forked from phoenix/litellm-mirror
(refactor) prometheus async_log_success_event to be under 100 LOC (#6416)
* unit testig for prometheus * unit testing for success metrics * use 1 helper for _increment_token_metrics * use helper for _increment_remaining_budget_metrics * use _increment_remaining_budget_metrics * use _increment_top_level_request_and_spend_metrics * use helper for _set_latency_metrics * remove noqa violation * fix test prometheus * test prometheus * unit testing for all prometheus helper functions * fix prom unit tests * fix unit tests prometheus * fix unit test prom
This commit is contained in:
parent
ca09f4afec
commit
cdda7c243f
4 changed files with 540 additions and 77 deletions
|
@ -6,7 +6,7 @@ import subprocess
|
|||
import sys
|
||||
import traceback
|
||||
import uuid
|
||||
from datetime import datetime, timedelta
|
||||
from datetime import date, datetime, timedelta
|
||||
from typing import Optional, TypedDict, Union
|
||||
|
||||
import dotenv
|
||||
|
@ -334,13 +334,8 @@ class PrometheusLogger(CustomLogger):
|
|||
print_verbose(f"Got exception on init prometheus client {str(e)}")
|
||||
raise e
|
||||
|
||||
async def async_log_success_event( # noqa: PLR0915
|
||||
self, kwargs, response_obj, start_time, end_time
|
||||
):
|
||||
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
|
||||
# Define prometheus client
|
||||
from litellm.proxy.common_utils.callback_utils import (
|
||||
get_model_group_from_litellm_kwargs,
|
||||
)
|
||||
from litellm.types.utils import StandardLoggingPayload
|
||||
|
||||
verbose_logger.debug(
|
||||
|
@ -358,7 +353,6 @@ class PrometheusLogger(CustomLogger):
|
|||
_metadata = litellm_params.get("metadata", {})
|
||||
proxy_server_request = litellm_params.get("proxy_server_request") or {}
|
||||
end_user_id = proxy_server_request.get("body", {}).get("user", None)
|
||||
model_parameters: dict = standard_logging_payload["model_parameters"]
|
||||
user_id = standard_logging_payload["metadata"]["user_api_key_user_id"]
|
||||
user_api_key = standard_logging_payload["metadata"]["user_api_key_hash"]
|
||||
user_api_key_alias = standard_logging_payload["metadata"]["user_api_key_alias"]
|
||||
|
@ -369,25 +363,6 @@ class PrometheusLogger(CustomLogger):
|
|||
output_tokens = standard_logging_payload["completion_tokens"]
|
||||
tokens_used = standard_logging_payload["total_tokens"]
|
||||
response_cost = standard_logging_payload["response_cost"]
|
||||
_team_spend = litellm_params.get("metadata", {}).get(
|
||||
"user_api_key_team_spend", None
|
||||
)
|
||||
_team_max_budget = litellm_params.get("metadata", {}).get(
|
||||
"user_api_key_team_max_budget", None
|
||||
)
|
||||
_remaining_team_budget = safe_get_remaining_budget(
|
||||
max_budget=_team_max_budget, spend=_team_spend
|
||||
)
|
||||
|
||||
_api_key_spend = litellm_params.get("metadata", {}).get(
|
||||
"user_api_key_spend", None
|
||||
)
|
||||
_api_key_max_budget = litellm_params.get("metadata", {}).get(
|
||||
"user_api_key_max_budget", None
|
||||
)
|
||||
_remaining_api_key_budget = safe_get_remaining_budget(
|
||||
max_budget=_api_key_max_budget, spend=_api_key_spend
|
||||
)
|
||||
|
||||
print_verbose(
|
||||
f"inside track_prometheus_metrics, model {model}, response_cost {response_cost}, tokens_used {tokens_used}, end_user_id {end_user_id}, user_api_key {user_api_key}"
|
||||
|
@ -402,24 +377,76 @@ class PrometheusLogger(CustomLogger):
|
|||
|
||||
user_api_key = hash_token(user_api_key)
|
||||
|
||||
self.litellm_requests_metric.labels(
|
||||
end_user_id,
|
||||
user_api_key,
|
||||
user_api_key_alias,
|
||||
model,
|
||||
user_api_team,
|
||||
user_api_team_alias,
|
||||
user_id,
|
||||
).inc()
|
||||
self.litellm_spend_metric.labels(
|
||||
end_user_id,
|
||||
user_api_key,
|
||||
user_api_key_alias,
|
||||
model,
|
||||
user_api_team,
|
||||
user_api_team_alias,
|
||||
user_id,
|
||||
).inc(response_cost)
|
||||
# increment total LLM requests and spend metric
|
||||
self._increment_top_level_request_and_spend_metrics(
|
||||
end_user_id=end_user_id,
|
||||
user_api_key=user_api_key,
|
||||
user_api_key_alias=user_api_key_alias,
|
||||
model=model,
|
||||
user_api_team=user_api_team,
|
||||
user_api_team_alias=user_api_team_alias,
|
||||
user_id=user_id,
|
||||
response_cost=response_cost,
|
||||
)
|
||||
|
||||
# input, output, total token metrics
|
||||
self._increment_token_metrics(
|
||||
standard_logging_payload=standard_logging_payload,
|
||||
end_user_id=end_user_id,
|
||||
user_api_key=user_api_key,
|
||||
user_api_key_alias=user_api_key_alias,
|
||||
model=model,
|
||||
user_api_team=user_api_team,
|
||||
user_api_team_alias=user_api_team_alias,
|
||||
user_id=user_id,
|
||||
)
|
||||
|
||||
# remaining budget metrics
|
||||
self._increment_remaining_budget_metrics(
|
||||
user_api_team=user_api_team,
|
||||
user_api_team_alias=user_api_team_alias,
|
||||
user_api_key=user_api_key,
|
||||
user_api_key_alias=user_api_key_alias,
|
||||
litellm_params=litellm_params,
|
||||
)
|
||||
|
||||
# set proxy virtual key rpm/tpm metrics
|
||||
self._set_virtual_key_rate_limit_metrics(
|
||||
user_api_key=user_api_key,
|
||||
user_api_key_alias=user_api_key_alias,
|
||||
kwargs=kwargs,
|
||||
metadata=_metadata,
|
||||
)
|
||||
|
||||
# set latency metrics
|
||||
self._set_latency_metrics(
|
||||
kwargs=kwargs,
|
||||
model=model,
|
||||
user_api_key=user_api_key,
|
||||
user_api_key_alias=user_api_key_alias,
|
||||
user_api_team=user_api_team,
|
||||
user_api_team_alias=user_api_team_alias,
|
||||
standard_logging_payload=standard_logging_payload,
|
||||
)
|
||||
|
||||
# set x-ratelimit headers
|
||||
self.set_llm_deployment_success_metrics(
|
||||
kwargs, start_time, end_time, output_tokens
|
||||
)
|
||||
pass
|
||||
|
||||
def _increment_token_metrics(
|
||||
self,
|
||||
standard_logging_payload: StandardLoggingPayload,
|
||||
end_user_id: Optional[str],
|
||||
user_api_key: Optional[str],
|
||||
user_api_key_alias: Optional[str],
|
||||
model: Optional[str],
|
||||
user_api_team: Optional[str],
|
||||
user_api_team_alias: Optional[str],
|
||||
user_id: Optional[str],
|
||||
):
|
||||
# token metrics
|
||||
self.litellm_tokens_metric.labels(
|
||||
end_user_id,
|
||||
user_api_key,
|
||||
|
@ -450,6 +477,34 @@ class PrometheusLogger(CustomLogger):
|
|||
user_id,
|
||||
).inc(standard_logging_payload["completion_tokens"])
|
||||
|
||||
def _increment_remaining_budget_metrics(
|
||||
self,
|
||||
user_api_team: Optional[str],
|
||||
user_api_team_alias: Optional[str],
|
||||
user_api_key: Optional[str],
|
||||
user_api_key_alias: Optional[str],
|
||||
litellm_params: dict,
|
||||
):
|
||||
_team_spend = litellm_params.get("metadata", {}).get(
|
||||
"user_api_key_team_spend", None
|
||||
)
|
||||
_team_max_budget = litellm_params.get("metadata", {}).get(
|
||||
"user_api_key_team_max_budget", None
|
||||
)
|
||||
_remaining_team_budget = self._safe_get_remaining_budget(
|
||||
max_budget=_team_max_budget, spend=_team_spend
|
||||
)
|
||||
|
||||
_api_key_spend = litellm_params.get("metadata", {}).get(
|
||||
"user_api_key_spend", None
|
||||
)
|
||||
_api_key_max_budget = litellm_params.get("metadata", {}).get(
|
||||
"user_api_key_max_budget", None
|
||||
)
|
||||
_remaining_api_key_budget = self._safe_get_remaining_budget(
|
||||
max_budget=_api_key_max_budget, spend=_api_key_spend
|
||||
)
|
||||
# Remaining Budget Metrics
|
||||
self.litellm_remaining_team_budget_metric.labels(
|
||||
user_api_team, user_api_team_alias
|
||||
).set(_remaining_team_budget)
|
||||
|
@ -458,6 +513,47 @@ class PrometheusLogger(CustomLogger):
|
|||
user_api_key, user_api_key_alias
|
||||
).set(_remaining_api_key_budget)
|
||||
|
||||
def _increment_top_level_request_and_spend_metrics(
|
||||
self,
|
||||
end_user_id: Optional[str],
|
||||
user_api_key: Optional[str],
|
||||
user_api_key_alias: Optional[str],
|
||||
model: Optional[str],
|
||||
user_api_team: Optional[str],
|
||||
user_api_team_alias: Optional[str],
|
||||
user_id: Optional[str],
|
||||
response_cost: float,
|
||||
):
|
||||
self.litellm_requests_metric.labels(
|
||||
end_user_id,
|
||||
user_api_key,
|
||||
user_api_key_alias,
|
||||
model,
|
||||
user_api_team,
|
||||
user_api_team_alias,
|
||||
user_id,
|
||||
).inc()
|
||||
self.litellm_spend_metric.labels(
|
||||
end_user_id,
|
||||
user_api_key,
|
||||
user_api_key_alias,
|
||||
model,
|
||||
user_api_team,
|
||||
user_api_team_alias,
|
||||
user_id,
|
||||
).inc(response_cost)
|
||||
|
||||
def _set_virtual_key_rate_limit_metrics(
|
||||
self,
|
||||
user_api_key: Optional[str],
|
||||
user_api_key_alias: Optional[str],
|
||||
kwargs: dict,
|
||||
metadata: dict,
|
||||
):
|
||||
from litellm.proxy.common_utils.callback_utils import (
|
||||
get_model_group_from_litellm_kwargs,
|
||||
)
|
||||
|
||||
# Set remaining rpm/tpm for API Key + model
|
||||
# see parallel_request_limiter.py - variables are set there
|
||||
model_group = get_model_group_from_litellm_kwargs(kwargs)
|
||||
|
@ -466,10 +562,8 @@ class PrometheusLogger(CustomLogger):
|
|||
)
|
||||
remaining_tokens_variable_name = f"litellm-key-remaining-tokens-{model_group}"
|
||||
|
||||
remaining_requests = _metadata.get(
|
||||
remaining_requests_variable_name, sys.maxsize
|
||||
)
|
||||
remaining_tokens = _metadata.get(remaining_tokens_variable_name, sys.maxsize)
|
||||
remaining_requests = metadata.get(remaining_requests_variable_name, sys.maxsize)
|
||||
remaining_tokens = metadata.get(remaining_tokens_variable_name, sys.maxsize)
|
||||
|
||||
self.litellm_remaining_api_key_requests_for_model.labels(
|
||||
user_api_key, user_api_key_alias, model_group
|
||||
|
@ -479,9 +573,20 @@ class PrometheusLogger(CustomLogger):
|
|||
user_api_key, user_api_key_alias, model_group
|
||||
).set(remaining_tokens)
|
||||
|
||||
def _set_latency_metrics(
|
||||
self,
|
||||
kwargs: dict,
|
||||
model: Optional[str],
|
||||
user_api_key: Optional[str],
|
||||
user_api_key_alias: Optional[str],
|
||||
user_api_team: Optional[str],
|
||||
user_api_team_alias: Optional[str],
|
||||
standard_logging_payload: StandardLoggingPayload,
|
||||
):
|
||||
# latency metrics
|
||||
total_time: timedelta = kwargs.get("end_time") - kwargs.get("start_time")
|
||||
total_time_seconds = total_time.total_seconds()
|
||||
model_parameters: dict = standard_logging_payload["model_parameters"]
|
||||
end_time: datetime = kwargs.get("end_time") or datetime.now()
|
||||
start_time: Optional[datetime] = kwargs.get("start_time")
|
||||
api_call_start_time = kwargs.get("api_call_start_time", None)
|
||||
|
||||
completion_start_time = kwargs.get("completion_start_time", None)
|
||||
|
@ -509,9 +614,7 @@ class PrometheusLogger(CustomLogger):
|
|||
if api_call_start_time is not None and isinstance(
|
||||
api_call_start_time, datetime
|
||||
):
|
||||
api_call_total_time: timedelta = (
|
||||
kwargs.get("end_time") - api_call_start_time
|
||||
)
|
||||
api_call_total_time: timedelta = end_time - api_call_start_time
|
||||
api_call_total_time_seconds = api_call_total_time.total_seconds()
|
||||
self.litellm_llm_api_latency_metric.labels(
|
||||
model,
|
||||
|
@ -521,20 +624,17 @@ class PrometheusLogger(CustomLogger):
|
|||
user_api_team_alias,
|
||||
).observe(api_call_total_time_seconds)
|
||||
|
||||
# log metrics
|
||||
self.litellm_request_total_latency_metric.labels(
|
||||
model,
|
||||
user_api_key,
|
||||
user_api_key_alias,
|
||||
user_api_team,
|
||||
user_api_team_alias,
|
||||
).observe(total_time_seconds)
|
||||
|
||||
# set x-ratelimit headers
|
||||
self.set_llm_deployment_success_metrics(
|
||||
kwargs, start_time, end_time, output_tokens
|
||||
)
|
||||
pass
|
||||
# total request latency
|
||||
if start_time is not None and isinstance(start_time, datetime):
|
||||
total_time: timedelta = end_time - start_time
|
||||
total_time_seconds = total_time.total_seconds()
|
||||
self.litellm_request_total_latency_metric.labels(
|
||||
model,
|
||||
user_api_key,
|
||||
user_api_key_alias,
|
||||
user_api_team,
|
||||
user_api_team_alias,
|
||||
).observe(total_time_seconds)
|
||||
|
||||
async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time):
|
||||
from litellm.types.utils import StandardLoggingPayload
|
||||
|
@ -1007,14 +1107,13 @@ class PrometheusLogger(CustomLogger):
|
|||
litellm_model_name, model_id, api_base, api_provider, exception_status
|
||||
).inc()
|
||||
|
||||
def _safe_get_remaining_budget(
|
||||
self, max_budget: Optional[float], spend: Optional[float]
|
||||
) -> float:
|
||||
if max_budget is None:
|
||||
return float("inf")
|
||||
|
||||
def safe_get_remaining_budget(
|
||||
max_budget: Optional[float], spend: Optional[float]
|
||||
) -> float:
|
||||
if max_budget is None:
|
||||
return float("inf")
|
||||
if spend is None:
|
||||
return max_budget
|
||||
|
||||
if spend is None:
|
||||
return max_budget
|
||||
|
||||
return max_budget - spend
|
||||
return max_budget - spend
|
||||
|
|
|
@ -16,6 +16,14 @@ from litellm import completion
|
|||
from litellm._logging import verbose_logger
|
||||
from litellm.integrations.prometheus import PrometheusLogger
|
||||
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler
|
||||
from litellm.types.utils import (
|
||||
StandardLoggingPayload,
|
||||
StandardLoggingMetadata,
|
||||
StandardLoggingHiddenParams,
|
||||
StandardLoggingModelInformation,
|
||||
)
|
||||
from unittest.mock import MagicMock, patch
|
||||
from datetime import datetime, timedelta
|
||||
|
||||
verbose_logger.setLevel(logging.DEBUG)
|
||||
|
||||
|
|
344
tests/logging_callback_tests/test_prometheus_unit_tests.py
Normal file
344
tests/logging_callback_tests/test_prometheus_unit_tests.py
Normal file
|
@ -0,0 +1,344 @@
|
|||
import io
|
||||
import os
|
||||
import sys
|
||||
|
||||
sys.path.insert(0, os.path.abspath("../.."))
|
||||
|
||||
import asyncio
|
||||
import logging
|
||||
import uuid
|
||||
|
||||
import pytest
|
||||
from prometheus_client import REGISTRY, CollectorRegistry
|
||||
|
||||
import litellm
|
||||
from litellm import completion
|
||||
from litellm._logging import verbose_logger
|
||||
from litellm.integrations.prometheus import PrometheusLogger
|
||||
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler
|
||||
from litellm.types.utils import (
|
||||
StandardLoggingPayload,
|
||||
StandardLoggingMetadata,
|
||||
StandardLoggingHiddenParams,
|
||||
StandardLoggingModelInformation,
|
||||
)
|
||||
import pytest
|
||||
from unittest.mock import MagicMock, patch
|
||||
from datetime import datetime, timedelta
|
||||
from litellm.integrations.prometheus import PrometheusLogger
|
||||
|
||||
verbose_logger.setLevel(logging.DEBUG)
|
||||
|
||||
litellm.set_verbose = True
|
||||
import time
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def prometheus_logger():
|
||||
collectors = list(REGISTRY._collector_to_names.keys())
|
||||
for collector in collectors:
|
||||
REGISTRY.unregister(collector)
|
||||
return PrometheusLogger()
|
||||
|
||||
|
||||
def create_standard_logging_payload() -> StandardLoggingPayload:
|
||||
return StandardLoggingPayload(
|
||||
id="test_id",
|
||||
call_type="completion",
|
||||
response_cost=0.1,
|
||||
response_cost_failure_debug_info=None,
|
||||
status="success",
|
||||
total_tokens=30,
|
||||
prompt_tokens=20,
|
||||
completion_tokens=10,
|
||||
startTime=1234567890.0,
|
||||
endTime=1234567891.0,
|
||||
completionStartTime=1234567890.5,
|
||||
model_map_information=StandardLoggingModelInformation(
|
||||
model_map_key="gpt-3.5-turbo", model_map_value=None
|
||||
),
|
||||
model="gpt-3.5-turbo",
|
||||
model_id="model-123",
|
||||
model_group="openai-gpt",
|
||||
api_base="https://api.openai.com",
|
||||
metadata=StandardLoggingMetadata(
|
||||
user_api_key_hash="test_hash",
|
||||
user_api_key_alias="test_alias",
|
||||
user_api_key_team_id="test_team",
|
||||
user_api_key_user_id="test_user",
|
||||
user_api_key_team_alias="test_team_alias",
|
||||
spend_logs_metadata=None,
|
||||
requester_ip_address="127.0.0.1",
|
||||
requester_metadata=None,
|
||||
),
|
||||
cache_hit=False,
|
||||
cache_key=None,
|
||||
saved_cache_cost=0.0,
|
||||
request_tags=[],
|
||||
end_user=None,
|
||||
requester_ip_address="127.0.0.1",
|
||||
messages=[{"role": "user", "content": "Hello, world!"}],
|
||||
response={"choices": [{"message": {"content": "Hi there!"}}]},
|
||||
error_str=None,
|
||||
model_parameters={"stream": True},
|
||||
hidden_params=StandardLoggingHiddenParams(
|
||||
model_id="model-123",
|
||||
cache_key=None,
|
||||
api_base="https://api.openai.com",
|
||||
response_cost="0.1",
|
||||
additional_headers=None,
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
def test_safe_get_remaining_budget(prometheus_logger):
|
||||
assert prometheus_logger._safe_get_remaining_budget(100, 30) == 70
|
||||
assert prometheus_logger._safe_get_remaining_budget(100, None) == 100
|
||||
assert prometheus_logger._safe_get_remaining_budget(None, 30) == float("inf")
|
||||
assert prometheus_logger._safe_get_remaining_budget(None, None) == float("inf")
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_async_log_success_event(prometheus_logger):
|
||||
standard_logging_object = create_standard_logging_payload()
|
||||
kwargs = {
|
||||
"model": "gpt-3.5-turbo",
|
||||
"litellm_params": {
|
||||
"metadata": {
|
||||
"user_api_key": "test_key",
|
||||
"user_api_key_user_id": "test_user",
|
||||
"user_api_key_team_id": "test_team",
|
||||
}
|
||||
},
|
||||
"start_time": datetime.now(),
|
||||
"completion_start_time": datetime.now(),
|
||||
"api_call_start_time": datetime.now(),
|
||||
"end_time": datetime.now() + timedelta(seconds=1),
|
||||
"standard_logging_object": standard_logging_object,
|
||||
}
|
||||
response_obj = MagicMock()
|
||||
|
||||
# Mock the prometheus client methods
|
||||
|
||||
# High Level Metrics - request/spend
|
||||
prometheus_logger.litellm_requests_metric = MagicMock()
|
||||
prometheus_logger.litellm_spend_metric = MagicMock()
|
||||
|
||||
# Token Metrics
|
||||
prometheus_logger.litellm_tokens_metric = MagicMock()
|
||||
prometheus_logger.litellm_input_tokens_metric = MagicMock()
|
||||
prometheus_logger.litellm_output_tokens_metric = MagicMock()
|
||||
|
||||
# Remaining Budget Metrics
|
||||
prometheus_logger.litellm_remaining_team_budget_metric = MagicMock()
|
||||
prometheus_logger.litellm_remaining_api_key_budget_metric = MagicMock()
|
||||
|
||||
# Virtual Key Rate limit Metrics
|
||||
prometheus_logger.litellm_remaining_api_key_requests_for_model = MagicMock()
|
||||
prometheus_logger.litellm_remaining_api_key_tokens_for_model = MagicMock()
|
||||
|
||||
# Latency Metrics
|
||||
prometheus_logger.litellm_llm_api_time_to_first_token_metric = MagicMock()
|
||||
prometheus_logger.litellm_llm_api_latency_metric = MagicMock()
|
||||
prometheus_logger.litellm_request_total_latency_metric = MagicMock()
|
||||
|
||||
await prometheus_logger.async_log_success_event(
|
||||
kwargs, response_obj, kwargs["start_time"], kwargs["end_time"]
|
||||
)
|
||||
|
||||
# Assert that the metrics were incremented
|
||||
prometheus_logger.litellm_requests_metric.labels.assert_called()
|
||||
prometheus_logger.litellm_spend_metric.labels.assert_called()
|
||||
|
||||
# Token Metrics
|
||||
prometheus_logger.litellm_tokens_metric.labels.assert_called()
|
||||
prometheus_logger.litellm_input_tokens_metric.labels.assert_called()
|
||||
prometheus_logger.litellm_output_tokens_metric.labels.assert_called()
|
||||
|
||||
# Remaining Budget Metrics
|
||||
prometheus_logger.litellm_remaining_team_budget_metric.labels.assert_called()
|
||||
prometheus_logger.litellm_remaining_api_key_budget_metric.labels.assert_called()
|
||||
|
||||
# Virtual Key Rate limit Metrics
|
||||
prometheus_logger.litellm_remaining_api_key_requests_for_model.labels.assert_called()
|
||||
prometheus_logger.litellm_remaining_api_key_tokens_for_model.labels.assert_called()
|
||||
|
||||
# Latency Metrics
|
||||
prometheus_logger.litellm_llm_api_time_to_first_token_metric.labels.assert_called()
|
||||
prometheus_logger.litellm_llm_api_latency_metric.labels.assert_called()
|
||||
prometheus_logger.litellm_request_total_latency_metric.labels.assert_called()
|
||||
|
||||
|
||||
def test_increment_token_metrics(prometheus_logger):
|
||||
"""
|
||||
Test the increment_token_metrics method
|
||||
|
||||
input, output, and total tokens metrics are incremented by the values in the standard logging payload
|
||||
"""
|
||||
prometheus_logger.litellm_tokens_metric = MagicMock()
|
||||
prometheus_logger.litellm_input_tokens_metric = MagicMock()
|
||||
prometheus_logger.litellm_output_tokens_metric = MagicMock()
|
||||
|
||||
standard_logging_payload = create_standard_logging_payload()
|
||||
standard_logging_payload["total_tokens"] = 100
|
||||
standard_logging_payload["prompt_tokens"] = 50
|
||||
standard_logging_payload["completion_tokens"] = 50
|
||||
|
||||
prometheus_logger._increment_token_metrics(
|
||||
standard_logging_payload,
|
||||
end_user_id="user1",
|
||||
user_api_key="key1",
|
||||
user_api_key_alias="alias1",
|
||||
model="gpt-3.5-turbo",
|
||||
user_api_team="team1",
|
||||
user_api_team_alias="team_alias1",
|
||||
user_id="user1",
|
||||
)
|
||||
|
||||
prometheus_logger.litellm_tokens_metric.labels.assert_called_once_with(
|
||||
"user1", "key1", "alias1", "gpt-3.5-turbo", "team1", "team_alias1", "user1"
|
||||
)
|
||||
prometheus_logger.litellm_tokens_metric.labels().inc.assert_called_once_with(100)
|
||||
|
||||
prometheus_logger.litellm_input_tokens_metric.labels.assert_called_once_with(
|
||||
"user1", "key1", "alias1", "gpt-3.5-turbo", "team1", "team_alias1", "user1"
|
||||
)
|
||||
prometheus_logger.litellm_input_tokens_metric.labels().inc.assert_called_once_with(
|
||||
50
|
||||
)
|
||||
|
||||
prometheus_logger.litellm_output_tokens_metric.labels.assert_called_once_with(
|
||||
"user1", "key1", "alias1", "gpt-3.5-turbo", "team1", "team_alias1", "user1"
|
||||
)
|
||||
prometheus_logger.litellm_output_tokens_metric.labels().inc.assert_called_once_with(
|
||||
50
|
||||
)
|
||||
|
||||
|
||||
def test_increment_remaining_budget_metrics(prometheus_logger):
|
||||
"""
|
||||
Test the increment_remaining_budget_metrics method
|
||||
|
||||
team and api key budget metrics are set to the difference between max budget and spend
|
||||
"""
|
||||
prometheus_logger.litellm_remaining_team_budget_metric = MagicMock()
|
||||
prometheus_logger.litellm_remaining_api_key_budget_metric = MagicMock()
|
||||
|
||||
litellm_params = {
|
||||
"metadata": {
|
||||
"user_api_key_team_spend": 50,
|
||||
"user_api_key_team_max_budget": 100,
|
||||
"user_api_key_spend": 25,
|
||||
"user_api_key_max_budget": 75,
|
||||
}
|
||||
}
|
||||
|
||||
prometheus_logger._increment_remaining_budget_metrics(
|
||||
user_api_team="team1",
|
||||
user_api_team_alias="team_alias1",
|
||||
user_api_key="key1",
|
||||
user_api_key_alias="alias1",
|
||||
litellm_params=litellm_params,
|
||||
)
|
||||
|
||||
prometheus_logger.litellm_remaining_team_budget_metric.labels.assert_called_once_with(
|
||||
"team1", "team_alias1"
|
||||
)
|
||||
prometheus_logger.litellm_remaining_team_budget_metric.labels().set.assert_called_once_with(
|
||||
50
|
||||
)
|
||||
|
||||
prometheus_logger.litellm_remaining_api_key_budget_metric.labels.assert_called_once_with(
|
||||
"key1", "alias1"
|
||||
)
|
||||
prometheus_logger.litellm_remaining_api_key_budget_metric.labels().set.assert_called_once_with(
|
||||
50
|
||||
)
|
||||
|
||||
|
||||
def test_set_latency_metrics(prometheus_logger):
|
||||
"""
|
||||
Test the set_latency_metrics method
|
||||
|
||||
time to first token, llm api latency, and request total latency metrics are set to the values in the standard logging payload
|
||||
"""
|
||||
standard_logging_payload = create_standard_logging_payload()
|
||||
standard_logging_payload["model_parameters"] = {"stream": True}
|
||||
prometheus_logger.litellm_llm_api_time_to_first_token_metric = MagicMock()
|
||||
prometheus_logger.litellm_llm_api_latency_metric = MagicMock()
|
||||
prometheus_logger.litellm_request_total_latency_metric = MagicMock()
|
||||
|
||||
now = datetime.now()
|
||||
kwargs = {
|
||||
"end_time": now, # when the request ends
|
||||
"start_time": now - timedelta(seconds=2), # when the request starts
|
||||
"api_call_start_time": now - timedelta(seconds=1.5), # when the api call starts
|
||||
"completion_start_time": now
|
||||
- timedelta(seconds=1), # when the completion starts
|
||||
}
|
||||
|
||||
prometheus_logger._set_latency_metrics(
|
||||
kwargs=kwargs,
|
||||
model="gpt-3.5-turbo",
|
||||
user_api_key="key1",
|
||||
user_api_key_alias="alias1",
|
||||
user_api_team="team1",
|
||||
user_api_team_alias="team_alias1",
|
||||
standard_logging_payload=standard_logging_payload,
|
||||
)
|
||||
|
||||
# completion_start_time - api_call_start_time
|
||||
prometheus_logger.litellm_llm_api_time_to_first_token_metric.labels.assert_called_once_with(
|
||||
"gpt-3.5-turbo", "key1", "alias1", "team1", "team_alias1"
|
||||
)
|
||||
prometheus_logger.litellm_llm_api_time_to_first_token_metric.labels().observe.assert_called_once_with(
|
||||
0.5
|
||||
)
|
||||
|
||||
# end_time - api_call_start_time
|
||||
prometheus_logger.litellm_llm_api_latency_metric.labels.assert_called_once_with(
|
||||
"gpt-3.5-turbo", "key1", "alias1", "team1", "team_alias1"
|
||||
)
|
||||
prometheus_logger.litellm_llm_api_latency_metric.labels().observe.assert_called_once_with(
|
||||
1.5
|
||||
)
|
||||
|
||||
# total latency for the request
|
||||
prometheus_logger.litellm_request_total_latency_metric.labels.assert_called_once_with(
|
||||
"gpt-3.5-turbo", "key1", "alias1", "team1", "team_alias1"
|
||||
)
|
||||
prometheus_logger.litellm_request_total_latency_metric.labels().observe.assert_called_once_with(
|
||||
2.0
|
||||
)
|
||||
|
||||
|
||||
def test_increment_top_level_request_and_spend_metrics(prometheus_logger):
|
||||
"""
|
||||
Test the increment_top_level_request_and_spend_metrics method
|
||||
|
||||
- litellm_requests_metric is incremented by 1
|
||||
- litellm_spend_metric is incremented by the response cost in the standard logging payload
|
||||
"""
|
||||
prometheus_logger.litellm_requests_metric = MagicMock()
|
||||
prometheus_logger.litellm_spend_metric = MagicMock()
|
||||
|
||||
prometheus_logger._increment_top_level_request_and_spend_metrics(
|
||||
end_user_id="user1",
|
||||
user_api_key="key1",
|
||||
user_api_key_alias="alias1",
|
||||
model="gpt-3.5-turbo",
|
||||
user_api_team="team1",
|
||||
user_api_team_alias="team_alias1",
|
||||
user_id="user1",
|
||||
response_cost=0.1,
|
||||
)
|
||||
|
||||
prometheus_logger.litellm_requests_metric.labels.assert_called_once_with(
|
||||
"user1", "key1", "alias1", "gpt-3.5-turbo", "team1", "team_alias1", "user1"
|
||||
)
|
||||
prometheus_logger.litellm_requests_metric.labels().inc.assert_called_once()
|
||||
|
||||
prometheus_logger.litellm_spend_metric.labels.assert_called_once_with(
|
||||
"user1", "key1", "alias1", "gpt-3.5-turbo", "team1", "team_alias1", "user1"
|
||||
)
|
||||
prometheus_logger.litellm_spend_metric.labels().inc.assert_called_once_with(0.1)
|
|
@ -17,6 +17,7 @@ import litellm
|
|||
import asyncio
|
||||
import logging
|
||||
from litellm._logging import verbose_logger
|
||||
from prometheus_client import REGISTRY, CollectorRegistry
|
||||
|
||||
from litellm.integrations.lago import LagoLogger
|
||||
from litellm.integrations.openmeter import OpenMeterLogger
|
||||
|
@ -33,6 +34,12 @@ from litellm.integrations.argilla import ArgillaLogger
|
|||
from litellm.proxy.hooks.dynamic_rate_limiter import _PROXY_DynamicRateLimitHandler
|
||||
from unittest.mock import patch
|
||||
|
||||
# clear prometheus collectors / registry
|
||||
collectors = list(REGISTRY._collector_to_names.keys())
|
||||
for collector in collectors:
|
||||
REGISTRY.unregister(collector)
|
||||
######################################
|
||||
|
||||
callback_class_str_to_classType = {
|
||||
"lago": LagoLogger,
|
||||
"openmeter": OpenMeterLogger,
|
||||
|
@ -111,6 +118,11 @@ async def use_callback_in_llm_call(
|
|||
elif callback == "openmeter":
|
||||
# it's currently handled in jank way, TODO: fix openmete and then actually run it's test
|
||||
return
|
||||
elif callback == "prometheus":
|
||||
# pytest teardown - clear existing prometheus collectors
|
||||
collectors = list(REGISTRY._collector_to_names.keys())
|
||||
for collector in collectors:
|
||||
REGISTRY.unregister(collector)
|
||||
|
||||
# Mock the httpx call for Argilla dataset retrieval
|
||||
if callback == "argilla":
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue