[Fix] Performance - use in memory cache when downloading images from a url (#5657)

* fix use in memory cache when getting images

* fix linting

* fix load testing

* fix load test size

* fix load test size

* trigger ci/cd again
This commit is contained in:
Ishaan Jaff 2024-09-13 07:23:42 -07:00 committed by GitHub
parent cdd7cd4d69
commit cd8d7ca915
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
5 changed files with 249 additions and 38 deletions

View file

@ -37,6 +37,8 @@ from litellm.types.llms.openai import (
)
from litellm.types.utils import GenericImageParsingChunk
from .image_handling import async_convert_url_to_base64, convert_url_to_base64
def default_pt(messages):
return " ".join(message["content"] for message in messages)
@ -703,44 +705,6 @@ def construct_tool_use_system_prompt(
return tool_use_system_prompt
def convert_url_to_base64(url):
import base64
client = HTTPHandler(concurrent_limit=1)
for _ in range(3):
try:
response = client.get(url)
break
except:
pass
if response.status_code == 200:
image_bytes = response.content
base64_image = base64.b64encode(image_bytes).decode("utf-8")
image_type = response.headers.get("Content-Type", None)
if image_type is not None:
img_type = image_type
else:
img_type = url.split(".")[-1].lower()
if img_type == "jpg" or img_type == "jpeg":
img_type = "image/jpeg"
elif img_type == "png":
img_type = "image/png"
elif img_type == "gif":
img_type = "image/gif"
elif img_type == "webp":
img_type = "image/webp"
else:
raise Exception(
f"Error: Unsupported image format. Format={img_type}. Supported types = ['image/jpeg', 'image/png', 'image/gif', 'image/webp']"
)
return f"data:{img_type};base64,{base64_image}"
else:
raise Exception(f"Error: Unable to fetch image from URL. url={url}")
def convert_to_anthropic_image_obj(openai_image_url: str) -> GenericImageParsingChunk:
"""
Input:

View file

@ -0,0 +1,84 @@
"""
Helper functions to handle images passed in messages
"""
import base64
from httpx import Response
import litellm
from litellm.caching import InMemoryCache
from litellm.llms.custom_httpx.http_handler import (
_get_httpx_client,
get_async_httpx_client,
)
MAX_IMGS_IN_MEMORY = 10
in_memory_cache = InMemoryCache(max_size_in_memory=MAX_IMGS_IN_MEMORY)
def _process_image_response(response: Response, url: str) -> str:
if response.status_code != 200:
raise Exception(
f"Error: Unable to fetch image from URL. Status code: {response.status_code}, url={url}"
)
image_bytes = response.content
base64_image = base64.b64encode(image_bytes).decode("utf-8")
image_type = response.headers.get("Content-Type")
if image_type is None:
img_type = url.split(".")[-1].lower()
_img_type = {
"jpg": "image/jpeg",
"jpeg": "image/jpeg",
"png": "image/png",
"gif": "image/gif",
"webp": "image/webp",
}.get(img_type)
if _img_type is None:
raise Exception(
f"Error: Unsupported image format. Format={_img_type}. Supported types = ['image/jpeg', 'image/png', 'image/gif', 'image/webp']"
)
img_type = _img_type
else:
img_type = image_type
result = f"data:{img_type};base64,{base64_image}"
in_memory_cache.set_cache(url, result)
return result
async def async_convert_url_to_base64(url: str) -> str:
cached_result = in_memory_cache.get_cache(url)
if cached_result:
return cached_result
client = litellm.module_level_aclient
for _ in range(3):
try:
response = await client.get(url)
return _process_image_response(response, url)
except:
pass
raise Exception(
f"Error: Unable to fetch image from URL after 3 attempts. url={url}"
)
def convert_url_to_base64(url: str) -> str:
cached_result = in_memory_cache.get_cache(url)
if cached_result:
return cached_result
client = litellm.module_level_client
for _ in range(3):
try:
response = client.get(url)
return _process_image_response(response, url)
except:
pass
raise Exception(
f"Error: Unable to fetch image from URL after 3 attempts. url={url}"
)

View file

@ -25,6 +25,7 @@ from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
from litellm.llms.prompt_templates.factory import anthropic_messages_pt
# litellm.num_retries =3
litellm.cache = None
litellm.success_callback = []
user_message = "Write a short poem about the sky"

View file

@ -0,0 +1,149 @@
import sys
import os
sys.path.insert(0, os.path.abspath("../.."))
import asyncio
import litellm
import pytest
import time
import json
import tempfile
from dotenv import load_dotenv
def load_vertex_ai_credentials():
# Define the path to the vertex_key.json file
print("loading vertex ai credentials")
filepath = os.path.dirname(os.path.abspath(__file__))
vertex_key_path = filepath + "/vertex_key.json"
# Read the existing content of the file or create an empty dictionary
try:
with open(vertex_key_path, "r") as file:
# Read the file content
print("Read vertexai file path")
content = file.read()
# If the file is empty or not valid JSON, create an empty dictionary
if not content or not content.strip():
service_account_key_data = {}
else:
# Attempt to load the existing JSON content
file.seek(0)
service_account_key_data = json.load(file)
except FileNotFoundError:
# If the file doesn't exist, create an empty dictionary
service_account_key_data = {}
# Update the service_account_key_data with environment variables
private_key_id = os.environ.get("VERTEX_AI_PRIVATE_KEY_ID", "")
private_key = os.environ.get("VERTEX_AI_PRIVATE_KEY", "")
private_key = private_key.replace("\\n", "\n")
service_account_key_data["private_key_id"] = private_key_id
service_account_key_data["private_key"] = private_key
# Create a temporary file
with tempfile.NamedTemporaryFile(mode="w+", delete=False) as temp_file:
# Write the updated content to the temporary files
json.dump(service_account_key_data, temp_file, indent=2)
# Export the temporary file as GOOGLE_APPLICATION_CREDENTIALS
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = os.path.abspath(temp_file.name)
@pytest.mark.asyncio
async def test_vertex_load():
try:
load_vertex_ai_credentials()
percentage_diffs = []
for run in range(3):
print(f"\nRun {run + 1}:")
# Test with text-only message
start_time_text = await make_async_calls(message_type="text")
print("Done with text-only message test")
# Test with text + image message
start_time_image = await make_async_calls(message_type="image")
print("Done with text + image message test")
# Compare times and calculate percentage difference
print(f"Time with text-only message: {start_time_text}")
print(f"Time with text + image message: {start_time_image}")
percentage_diff = (
(start_time_image - start_time_text) / start_time_text * 100
)
percentage_diffs.append(percentage_diff)
print(f"Performance difference: {percentage_diff:.2f}%")
print("percentage_diffs", percentage_diffs)
# Calculate average percentage difference
avg_percentage_diff = sum(percentage_diffs) / len(percentage_diffs)
print(f"\nAverage performance difference: {avg_percentage_diff:.2f}%")
# Assert that the average difference is not more than 20%
assert (
avg_percentage_diff < 20
), f"Average performance difference of {avg_percentage_diff:.2f}% exceeds 20% threshold"
except litellm.Timeout as e:
pass
except Exception as e:
pytest.fail(f"An exception occurred - {e}")
async def make_async_calls(message_type="text"):
total_tasks = 3
batch_size = 1
total_time = 0
for batch in range(3):
tasks = [create_async_task(message_type) for _ in range(batch_size)]
start_time = asyncio.get_event_loop().time()
responses = await asyncio.gather(*tasks)
for idx, response in enumerate(responses):
print(f"Response from Task {batch * batch_size + idx + 1}: {response}")
await asyncio.sleep(1)
batch_time = asyncio.get_event_loop().time() - start_time
total_time += batch_time
return total_time
def create_async_task(message_type):
base_url = "https://exampleopenaiendpoint-production.up.railway.app/v1/projects/adroit-crow-413218/locations/us-central1/publishers/google/models/gemini-1.0-pro-vision-001"
if message_type == "text":
messages = [{"role": "user", "content": "hi"}]
else:
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": "What is in this image?"},
{
"type": "image_url",
"image_url": {
"url": "https://litellm-listing.s3.amazonaws.com/litellm_logo.png"
},
},
],
}
]
completion_args = {
"model": "vertex_ai/gemini",
"messages": messages,
"max_tokens": 5,
"temperature": 0.7,
"timeout": 10,
"api_base": base_url,
}
return asyncio.create_task(litellm.acompletion(**completion_args))

View file

@ -0,0 +1,13 @@
{
"type": "service_account",
"project_id": "adroit-crow-413218",
"private_key_id": "",
"private_key": "",
"client_email": "test-adroit-crow@adroit-crow-413218.iam.gserviceaccount.com",
"client_id": "104886546564708740969",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/test-adroit-crow%40adroit-crow-413218.iam.gserviceaccount.com",
"universe_domain": "googleapis.com"
}