description" content="LiteLLM Proxy Admin UI"/><link rel="icon" href="/ui/favicon.ico" type="image/x-icon" sizes="16x16"/><meta name="next-size-adjust"/><script src="/ui/_next/static/chunks/polyfills-c67a75d1b6f99dc8.js" crossorigin="" noModule=""></script></head><body><script src="/ui/_next/static/chunks/webpack-59f93936973f5f5a.js" crossorigin="" async=""></script><script>(self.__next_f=self.__next_f||[]).push([0]);self.__next_f.push([2,null])</script><script>self.__next_f.push([1,"1:HL[\"/ui/_next/static/media/c9a5bc6a7c948fb0-s.p.woff2\",\"font\",{\"crossOrigin\":\"\",\"type\":\"font/woff2\"}]\n2:HL[\"/ui/_next/static/css/11cfce8bfdf6e8f1.css\",\"style\",{\"crossOrigin\":\"\"}]\n0:\"$L3\"\n"])</script><script>self.__next_f.push([1,"4:I[47690,[],\"\"]\n6:I[77831,[],\"\"]\n7:I[88740,[\"289\",\"static/chunks/289-04be6cb9636840d2.js\",\"931\",\"static/chunks/app/page-2c0827b33aed42d7.js\"],\"\"]\n8:I[5613,[],\"\"]\n9:I[31778,[],\"\"]\nb:I[48955,[],\"\"]\nc:[]\n"])</script><script>self.__next_f.push([1,"3:[[[\"$\",\"link\",\"0\",{\"rel\":\"stylesheet\",\"href\":\"/ui/_next/static/css/11cfce8bfdf6e8f1.css\",\"precedence\":\"next\",\"crossOrigin\":\"\"}]],[\"$\",\"$L4\",null,{\"buildId\":\"TqpzjpOA_s5IXVzgrYZ-F\",\"assetPrefix\":\"/ui\",\"initialCanonicalUrl\":\"/\",\"initialTree\":[\"\",{\"children\":[\"__PAGE__\",{}]},\"$undefined\",\"$undefined\",true],\"initialSeedData\":[\"\",{\"children\":[\"__PAGE__\",{},[\"$L5\",[\"$\",\"$L6\",null,{\"propsForComponent\":{\"params\":{}},\"Component\":\"$7\",\"isStaticGeneration\":true}],null]]},[null,[\"$\",\"html\",null,{\"lang\":\"en\",\"children\":[\"$\",\"body\",null,{\"className\":\"__className_c23dc8\",\"children\":[\"$\",\"$L8\",null,{\"parallelRouterKey\":\"children\",\"segmentPath\":[\"children\"],\"loading\":\"$undefined\",\"loadingStyles\":\"$undefined\",\"loadingScripts\":\"$undefined\",\"hasLoading\":false,\"error\":\"$undefined\",\"errorStyles\":\"$undefined\",\"errorScripts\":\"$undefined\",\"template\":[\"$\",\"$L9\",null,{}],\"templateStyles\":\"$undefined\",\"templateScripts\":\"$undefined\",\"notFound\":[[\"$\",\"title\",null,{\"children\":\"404: This page could not be found.\"}],[\"$\",\"div\",null,{\"style\":{\"fontFamily\":\"system-ui,\\\"Segoe UI\\\",Roboto,Helvetica,Arial,sans-serif,\\\"Apple Color Emoji\\\",\\\"Segoe UI Emoji\\\"\",\"height\":\"100vh\",\"textAlign\":\"center\",\"display\":\"flex\",\"flexDirection\":\"column\",\"alignItems\":\"center\",\"justifyContent\":\"center\"},\"children\":[\"$\",\"div\",null,{\"children\":[[\"$\",\"style\",null,{\"dangerouslySetInnerHTML\":{\"__html\":\"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}\"}}],[\"$\",\"h1\",null,{\"className\":\"next-error-h1\",\"style\":{\"display\":\"inline-block\",\"margin\":\"0 20px 0 0\",\"padding\":\"0 23px 0 0\",\"fontSize\":24,\"fontWeight\":500,\"verticalAlign\":\"top\",\"lineHeight\":\"49px\"},\"children\":\"404\"}],[\"$\",\"div\",null,{\"style\":{\"display\":\"inline-block\"},\"children\":[\"$\",\"h2\",null,{\"style\":{\"fontSize\":14,\"fontWeight\":400,\"lineHeight\":\"49px\",\"margin\":0},\"children\":\"This page could not be found.\"}]}]]}]}]],\"notFoundStyles\":[],\"styles\":null}]}]}],null]],\"initialHead\":[false,\"$La\"],\"globalErrorComponent\":\"$b\",\"missingSlots\":\"$Wc\"}]]\n"])</script><script>self.__next_f.push([1,"a:[[\"$\",\"meta\",\"0\",{\"name\":\"viewport\",\"content\":\"width=device-width, initial-scale=1\"}],[\"$\",\"meta\",\"1\",{\"charSet\":\"utf-8\"}],[\"$\",\"title\",\"2\",{\"children\":\"LiteLLM Dashboard\"}],[\"$\",\"meta\",\"3\",{\"name\":\"description\",\"content\":\"LiteLLM Proxy Admin UI\"}],[\"$\",\"link\",\"4\",{\"rel\":\"icon\",\"href\":\"/ui/favicon.ico\",\"type\":\"image/x-icon\",\"sizes\":\"16x16\"}],[\"$\",\"meta\",\"5\",{\"name\":\"next-size-adjust\"}]]\n5:null\n"])</script><script>self.__next_f.push([1,""])</script></body></html> <!DOCTYPE html><html id="__next_error__"><head><meta charSet="utf-8"/><meta name="viewport" content="width=device-width, initial-scale=1"/><link rel="preload" as="script" fetchPriority="low" href="/ui/_next/static/chunks/webpack-75b5d58291566cf9.js" crossorigin=""/><script src="/ui/_next/static/chunks/fd9d1056-bcf69420342937de.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/69-442a9c01c3fd20f9.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/main-app-9b4fb13a7db53edf.js" async="" crossorigin=""></script><title>LiteLLM Dashboard</title><meta name="description" content="LiteLLM Proxy Admin UI"/><link rel="icon" href="/ui/favicon.ico" type="image/x-icon" sizes="16x16"/><meta name="next-size-adjust"/><script src="/ui/_next/static/chunks/polyfills-c67a75d1b6f99dc8.js" crossorigin="" noModule=""></script></head><body><script src="/ui/_next/static/chunks/webpack-75b5d58291566cf9.js" crossorigin="" async=""></script><script>(self.__next_f=self.__next_f||[]).push([0]);self.__next_f.push([2,null])</script><script>self.__next_f.push([1,"1:HL[\"/ui/_next/static/media/c9a5bc6a7c948fb0-s.p.woff2\",\"font\",{\"crossOrigin\":\"\",\"type\":\"font/woff2\"}]\n2:HL[\"/ui/_next/static/css/dc347b0d22ffde5d.css\",\"style\",{\"crossOrigin\":\"\"}]\n0:\"$L3\"\n"])</script><script>self.__next_f.push([1,"4:I[47690,[],\"\"]\n6:I[77831,[],\"\"]\n7:I[21225,[\"289\",\"static/chunks/289-04be6cb9636840d2.js\",\"931\",\"static/chunks/app/page-cb85da9a307105a0.js\"],\"\"]\n8:I[5613,[],\"\"]\n9:I[31778,[],\"\"]\nb:I[48955,[],\"\"]\nc:[]\n"])</script><script>self.__next_f.push([1,"3:[[[\"$\",\"link\",\"0\",{\"rel\":\"stylesheet\",\"href\":\"/ui/_next/static/css/dc347b0d22ffde5d.css\",\"precedence\":\"next\",\"crossOrigin\":\"\"}]],[\"$\",\"$L4\",null,{\"buildId\":\"y7Wf8hfvd5KooOO87je1n\",\"assetPrefix\":\"/ui\",\"initialCanonicalUrl\":\"/\",\"initialTree\":[\"\",{\"children\":[\"__PAGE__\",{}]},\"$undefined\",\"$undefined\",true],\"initialSeedData\":[\"\",{\"children\":[\"__PAGE__\",{},[\"$L5\",[\"$\",\"$L6\",null,{\"propsForComponent\":{\"params\":{}},\"Component\":\"$7\",\"isStaticGeneration\":true}],null]]},[null,[\"$\",\"html\",null,{\"lang\":\"en\",\"children\":[\"$\",\"body\",null,{\"className\":\"__className_c23dc8\",\"children\":[\"$\",\"$L8\",null,{\"parallelRouterKey\":\"children\",\"segmentPath\":[\"children\"],\"loading\":\"$undefined\",\"loadingStyles\":\"$undefined\",\"loadingScripts\":\"$undefined\",\"hasLoading\":false,\"error\":\"$undefined\",\"errorStyles\":\"$undefined\",\"errorScripts\":\"$undefined\",\"template\":[\"$\",\"$L9\",null,{}],\"templateStyles\":\"$undefined\",\"templateScripts\":\"$undefined\",\"notFound\":[[\"$\",\"title\",null,{\"children\":\"404: This page could not be found.\"}],[\"$\",\"div\",null,{\"style\":{\"fontFamily\":\"system-ui,\\\"Segoe UI\\\",Roboto,Helvetica,Arial,sans-serif,\\\"Apple Color Emoji\\\",\\\"Segoe UI Emoji\\\"\",\"height\":\"100vh\",\"textAlign\":\"center\",\"display\":\"flex\",\"flexDirection\":\"column\",\"alignItems\":\"center\",\"justifyContent\":\"center\"},\"children\":[\"$\",\"div\",null,{\"children\":[[\"$\",\"style\",null,{\"dangerouslySetInnerHTML\":{\"__html\":\"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}\"}}],[\"$\",\"h1\",null,{\"className\":\"next-error-h1\",\"style\":{\"display\":\"inline-block\",\"margin\":\"0 20px 0 0\",\"padding\":\"0 23px 0 0\",\"fontSize\":24,\"fontWeight\":500,\"verticalAlign\":\"top\",\"lineHeight\":\"49px\"},\"children\":\"404\"}],[\"$\",\"div\",null,{\"style\":{\"display\":\"inline-block\"},\"children\":[\"$\",\"h2\",null,{\"style\":{\"fontSize\":14,\"fontWeight\":400,\"lineHeight\":\"49px\",\"margin\":0},\"children\":\"This page could not be found.\"}]}]]}]}]],\"notFoundStyles\":[],\"styles\":null}]}]}],null]],\"initialHead\":[false,\"$La\"],\"globalErrorComponent\":\"$b\",\"missingSlots\":\"$Wc\"}]]\n"])</script><script>self.__next_f.push([1,"a:[[\"$\",\"meta\",\"0\",{\"name\":\"viewport\",\"content\":\"width=device-width, initial-scale=1\"}],[\"$\",\"meta\",\"1\",{\"charSet\":\"utf-8\"}],[\"$\",\"title\",\"2\",{\"children\":\"LiteLLM Dashboard\"}],[\"$\",\"meta\",\"3\",{\"name\":\"description\",\"content\":\"LiteLLM Proxy Admin UI\"}],[\"$\",\"link\",\"4\",{\"rel\":\"icon\",\"href\":\"/ui/favicon.ico\",\"type\":\"image/x-icon\",\"sizes\":\"16x16\"}],[\"$\",\"meta\",\"5\",{\"name\":\"next-size-adjust\"}]]\n5:null\n"])</script><script>self.__next_f.push([1,""])</script></body></html>

View file

@ -1,7 +1,7 @@
2:I[77831,[],""] 2:I[77831,[],""]
3:I[88740,["289","static/chunks/289-04be6cb9636840d2.js","931","static/chunks/app/page-2c0827b33aed42d7.js"],""] 3:I[21225,["289","static/chunks/289-04be6cb9636840d2.js","931","static/chunks/app/page-cb85da9a307105a0.js"],""]
4:I[5613,[],""] 4:I[5613,[],""]
5:I[31778,[],""] 5:I[31778,[],""]
0:["TqpzjpOA_s5IXVzgrYZ-F",[[["",{"children":["__PAGE__",{}]},"$undefined","$undefined",true],["",{"children":["__PAGE__",{},["$L1",["$","$L2",null,{"propsForComponent":{"params":{}},"Component":"$3","isStaticGeneration":true}],null]]},[null,["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_c23dc8","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[],"styles":null}]}]}],null]],[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/11cfce8bfdf6e8f1.css","precedence":"next","crossOrigin":""}]],"$L6"]]]] 0:["y7Wf8hfvd5KooOO87je1n",[[["",{"children":["__PAGE__",{}]},"$undefined","$undefined",true],["",{"children":["__PAGE__",{},["$L1",["$","$L2",null,{"propsForComponent":{"params":{}},"Component":"$3","isStaticGeneration":true}],null]]},[null,["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_c23dc8","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[],"styles":null}]}]}],null]],[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/dc347b0d22ffde5d.css","precedence":"next","crossOrigin":""}]],"$L6"]]]]
6:[["$","meta","0",{"name":"viewport","content":"width=device-width, initial-scale=1"}],["$","meta","1",{"charSet":"utf-8"}],["$","title","2",{"children":"LiteLLM Dashboard"}],["$","meta","3",{"name":"description","content":"LiteLLM Proxy Admin UI"}],["$","link","4",{"rel":"icon","href":"/ui/favicon.ico","type":"image/x-icon","sizes":"16x16"}],["$","meta","5",{"name":"next-size-adjust"}]] 6:[["$","meta","0",{"name":"viewport","content":"width=device-width, initial-scale=1"}],["$","meta","1",{"charSet":"utf-8"}],["$","title","2",{"children":"LiteLLM Dashboard"}],["$","meta","3",{"name":"description","content":"LiteLLM Proxy Admin UI"}],["$","link","4",{"rel":"icon","href":"/ui/favicon.ico","type":"image/x-icon","sizes":"16x16"}],["$","meta","5",{"name":"next-size-adjust"}]]
1:null 1:null

View file

@ -15,7 +15,7 @@ import {
} from "@tremor/react"; } from "@tremor/react";
import { TabPanel, TabPanels, TabGroup, TabList, Tab, TextInput, Icon } from "@tremor/react"; import { TabPanel, TabPanels, TabGroup, TabList, Tab, TextInput, Icon } from "@tremor/react";
import { Select, SelectItem, MultiSelect, MultiSelectItem } from "@tremor/react"; import { Select, SelectItem, MultiSelect, MultiSelectItem } from "@tremor/react";
import { modelInfoCall, userGetRequesedtModelsCall, modelMetricsCall, modelCreateCall, Model, modelCostMap, modelDeleteCall, healthCheckCall } from "./networking"; import { modelInfoCall, userGetRequesedtModelsCall, modelCreateCall, Model, modelCostMap, modelDeleteCall, healthCheckCall } from "./networking";
import { BarChart } from "@tremor/react"; import { BarChart } from "@tremor/react";
import { import {
Button as Button2, Button as Button2,
@ -78,7 +78,6 @@ const ModelDashboard: React.FC<ModelDashboardProps> = ({
userID, userID,
}) => { }) => {
const [modelData, setModelData] = useState<any>({ data: [] }); const [modelData, setModelData] = useState<any>({ data: [] });
const [modelMetrics, setModelMetrics] = useState<any[]>([]);
const [pendingRequests, setPendingRequests] = useState<any[]>([]); const [pendingRequests, setPendingRequests] = useState<any[]>([]);
const [form] = Form.useForm(); const [form] = Form.useForm();
const [modelMap, setModelMap] = useState<any>(null); const [modelMap, setModelMap] = useState<any>(null);
@ -136,14 +135,7 @@ const ModelDashboard: React.FC<ModelDashboardProps> = ({
console.log("Model data response:", modelDataResponse.data); console.log("Model data response:", modelDataResponse.data);
setModelData(modelDataResponse); setModelData(modelDataResponse);
const modelMetricsResponse = await modelMetricsCall(
accessToken,
userID,
userRole
);
console.log("Model metrics response:", modelMetricsResponse);
setModelMetrics(modelMetricsResponse);
// if userRole is Admin, show the pending requests // if userRole is Admin, show the pending requests
if (userRole === "Admin" && accessToken) { if (userRole === "Admin" && accessToken) {
@ -484,30 +476,7 @@ const ModelDashboard: React.FC<ModelDashboardProps> = ({
</TableBody> </TableBody>
</Table> </Table>
</Card> </Card>
<Card>
<Title>Model Statistics (Number Requests)</Title>
<BarChart
data={modelMetrics}
index="model"
categories={["num_requests"]}
colors={["blue"]}
yAxisWidth={400}
layout="vertical"
tickGap={5}
/>
</Card>
<Card>
<Title>Model Statistics (Latency)</Title>
<BarChart
data={modelMetrics}
index="model"
categories={["avg_latency_seconds"]}
colors={["red"]}
yAxisWidth={400}
layout="vertical"
tickGap={5}
/>
</Card>
</Grid> </Grid>
</TabPanel> </TabPanel>
<TabPanel className="h-full"> <TabPanel className="h-full">

View file

@ -11,7 +11,8 @@ import {
adminTopKeysCall, adminTopKeysCall,
adminTopModelsCall, adminTopModelsCall,
teamSpendLogsCall, teamSpendLogsCall,
tagsSpendLogsCall tagsSpendLogsCall,
modelMetricsCall,
} from "./networking"; } from "./networking";
import { start } from "repl"; import { start } from "repl";
@ -143,6 +144,8 @@ const UsagePage: React.FC<UsagePageProps> = ({
const [topTagsData, setTopTagsData] = useState<any[]>([]); const [topTagsData, setTopTagsData] = useState<any[]>([]);
const [uniqueTeamIds, setUniqueTeamIds] = useState<any[]>([]); const [uniqueTeamIds, setUniqueTeamIds] = useState<any[]>([]);
const [totalSpendPerTeam, setTotalSpendPerTeam] = useState<any[]>([]); const [totalSpendPerTeam, setTotalSpendPerTeam] = useState<any[]>([]);
const [modelMetrics, setModelMetrics] = useState<any[]>([]);
const [modelLatencyMetrics, setModelLatencyMetrics] = useState<any[]>([]);
const firstDay = new Date( const firstDay = new Date(
currentDate.getFullYear(), currentDate.getFullYear(),
@ -223,6 +226,8 @@ const UsagePage: React.FC<UsagePageProps> = ({
//get top tags //get top tags
const top_tags = await tagsSpendLogsCall(accessToken); const top_tags = await tagsSpendLogsCall(accessToken);
setTopTagsData(top_tags.top_10_tags); setTopTagsData(top_tags.top_10_tags);
} else if (userRole == "App Owner") { } else if (userRole == "App Owner") {
await userSpendLogsCall( await userSpendLogsCall(
accessToken, accessToken,
@ -259,6 +264,21 @@ const UsagePage: React.FC<UsagePageProps> = ({
} }
}); });
} }
const modelMetricsResponse = await modelMetricsCall(
accessToken,
userID,
userRole
);
console.log("Model metrics response:", modelMetricsResponse);
// Sort by latency (avg_latency_seconds)
const sortedByLatency = [...modelMetricsResponse].sort((a, b) => b.avg_latency_seconds - a.avg_latency_seconds);
console.log("Sorted by latency:", sortedByLatency);
setModelMetrics(modelMetricsResponse);
setModelLatencyMetrics(sortedByLatency);
} catch (error) { } catch (error) {
console.error("There was an error fetching the data", error); console.error("There was an error fetching the data", error);
// Optionally, update your UI to reflect the error state here as well // Optionally, update your UI to reflect the error state here as well
@ -281,6 +301,7 @@ const UsagePage: React.FC<UsagePageProps> = ({
<Tab>All Up</Tab> <Tab>All Up</Tab>
<Tab>Team Based Usage</Tab> <Tab>Team Based Usage</Tab>
<Tab>Tag Based Usage</Tab> <Tab>Tag Based Usage</Tab>
<Tab>Model Based Usage</Tab>
</TabList> </TabList>
<TabPanels> <TabPanels>
<TabPanel> <TabPanel>
@ -420,6 +441,36 @@ const UsagePage: React.FC<UsagePageProps> = ({
</Col> </Col>
</Grid> </Grid>
</TabPanel> </TabPanel>
<TabPanel>
<Card>
<Title>Number Requests per Model</Title>
<BarChart
data={modelMetrics}
className="h-[50vh]"
index="model"
categories={["num_requests"]}
colors={["blue"]}
yAxisWidth={400}
layout="vertical"
tickGap={5}
/>
</Card>
<Card className="mt-4">
<Title>Latency Per Model</Title>
<BarChart
data={modelLatencyMetrics}
className="h-[50vh]"
index="model"
categories={["avg_latency_seconds"]}
colors={["red"]}
yAxisWidth={400}
layout="vertical"
tickGap={5}
/>
</Card>
</TabPanel>
</TabPanels> </TabPanels>
</TabGroup> </TabGroup>
</div> </div>