fix(s3.py): fix s3 logging payload to have valid json values

Previously pydantic objects were being stringified, making them unparsable
This commit is contained in:
Krrish Dholakia 2024-08-15 17:09:02 -07:00
parent eb6a0a32f1
commit cda50e5d47
5 changed files with 244 additions and 23 deletions

View file

@ -7,9 +7,11 @@ import subprocess
import sys import sys
import traceback import traceback
import uuid import uuid
from typing import Optional
import litellm import litellm
from litellm._logging import print_verbose, verbose_logger from litellm._logging import print_verbose, verbose_logger
from litellm.types.utils import StandardLoggingPayload
class S3Logger: class S3Logger:
@ -123,29 +125,13 @@ class S3Logger:
else: else:
clean_metadata[key] = value clean_metadata[key] = value
# Build the initial payload
payload = {
"id": id,
"call_type": call_type,
"cache_hit": cache_hit,
"startTime": start_time,
"endTime": end_time,
"model": kwargs.get("model", ""),
"user": kwargs.get("user", ""),
"modelParameters": optional_params,
"messages": messages,
"response": response_obj,
"usage": usage,
"metadata": clean_metadata,
}
# Ensure everything in the payload is converted to str # Ensure everything in the payload is converted to str
for key, value in payload.items(): payload: Optional[StandardLoggingPayload] = kwargs.get(
try: "standard_logging_object", None
payload[key] = str(value) )
except:
# non blocking if it can't cast to a str if payload is None:
pass return
s3_file_name = litellm.utils.get_logging_id(start_time, payload) or "" s3_file_name = litellm.utils.get_logging_id(start_time, payload) or ""
s3_object_key = ( s3_object_key = (

View file

@ -10,6 +10,7 @@ import sys
import time import time
import traceback import traceback
import uuid import uuid
from datetime import datetime as dt_object
from typing import Any, Callable, Dict, List, Literal, Optional, Union from typing import Any, Callable, Dict, List, Literal, Optional, Union
from pydantic import BaseModel from pydantic import BaseModel
@ -33,6 +34,8 @@ from litellm.types.utils import (
EmbeddingResponse, EmbeddingResponse,
ImageResponse, ImageResponse,
ModelResponse, ModelResponse,
StandardLoggingMetadata,
StandardLoggingPayload,
TextCompletionResponse, TextCompletionResponse,
TranscriptionResponse, TranscriptionResponse,
) )
@ -560,6 +563,14 @@ class Logging:
self.model_call_details["log_event_type"] = "successful_api_call" self.model_call_details["log_event_type"] = "successful_api_call"
self.model_call_details["end_time"] = end_time self.model_call_details["end_time"] = end_time
self.model_call_details["cache_hit"] = cache_hit self.model_call_details["cache_hit"] = cache_hit
self.model_call_details["standard_logging_object"] = (
get_standard_logging_object_payload(
kwargs=self.model_call_details,
init_response_obj=result,
start_time=start_time,
end_time=end_time,
)
)
## if model in model cost map - log the response cost ## if model in model cost map - log the response cost
## else set cost to None ## else set cost to None
if ( if (
@ -2166,3 +2177,123 @@ def use_custom_pricing_for_model(litellm_params: Optional[dict]) -> bool:
if k in SPECIAL_MODEL_INFO_PARAMS: if k in SPECIAL_MODEL_INFO_PARAMS:
return True return True
return False return False
def get_standard_logging_object_payload(
kwargs: dict, init_response_obj: Any, start_time: dt_object, end_time: dt_object
) -> Optional[StandardLoggingPayload]:
if kwargs is None:
kwargs = {}
if init_response_obj is None:
response_obj = {}
elif isinstance(init_response_obj, BaseModel):
response_obj = init_response_obj.model_dump()
elif isinstance(init_response_obj, dict):
response_obj = init_response_obj
# standardize this function to be used across, s3, dynamoDB, langfuse logging
litellm_params = kwargs.get("litellm_params", {})
proxy_server_request = litellm_params.get("proxy_server_request") or {}
end_user_id = proxy_server_request.get("body", {}).get("user", None)
metadata = (
litellm_params.get("metadata", {}) or {}
) # if litellm_params['metadata'] == None
completion_start_time = kwargs.get("completion_start_time", end_time)
call_type = kwargs.get("call_type")
cache_hit = kwargs.get("cache_hit", False)
usage = response_obj.get("usage", None) or {}
if type(usage) == litellm.Usage:
usage = dict(usage)
id = response_obj.get("id", kwargs.get("litellm_call_id"))
api_key = metadata.get("user_api_key", "")
if api_key is not None and isinstance(api_key, str) and api_key.startswith("sk-"):
# redact the api key
api_key = "REDACTED-BY-LITELLM--contains-sk-keyword"
_model_id = metadata.get("model_info", {}).get("id", "")
_model_group = metadata.get("model_group", "")
request_tags = (
json.dumps(metadata.get("tags", []))
if isinstance(metadata.get("tags", []), list)
else "[]"
)
# cleanup timestamps
if isinstance(start_time, datetime.datetime):
start_time_float = start_time.timestamp()
if isinstance(end_time, datetime.datetime):
end_time_float = end_time.timestamp()
if isinstance(completion_start_time, datetime.datetime):
completion_start_time_float = completion_start_time.timestamp()
# clean up litellm metadata
clean_metadata = StandardLoggingMetadata(
user_api_key=None,
user_api_key_alias=None,
user_api_key_team_id=None,
user_api_key_user_id=None,
user_api_key_team_alias=None,
spend_logs_metadata=None,
requester_ip_address=None,
)
if isinstance(metadata, dict):
# Filter the metadata dictionary to include only the specified keys
clean_metadata = StandardLoggingMetadata(
**{ # type: ignore
key: metadata[key]
for key in StandardLoggingMetadata.__annotations__.keys()
if key in metadata
}
)
if litellm.cache is not None:
cache_key = litellm.cache.get_cache_key(**kwargs)
else:
cache_key = "Cache OFF"
if cache_hit is True:
import time
id = f"{id}_cache_hit{time.time()}" # do not duplicate the request id
try:
payload: StandardLoggingPayload = StandardLoggingPayload(
id=str(id),
call_type=call_type or "",
api_key=str(api_key),
cache_hit=cache_hit,
startTime=start_time_float,
endTime=end_time_float,
completionStartTime=completion_start_time_float,
model=kwargs.get("model", "") or "",
user=metadata.get("user_api_key_user_id", "") or "",
team_id=metadata.get("user_api_key_team_id", "") or "",
metadata=clean_metadata,
cache_key=cache_key,
spend=kwargs.get("response_cost", 0),
total_tokens=usage.get("total_tokens", 0),
prompt_tokens=usage.get("prompt_tokens", 0),
completion_tokens=usage.get("completion_tokens", 0),
request_tags=request_tags,
end_user=end_user_id or "",
api_base=litellm_params.get("api_base", ""),
model_group=_model_group,
model_id=_model_id,
requester_ip_address=clean_metadata.get("requester_ip_address", None),
messages=kwargs.get("messages"),
response=response_obj,
model_parameters=kwargs.get("optional_params", None),
)
verbose_logger.debug(
"Standard Logging: created payload - payload: %s\n\n", payload
)
return payload
except Exception as e:
verbose_logger.warning(
"Error creating standard logging object - {}\n{}".format(
str(e), traceback.format_exc()
)
)
return None

View file

@ -3,4 +3,12 @@ model_list:
litellm_params: litellm_params:
model: "gpt-4" model: "gpt-4"
model_info: model_info:
my_custom_key: "my_custom_value" my_custom_key: "my_custom_value"
litellm_settings:
success_callback: ["s3"]
s3_callback_params:
s3_bucket_name: mytestbucketlitellm # AWS Bucket Name for S3
s3_region_name: us-west-2 # AWS Region Name for S3
s3_aws_access_key_id: os.environ/AWS_ACCESS_KEY_ID # us os.environ/<variable name> to pass environment variables. This is AWS Access Key ID for S3
s3_aws_secret_access_key: os.environ/AWS_SECRET_ACCESS_KEY # AWS Secret Access Key for S3

View file

@ -1166,3 +1166,55 @@ def test_turn_off_message_logging():
time.sleep(2) time.sleep(2)
assert len(customHandler.errors) == 0 assert len(customHandler.errors) == 0
##### VALID JSON ######
def test_standard_logging_payload():
"""
Ensure valid standard_logging_payload is passed for logging calls to s3
Motivation: provide a standard set of things that are logged to s3/gcs/future integrations across all llm calls
"""
from litellm.types.utils import StandardLoggingPayload
# sync completion
customHandler = CompletionCustomHandler()
litellm.callbacks = [customHandler]
with patch.object(
customHandler, "log_success_event", new=MagicMock()
) as mock_client:
_ = litellm.completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hey, how's it going?"}],
mock_response="Going well!",
)
time.sleep(2)
mock_client.assert_called_once()
print(
f"mock_client_post.call_args: {mock_client.call_args.kwargs['kwargs'].keys()}"
)
assert "standard_logging_object" in mock_client.call_args.kwargs["kwargs"]
assert (
mock_client.call_args.kwargs["kwargs"]["standard_logging_object"]
is not None
)
print(mock_client.call_args.kwargs["kwargs"]["standard_logging_object"])
keys_list = list(StandardLoggingPayload.__annotations__.keys())
for k in keys_list:
assert (
k in mock_client.call_args.kwargs["kwargs"]["standard_logging_object"]
)
## json serializable
json_str_payload = json.dumps(
mock_client.call_args.kwargs["kwargs"]["standard_logging_object"]
)
json.loads(json_str_payload)

View file

@ -1166,3 +1166,47 @@ class AdapterCompletionStreamWrapper:
raise StopIteration raise StopIteration
except StopIteration: except StopIteration:
raise StopAsyncIteration raise StopAsyncIteration
class StandardLoggingMetadata(TypedDict):
"""
Specific metadata k,v pairs logged to integration for easier cost tracking
"""
user_api_key: Optional[str]
user_api_key_alias: Optional[str]
user_api_key_team_id: Optional[str]
user_api_key_user_id: Optional[str]
user_api_key_team_alias: Optional[str]
spend_logs_metadata: Optional[
dict
] # special param to log k,v pairs to spendlogs for a call
requester_ip_address: Optional[str]
class StandardLoggingPayload(TypedDict):
id: str
call_type: str
api_key: str
spend: float
total_tokens: int
prompt_tokens: int
completion_tokens: int
startTime: float
endTime: float
completionStartTime: float
model: str
model_id: Optional[str]
model_group: Optional[str]
api_base: str
user: str
metadata: StandardLoggingMetadata
cache_hit: Optional[bool]
cache_key: Optional[str]
request_tags: str # json str
team_id: Optional[str]
end_user: Optional[str]
requester_ip_address: Optional[str]
messages: Optional[Union[str, list, dict]]
response: Optional[Union[str, list, dict]]
model_parameters: dict