use Model response types

This commit is contained in:
ishaan-jaff 2023-08-17 13:08:34 -07:00
parent a5a137c9b6
commit d394c77623
3 changed files with 78 additions and 36 deletions

View file

@ -43,12 +43,10 @@ def completion(
top_k=40, request_timeout=0, # unused var for old version of OpenAI API
):
try:
new_response = ModelResponse()
print(new_response)
model_response = ModelResponse()
if azure: # this flag is deprecated, remove once notebooks are also updated.
custom_llm_provider="azure"
args = locals()
model_response = deepcopy(new_response) # deep copy the default response format so we can mutate it and it's thread-safe.
# check if user passed in any of the OpenAI optional params
optional_params = get_optional_params(
functions=functions, function_call=function_call,

View file

@ -62,13 +62,19 @@ def test_completion_claude_stream():
def test_completion_cohere():
try:
response = completion(model="command-nightly", messages=messages, max_tokens=500)
response = completion(model="command-nightly", messages=messages, max_tokens=100)
# Add any assertions here to check the response
print(response)
response_str = response['choices'][0]['message']['content']
print(f"str response{response_str}")
response_str_2 = response.choices[0].message.content
if type(response_str) != str:
pytest.fail(f"Error occurred: {e}")
if type(response_str_2) != str:
pytest.fail(f"Error occurred: {e}")
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def test_completion_cohere_stream():
try:
messages = [
@ -85,6 +91,15 @@ def test_completion_cohere_stream():
def test_completion_openai():
try:
response = completion(model="gpt-3.5-turbo", messages=messages)
response_str = response['choices'][0]['message']['content']
response_str_2 = response.choices[0].message.content
print(response_str)
print(response_str_2)
if type(response_str) != str:
pytest.fail(f"Error occurred: {e}")
if type(response_str_2) != str:
pytest.fail(f"Error occurred: {e}")
# Add any assertions here to check the response
print(response)
except Exception as e:
@ -197,18 +212,21 @@ def test_completion_replicate_stability_stream():
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# def test_completion_replicate_stability():
# model_name = "stability-ai/stablelm-tuned-alpha-7b:c49dae362cbaecd2ceabb5bd34fdb68413c4ff775111fea065d259d577757beb"
# try:
# response = completion(model=model_name, messages=messages, custom_llm_provider="replicate")
# # Add any assertions here to check the response
# print(response)
# for result in response:
# print(result)
# print(response)
# except Exception as e:
# pytest.fail(f"Error occurred: {e}")
# test_completion_replicate_stability()
def test_completion_replicate_stability():
model_name = "stability-ai/stablelm-tuned-alpha-7b:c49dae362cbaecd2ceabb5bd34fdb68413c4ff775111fea065d259d577757beb"
try:
response = completion(model=model_name, messages=messages, custom_llm_provider="replicate")
# Add any assertions here to check the response
response_str = response['choices'][0]['message']['content']
response_str_2 = response.choices[0].message.content
print(response_str)
print(response_str_2)
if type(response_str) != str:
pytest.fail(f"Error occurred: {e}")
if type(response_str_2) != str:
pytest.fail(f"Error occurred: {e}")
except Exception as e:
pytest.fail(f"Error occurred: {e}")
######## Test TogetherAI ########
def test_completion_together_ai():

View file

@ -5,6 +5,7 @@ import litellm, openai
import random, uuid, requests
import datetime, time
import tiktoken
from pkg_resources import DistributionNotFound, VersionConflict
encoding = tiktoken.get_encoding("cl100k_base")
from .integrations.helicone import HeliconeLogger
from .integrations.aispend import AISpendLogger
@ -12,6 +13,7 @@ from .integrations.berrispend import BerriSpendLogger
from .integrations.supabase import Supabase
from openai.error import OpenAIError as OriginalError
from .exceptions import AuthenticationError, InvalidRequestError, RateLimitError, ServiceUnavailableError, OpenAIError
from typing import List, Dict, Union
####### ENVIRONMENT VARIABLES ###################
dotenv.load_dotenv() # Loading env variables using dotenv
sentry_sdk_instance = None
@ -48,20 +50,49 @@ local_cache = {}
# 'usage': {'prompt_tokens': 18, 'completion_tokens': 23, 'total_tokens': 41}
# }
class Message:
def __init__(self):
self.content: str = "default"
self.role: str = "assistant"
def __getitem__(self, key):
return getattr(self, key)
def __setitem__(self, key, value):
setattr(self, key, value)
def __iter__(self):
return iter(vars(self))
def __str__(self):
result = f"{{\n 'role': '{self.role}',\n 'content': \"{self.content}\"\n}}"
return result
class Choices:
def __init__(self):
self.finish_reason: str = "stop"
self.index: int = 0
self.message: Message = Message()
def __getitem__(self, key):
return getattr(self, key)
def __setitem__(self, key, value):
setattr(self, key, value)
def __iter__(self):
return iter(vars(self))
def __str__(self):
result = f"{{\n 'finish_reason': '{self.finish_reason}',\n 'index': {self.index},\n 'message': {self.message}\n}}"
return result
class ModelResponse:
def __init__(self):
self.choices = [
{
"finish_reason": "stop",
"index": 0,
"message": {
"role": "assistant"
}
}
]
self.created = None
self.model = None
self.usage = {
self.choices: List[Choices] = [Choices()]
self.created: str = None
self.model: str = None
self.usage: Dict[str, Union[int, None]] = {
"prompt_tokens": None,
"completion_tokens": None,
"total_tokens": None
@ -77,15 +108,10 @@ class ModelResponse:
return iter(vars(self))
def __str__(self):
result = f"""
{self.choices}\n
{self.created}\n
{self.model}\n
{self.usage}\n
"""
choices_str = ",\n".join(str(choice) for choice in self.choices)
result = f"{{\n 'choices': [\n{choices_str}\n ],\n 'created': {self.created},\n 'model': '{self.model}',\n 'usage': {self.usage}\n}}"
return result
def print_verbose(print_statement):
if litellm.set_verbose:
print(f"LiteLLM: {print_statement}")