update tutorial

This commit is contained in:
Krrish Dholakia 2023-09-02 10:50:44 -07:00
parent 0a8aebc0de
commit d4d720010d
2 changed files with 103 additions and 113 deletions

View file

@ -1,134 +1,123 @@
import Image from '@theme/IdealImage';
# A/B Test LLMs - In Production!
## Get Started here: https://admin.litellm.ai/
### A/B Test any LLMs in production in 10 lines of code
<Image img={require('../../img/ab_test_code.png')} />
### A/B Testing Dashboard after running code
<Image img={require('../../img/ab_test_logs.png')} />
# Replace GPT-4 with Llama2 in Production!
In this tutorial, we'll walk through replacing our GPT-4 endpoint with Llama2 in production. We'll assume you've deployed Llama2 on Huggingface Inference Endpoints (but any of TogetherAI, Baseten, Ollama, Petals, Openrouter should work as well).
<!--
Resources:
* [Code](https://github.com/BerriAI/litellm/tree/main/cookbook/llm-ab-test-server)
* [Sample Dashboard](https://lite-llm-abtest-ui.vercel.app/ishaan_discord@berri.ai)
# Relevant Links:
* 🚀 [Your production dashboard!](https://admin.litellm.ai/)
* [Deploying models on Huggingface](https://huggingface.co/docs/inference-endpoints/guides/create_endpoint)
* [All supported providers on LiteLLM](https://docs.litellm.ai/docs/completion/supported)
# Code Walkthrough
This is the main piece of code that we'll write to handle our A/B test logic. We'll cover specific details in [Setup](#setup)
### Define LLMs with their A/B test ratios
In main.py set select the LLMs you want to AB test in `llm_dict` (and remember to set their API keys in the .env)!
We support 5+ providers and 100+ LLMs: https://docs.litellm.ai/docs/completion/supported
## 1. Replace GPT-4 with Llama2
LiteLLM is a *drop-in replacement* for the OpenAI python sdk, so let's replace our openai ChatCompletion call with a LiteLLM completion call.
```python
llm_dict = {
"gpt-4": 0.2,
"together_ai/togethercomputer/llama-2-70b-chat": 0.4,
"claude-2": 0.2,
"claude-1.2": 0.2
### a) Replace Openai
Replace this
```python
openai.ChatCompletion.create(model="gpt-4", messages=messages)
```
With this
```python
from litellm import completion
completion(model="gpt-4", messages=messages)
```
### b) Replace GPT-4
Assume Llama2 is deployed at this endpoint: "https://my-unique-endpoint.us-east-1.aws.endpoints.huggingface.cloud" on Huggingface.
```python
from litellm import completion
completion(model="huggingface/https://my-unique-endpoint.us-east-1.aws.endpoints.huggingface.cloud", messages=messages)
```
## 2. 😱 But what if Llama2 isn't good enough?
In production, we don't know if Llama2 is going to provide:
* good results
* quickly
### 💡 Split traffic b/w GPT-4 + Llama2
If Llama2 returns poor answers / is extremely slow, we want to roll-back this change, and use GPT-4 instead.
Instead of routing 100% of our traffic to Llama2, let's **start by just routing 20% traffic** to it and see how it does.
```python
## route 20% of responses to Llama2
split_per_model = {
"gpt-4": 0.8,
"huggingface/https://my-unique-endpoint.us-east-1.aws.endpoints.huggingface.cloud": 0.2
}
```
### Select LLM + Make Completion call
Call the model using litellm.completion_with_split_tests, this uses the weights passed in to randomly select one of your provided models. [See implementation code](https://github.com/BerriAI/litellm/blob/9ccdbcbd6f14dd18827f59f8a1f9fd52d70443bb/litellm/utils.py#L1928)
## 3. Complete Code
```python
### a) For Local
This is what our complete code looks like.
```python
from litellm import completion_with_split_tests
import os
response = completion_with_split_tests(model=llm_dict, messages=[{ "content": "Hello, how are you?","role": "user"}])
## set ENV variables
os.environ["OPENAI_API_KEY"] = "openai key"
os.environ["HUGGINGFACE_API_KEY"] = "huggingface key"
## route 20% of responses to Llama2
split_per_model = {
"gpt-4": 0.8,
"huggingface/https://my-unique-endpoint.us-east-1.aws.endpoints.huggingface.cloud": 0.2
}
messages = [{ "content": "Hello, how are you?","role": "user"}]
completion_with_split_tests(
models=split_per_model,
messages=messages,
)
```
### Viewing Logs, Feedback
In order to view logs set `litellm.token=<your-email>`
### b) For Production
If we're in production, we don't want to keep going to code to change model/test details (prompt, split%, etc.) and redeploying changes.
LiteLLM exposes a client dashboard to do this in a UI - and instantly updates your test config in prod.
#### Relevant Code
```python
import litellm
litellm.token='ishaan_discord@berri.ai'
completion_with_split_tests(..., use_client=True, id="my-unique-id")
```
Here is what your logs dashboard looks like:
#### Complete Code
```python
from litellm import completion_with_split_tests
import os
## set ENV variables
os.environ["OPENAI_API_KEY"] = "openai key"
os.environ["HUGGINGFACE_API_KEY"] = "huggingface key"
## route 20% of responses to Llama2
split_per_model = {
"gpt-4": 0.8,
"huggingface/https://my-unique-endpoint.us-east-1.aws.endpoints.huggingface.cloud": 0.2
}
messages = [{ "content": "Hello, how are you?","role": "user"}]
completion_with_split_tests(
models=split_per_model,
messages=messages,
use_client=True,
id="my-unique-id" # Auto-create this @ https://admin.litellm.ai/
)
```
### A/B Testing Dashboard after running code - https://admin.litellm.ai/
<Image img={require('../../img/ab_test_logs.png')} />
Your logs will be available at:
https://lite-llm-abtest-nckmhi7ue-clerkieai.vercel.app/your-token
### Live Demo UI
👉https://lite-llm-abtest-nckmhi7ue-clerkieai.vercel.app/ishaan_discord@berri.ai
## Viewing Responses + Custom Scores
LiteLLM UI allows you to view responses and set custom scores for each response
## Setup
### Install LiteLLM
```
pip install litellm
```
### Clone LiteLLM Git Repo
```
git clone https://github.com/BerriAI/litellm/
```
### Navigate to LiteLLM-A/B Test Server
```
cd litellm/cookbook/llm-ab-test-server
```
### Run the Server
```
python3 main.py
```
## Testing our Server
The server follows the Input/Output format set by the OpenAI Chat Completions API
Here is an example request made the LiteLLM Server
### Python
```python
import requests
import json
url = "http://localhost:5000/chat/completions"
payload = json.dumps({
"messages": [
{
"content": "who is CTO of litellm",
"role": "user"
}
]
})
headers = {
'Content-Type': 'application/json'
}
response = requests.request("POST", url, headers=headers, data=payload)
print(response.text)
```
### Curl Command
```
curl --location 'http://localhost:5000/chat/completions' \
--header 'Content-Type: application/json' \
--data '{
"messages": [
{
"content": "who is CTO of litellm",
"role": "user"
}
]
}
'
```
-->