fix(proxy_cli-and-utils.py): fixing how config file is read + infering llm_provider for known openai endpoints

This commit is contained in:
Krrish Dholakia 2023-10-10 20:53:02 -07:00
parent d99d6a99f1
commit d280a8c434
9 changed files with 170 additions and 29 deletions

View file

@ -1,4 +1,6 @@
import sys, os, platform
import sys, os, platform, appdirs
import tomllib
import shutil, random, traceback
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
@ -35,6 +37,12 @@ user_debug = False
user_max_tokens = None
user_temperature = None
user_telemetry = False
user_config = None
config_filename = "litellm.secrets.toml"
pkg_config_filename = "template.secrets.toml"
# Using appdirs to determine user-specific config path
config_dir = appdirs.user_config_dir("litellm")
user_config_path = os.path.join(config_dir, config_filename)
#### HELPER FUNCTIONS ####
def print_verbose(print_statement):
@ -49,11 +57,95 @@ def usage_telemetry(): # helps us know if people are using this feature. Set `li
}
litellm.utils.litellm_telemetry(data=data)
def load_config():
try:
global user_config, user_api_base, user_max_tokens, user_temperature, user_model
if not os.path.exists(user_config_path):
# If user's config doesn't exist, copy the default config from the package
here = os.path.abspath(os.path.dirname(__file__))
parent_dir = os.path.dirname(here)
default_config_path = os.path.join(parent_dir, pkg_config_filename)
# Ensure the user-specific directory exists
os.makedirs(config_dir, exist_ok=True)
# Copying the file using shutil.copy
shutil.copy(default_config_path, user_config_path)
# As the .env file is typically much simpler in structure, we use load_dotenv here directly
with open(user_config_path, "rb") as f:
user_config = tomllib.load(f)
## load keys
if "keys" in user_config:
for key in user_config["keys"]:
if key == "HUGGINGFACE_API_KEY":
litellm.huggingface_key = user_config["keys"][key]
elif key == "OPENAI_API_KEY":
litellm.openai_key = user_config["keys"][key]
elif key == "TOGETHERAI_API_KEY":
litellm.togetherai_api_key = user_config["keys"][key]
elif key == "NLP_CLOUD_API_KEY":
litellm.nlp_cloud_key = user_config["keys"][key]
elif key == "ANTHROPIC_API_KEY":
litellm.anthropic_key = user_config["keys"][key]
elif key == "REPLICATE_API_KEY":
litellm.replicate_key = user_config["keys"][key]
## settings
litellm.add_function_to_prompt = user_config["general"].get("add_function_to_prompt", True) # by default add function to prompt if unsupported by provider
litellm.drop_params = user_config["general"].get("drop_params", True) # by default drop params if unsupported by provider
## load model config - to set this run `litellm --config`
model_config = None
if user_model == "local":
model_config = user_config["local_model"]
elif user_model == "hosted":
model_config = user_config["hosted_model"]
litellm.max_budget = model_config.get("max_budget", None) # check if user set a budget for hosted model - e.g. gpt-4
print_verbose(f"user_config: {user_config}")
if model_config is None:
return
user_model = model_config["model_name"] # raise an error if this isn't set when user runs either `litellm --model local_model` or `litellm --model hosted_model`
print_verbose(f"user_model: {user_model}")
user_max_tokens = model_config.get("max_tokens", None)
user_temperature = model_config.get("temperature", None)
user_api_base = model_config.get("api_base", None)
## custom prompt template
if "prompt_template" in model_config:
model_prompt_template = model_config["prompt_template"]
if len(model_prompt_template.keys()) > 0: # if user has initialized this at all
litellm.register_prompt_template(
model=user_model,
initial_prompt_value=model_prompt_template.get("MODEL_PRE_PROMPT", ""),
roles={
"system": {
"pre_message": model_prompt_template.get("MODEL_SYSTEM_MESSAGE_START_TOKEN", ""),
"post_message": model_prompt_template.get("MODEL_SYSTEM_MESSAGE_END_TOKEN", ""),
},
"user": {
"pre_message": model_prompt_template.get("MODEL_USER_MESSAGE_START_TOKEN", ""),
"post_message": model_prompt_template.get("MODEL_USER_MESSAGE_END_TOKEN", ""),
},
"assistant": {
"pre_message": model_prompt_template.get("MODEL_ASSISTANT_MESSAGE_START_TOKEN", ""),
"post_message": model_prompt_template.get("MODEL_ASSISTANT_MESSAGE_END_TOKEN", ""),
}
},
final_prompt_value=model_prompt_template.get("MODEL_POST_PROMPT", ""),
)
except Exception as e:
traceback.print_exc()
def initialize(model, api_base, debug, temperature, max_tokens, max_budget, telemetry, drop_params, add_function_to_prompt):
global user_model, user_api_base, user_debug, user_max_tokens, user_temperature, user_telemetry
user_model = model
user_api_base = api_base
user_debug = debug
load_config()
user_api_base = api_base
user_max_tokens = max_tokens
user_temperature = temperature
user_telemetry = telemetry
@ -65,6 +157,7 @@ def initialize(model, api_base, debug, temperature, max_tokens, max_budget, tele
if max_budget:
litellm.max_budget = max_budget
def deploy_proxy(model, api_base, debug, temperature, max_tokens, telemetry, deploy):
import requests
# Load .env file