forked from phoenix/litellm-mirror
add Azure OpenAI entrata id docs (#5985)
This commit is contained in:
parent
30aa04b8c2
commit
ca9c437021
1 changed files with 148 additions and 106 deletions
|
@ -82,9 +82,6 @@ export AZURE_API_KEY=""
|
|||
|
||||
### 2. Start the proxy
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="config" label="config.yaml">
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: gpt-3.5-turbo
|
||||
|
@ -94,28 +91,9 @@ model_list:
|
|||
api_version: "2023-05-15"
|
||||
api_key: os.environ/AZURE_API_KEY # The `os.environ/` prefix tells litellm to read this from the env.
|
||||
```
|
||||
</TabItem>
|
||||
<TabItem value="config-*" label="config.yaml (Entrata ID) use tenant_id, client_id, client_secret">
|
||||
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: gpt-3.5-turbo
|
||||
litellm_params:
|
||||
model: azure/chatgpt-v-2
|
||||
api_base: https://openai-gpt-4-test-v-1.openai.azure.com/
|
||||
api_version: "2023-05-15"
|
||||
tenant_id: os.environ/AZURE_TENANT_ID
|
||||
client_id: os.environ/AZURE_CLIENT_ID
|
||||
client_secret: os.environ/AZURE_CLIENT_SECRET
|
||||
```
|
||||
</TabItem>
|
||||
|
||||
</Tabs>
|
||||
|
||||
### 3. Test it
|
||||
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="Curl" label="Curl Request">
|
||||
|
||||
|
@ -360,6 +338,153 @@ response = speech(
|
|||
response.stream_to_file(speech_file_path)
|
||||
```
|
||||
|
||||
## **Authentication**
|
||||
|
||||
|
||||
### Entrata ID - use `azure_ad_token`
|
||||
|
||||
This is a walkthrough on how to use Azure Active Directory Tokens - Microsoft Entra ID to make `litellm.completion()` calls
|
||||
|
||||
Step 1 - Download Azure CLI
|
||||
Installation instructons: https://learn.microsoft.com/en-us/cli/azure/install-azure-cli
|
||||
```shell
|
||||
brew update && brew install azure-cli
|
||||
```
|
||||
Step 2 - Sign in using `az`
|
||||
```shell
|
||||
az login --output table
|
||||
```
|
||||
|
||||
Step 3 - Generate azure ad token
|
||||
```shell
|
||||
az account get-access-token --resource https://cognitiveservices.azure.com
|
||||
```
|
||||
|
||||
In this step you should see an `accessToken` generated
|
||||
```shell
|
||||
{
|
||||
"accessToken": "eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsIng1dCI6IjlHbW55RlBraGMzaE91UjIybXZTdmduTG83WSIsImtpZCI6IjlHbW55RlBraGMzaE91UjIybXZTdmduTG83WSJ9",
|
||||
"expiresOn": "2023-11-14 15:50:46.000000",
|
||||
"expires_on": 1700005846,
|
||||
"subscription": "db38de1f-4bb3..",
|
||||
"tenant": "bdfd79b3-8401-47..",
|
||||
"tokenType": "Bearer"
|
||||
}
|
||||
```
|
||||
|
||||
Step 4 - Make litellm.completion call with Azure AD token
|
||||
|
||||
Set `azure_ad_token` = `accessToken` from step 3 or set `os.environ['AZURE_AD_TOKEN']`
|
||||
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="sdk" label="SDK">
|
||||
|
||||
|
||||
```python
|
||||
response = litellm.completion(
|
||||
model = "azure/<your deployment name>", # model = azure/<your deployment name>
|
||||
api_base = "", # azure api base
|
||||
api_version = "", # azure api version
|
||||
azure_ad_token="", # your accessToken from step 3
|
||||
messages = [{"role": "user", "content": "good morning"}],
|
||||
)
|
||||
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="proxy" label="PROXY config.yaml">
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: gpt-3.5-turbo
|
||||
litellm_params:
|
||||
model: azure/chatgpt-v-2
|
||||
api_base: https://openai-gpt-4-test-v-1.openai.azure.com/
|
||||
api_version: "2023-05-15"
|
||||
azure_ad_token: os.environ/AZURE_AD_TOKEN
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
### Entrata ID - use tenant_id, client_id, client_secret
|
||||
|
||||
Here is an example of setting up `tenant_id`, `client_id`, `client_secret` in your litellm proxy `config.yaml`
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: gpt-3.5-turbo
|
||||
litellm_params:
|
||||
model: azure/chatgpt-v-2
|
||||
api_base: https://openai-gpt-4-test-v-1.openai.azure.com/
|
||||
api_version: "2023-05-15"
|
||||
tenant_id: os.environ/AZURE_TENANT_ID
|
||||
client_id: os.environ/AZURE_CLIENT_ID
|
||||
client_secret: os.environ/AZURE_CLIENT_SECRET
|
||||
```
|
||||
|
||||
Test it
|
||||
|
||||
```shell
|
||||
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
||||
--header 'Content-Type: application/json' \
|
||||
--data ' {
|
||||
"model": "gpt-3.5-turbo",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "what llm are you"
|
||||
}
|
||||
]
|
||||
}
|
||||
'
|
||||
```
|
||||
|
||||
Example video of using `tenant_id`, `client_id`, `client_secret` with LiteLLM Proxy Server
|
||||
|
||||
<iframe width="840" height="500" src="https://www.loom.com/embed/70d3f219ee7f4e5d84778b7f17bba506?sid=04b8ff29-485f-4cb8-929e-6b392722f36d" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen></iframe>
|
||||
|
||||
### Azure AD Token Refresh - `DefaultAzureCredential`
|
||||
|
||||
Use this if you want to use Azure `DefaultAzureCredential` for Authentication on your requests
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="sdk" label="SDK">
|
||||
|
||||
```python
|
||||
from litellm import completion
|
||||
from azure.identity import DefaultAzureCredential, get_bearer_token_provider
|
||||
|
||||
token_provider = get_bearer_token_provider(DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default")
|
||||
|
||||
|
||||
response = completion(
|
||||
model = "azure/<your deployment name>", # model = azure/<your deployment name>
|
||||
api_base = "", # azure api base
|
||||
api_version = "", # azure api version
|
||||
azure_ad_token_provider=token_provider
|
||||
messages = [{"role": "user", "content": "good morning"}],
|
||||
)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="proxy" label="PROXY config.yaml">
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: gpt-3.5-turbo
|
||||
litellm_params:
|
||||
model: azure/your-deployment-name
|
||||
api_base: https://openai-gpt-4-test-v-1.openai.azure.com/
|
||||
|
||||
litellm_settings:
|
||||
enable_azure_ad_token_refresh: true # 👈 KEY CHANGE
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
|
||||
## Advanced
|
||||
### Azure API Load-Balancing
|
||||
|
||||
|
@ -486,87 +611,4 @@ print("\nLLM Response1:\n", response)
|
|||
response_message = response.choices[0].message
|
||||
tool_calls = response.choices[0].message.tool_calls
|
||||
print("\nTool Choice:\n", tool_calls)
|
||||
```
|
||||
|
||||
|
||||
### Authentication with Azure Active Directory Tokens (Microsoft Entra ID)
|
||||
This is a walkthrough on how to use Azure Active Directory Tokens - Microsoft Entra ID to make `litellm.completion()` calls
|
||||
|
||||
Step 1 - Download Azure CLI
|
||||
Installation instructons: https://learn.microsoft.com/en-us/cli/azure/install-azure-cli
|
||||
```shell
|
||||
brew update && brew install azure-cli
|
||||
```
|
||||
Step 2 - Sign in using `az`
|
||||
```shell
|
||||
az login --output table
|
||||
```
|
||||
|
||||
Step 3 - Generate azure ad token
|
||||
```shell
|
||||
az account get-access-token --resource https://cognitiveservices.azure.com
|
||||
```
|
||||
|
||||
In this step you should see an `accessToken` generated
|
||||
```shell
|
||||
{
|
||||
"accessToken": "eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsIng1dCI6IjlHbW55RlBraGMzaE91UjIybXZTdmduTG83WSIsImtpZCI6IjlHbW55RlBraGMzaE91UjIybXZTdmduTG83WSJ9",
|
||||
"expiresOn": "2023-11-14 15:50:46.000000",
|
||||
"expires_on": 1700005846,
|
||||
"subscription": "db38de1f-4bb3..",
|
||||
"tenant": "bdfd79b3-8401-47..",
|
||||
"tokenType": "Bearer"
|
||||
}
|
||||
```
|
||||
|
||||
Step 4 - Make litellm.completion call with Azure AD token
|
||||
|
||||
Set `azure_ad_token` = `accessToken` from step 3 or set `os.environ['AZURE_AD_TOKEN']`
|
||||
|
||||
```python
|
||||
response = litellm.completion(
|
||||
model = "azure/<your deployment name>", # model = azure/<your deployment name>
|
||||
api_base = "", # azure api base
|
||||
api_version = "", # azure api version
|
||||
azure_ad_token="", # your accessToken from step 3
|
||||
messages = [{"role": "user", "content": "good morning"}],
|
||||
)
|
||||
|
||||
```
|
||||
### Azure AD Token Refresh
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="sdk" label="SDK">
|
||||
|
||||
```python
|
||||
from litellm import completion
|
||||
from azure.identity import DefaultAzureCredential, get_bearer_token_provider
|
||||
|
||||
token_provider = get_bearer_token_provider(DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default")
|
||||
|
||||
|
||||
response = completion(
|
||||
model = "azure/<your deployment name>", # model = azure/<your deployment name>
|
||||
api_base = "", # azure api base
|
||||
api_version = "", # azure api version
|
||||
azure_ad_token_provider=token_provider
|
||||
messages = [{"role": "user", "content": "good morning"}],
|
||||
)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="proxy" label="PROXY config.yaml">
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: gpt-3.5-turbo
|
||||
litellm_params:
|
||||
model: azure/your-deployment-name
|
||||
api_base: https://openai-gpt-4-test-v-1.openai.azure.com/
|
||||
|
||||
litellm_settings:
|
||||
enable_azure_ad_token_refresh: true # 👈 KEY CHANGE
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
```
|
Loading…
Add table
Add a link
Reference in a new issue