add Azure OpenAI entrata id docs (#5985)

This commit is contained in:
Ishaan Jaff 2024-09-30 12:17:58 -07:00 committed by GitHub
parent 30aa04b8c2
commit ca9c437021
No known key found for this signature in database
GPG key ID: B5690EEEBB952194

View file

@ -82,9 +82,6 @@ export AZURE_API_KEY=""
### 2. Start the proxy
<Tabs>
<TabItem value="config" label="config.yaml">
```yaml
model_list:
- model_name: gpt-3.5-turbo
@ -94,28 +91,9 @@ model_list:
api_version: "2023-05-15"
api_key: os.environ/AZURE_API_KEY # The `os.environ/` prefix tells litellm to read this from the env.
```
</TabItem>
<TabItem value="config-*" label="config.yaml (Entrata ID) use tenant_id, client_id, client_secret">
```yaml
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/chatgpt-v-2
api_base: https://openai-gpt-4-test-v-1.openai.azure.com/
api_version: "2023-05-15"
tenant_id: os.environ/AZURE_TENANT_ID
client_id: os.environ/AZURE_CLIENT_ID
client_secret: os.environ/AZURE_CLIENT_SECRET
```
</TabItem>
</Tabs>
### 3. Test it
<Tabs>
<TabItem value="Curl" label="Curl Request">
@ -360,6 +338,153 @@ response = speech(
response.stream_to_file(speech_file_path)
```
## **Authentication**
### Entrata ID - use `azure_ad_token`
This is a walkthrough on how to use Azure Active Directory Tokens - Microsoft Entra ID to make `litellm.completion()` calls
Step 1 - Download Azure CLI
Installation instructons: https://learn.microsoft.com/en-us/cli/azure/install-azure-cli
```shell
brew update && brew install azure-cli
```
Step 2 - Sign in using `az`
```shell
az login --output table
```
Step 3 - Generate azure ad token
```shell
az account get-access-token --resource https://cognitiveservices.azure.com
```
In this step you should see an `accessToken` generated
```shell
{
"accessToken": "eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsIng1dCI6IjlHbW55RlBraGMzaE91UjIybXZTdmduTG83WSIsImtpZCI6IjlHbW55RlBraGMzaE91UjIybXZTdmduTG83WSJ9",
"expiresOn": "2023-11-14 15:50:46.000000",
"expires_on": 1700005846,
"subscription": "db38de1f-4bb3..",
"tenant": "bdfd79b3-8401-47..",
"tokenType": "Bearer"
}
```
Step 4 - Make litellm.completion call with Azure AD token
Set `azure_ad_token` = `accessToken` from step 3 or set `os.environ['AZURE_AD_TOKEN']`
<Tabs>
<TabItem value="sdk" label="SDK">
```python
response = litellm.completion(
model = "azure/<your deployment name>", # model = azure/<your deployment name>
api_base = "", # azure api base
api_version = "", # azure api version
azure_ad_token="", # your accessToken from step 3
messages = [{"role": "user", "content": "good morning"}],
)
```
</TabItem>
<TabItem value="proxy" label="PROXY config.yaml">
```yaml
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/chatgpt-v-2
api_base: https://openai-gpt-4-test-v-1.openai.azure.com/
api_version: "2023-05-15"
azure_ad_token: os.environ/AZURE_AD_TOKEN
```
</TabItem>
</Tabs>
### Entrata ID - use tenant_id, client_id, client_secret
Here is an example of setting up `tenant_id`, `client_id`, `client_secret` in your litellm proxy `config.yaml`
```yaml
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/chatgpt-v-2
api_base: https://openai-gpt-4-test-v-1.openai.azure.com/
api_version: "2023-05-15"
tenant_id: os.environ/AZURE_TENANT_ID
client_id: os.environ/AZURE_CLIENT_ID
client_secret: os.environ/AZURE_CLIENT_SECRET
```
Test it
```shell
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
]
}
'
```
Example video of using `tenant_id`, `client_id`, `client_secret` with LiteLLM Proxy Server
<iframe width="840" height="500" src="https://www.loom.com/embed/70d3f219ee7f4e5d84778b7f17bba506?sid=04b8ff29-485f-4cb8-929e-6b392722f36d" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen></iframe>
### Azure AD Token Refresh - `DefaultAzureCredential`
Use this if you want to use Azure `DefaultAzureCredential` for Authentication on your requests
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import completion
from azure.identity import DefaultAzureCredential, get_bearer_token_provider
token_provider = get_bearer_token_provider(DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default")
response = completion(
model = "azure/<your deployment name>", # model = azure/<your deployment name>
api_base = "", # azure api base
api_version = "", # azure api version
azure_ad_token_provider=token_provider
messages = [{"role": "user", "content": "good morning"}],
)
```
</TabItem>
<TabItem value="proxy" label="PROXY config.yaml">
```yaml
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/your-deployment-name
api_base: https://openai-gpt-4-test-v-1.openai.azure.com/
litellm_settings:
enable_azure_ad_token_refresh: true # 👈 KEY CHANGE
```
</TabItem>
</Tabs>
## Advanced
### Azure API Load-Balancing
@ -486,87 +611,4 @@ print("\nLLM Response1:\n", response)
response_message = response.choices[0].message
tool_calls = response.choices[0].message.tool_calls
print("\nTool Choice:\n", tool_calls)
```
### Authentication with Azure Active Directory Tokens (Microsoft Entra ID)
This is a walkthrough on how to use Azure Active Directory Tokens - Microsoft Entra ID to make `litellm.completion()` calls
Step 1 - Download Azure CLI
Installation instructons: https://learn.microsoft.com/en-us/cli/azure/install-azure-cli
```shell
brew update && brew install azure-cli
```
Step 2 - Sign in using `az`
```shell
az login --output table
```
Step 3 - Generate azure ad token
```shell
az account get-access-token --resource https://cognitiveservices.azure.com
```
In this step you should see an `accessToken` generated
```shell
{
"accessToken": "eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsIng1dCI6IjlHbW55RlBraGMzaE91UjIybXZTdmduTG83WSIsImtpZCI6IjlHbW55RlBraGMzaE91UjIybXZTdmduTG83WSJ9",
"expiresOn": "2023-11-14 15:50:46.000000",
"expires_on": 1700005846,
"subscription": "db38de1f-4bb3..",
"tenant": "bdfd79b3-8401-47..",
"tokenType": "Bearer"
}
```
Step 4 - Make litellm.completion call with Azure AD token
Set `azure_ad_token` = `accessToken` from step 3 or set `os.environ['AZURE_AD_TOKEN']`
```python
response = litellm.completion(
model = "azure/<your deployment name>", # model = azure/<your deployment name>
api_base = "", # azure api base
api_version = "", # azure api version
azure_ad_token="", # your accessToken from step 3
messages = [{"role": "user", "content": "good morning"}],
)
```
### Azure AD Token Refresh
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import completion
from azure.identity import DefaultAzureCredential, get_bearer_token_provider
token_provider = get_bearer_token_provider(DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default")
response = completion(
model = "azure/<your deployment name>", # model = azure/<your deployment name>
api_base = "", # azure api base
api_version = "", # azure api version
azure_ad_token_provider=token_provider
messages = [{"role": "user", "content": "good morning"}],
)
```
</TabItem>
<TabItem value="proxy" label="PROXY config.yaml">
```yaml
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/your-deployment-name
api_base: https://openai-gpt-4-test-v-1.openai.azure.com/
litellm_settings:
enable_azure_ad_token_refresh: true # 👈 KEY CHANGE
```
</TabItem>
</Tabs>
```