forked from phoenix/litellm-mirror
Add support for Triton streaming & triton async completions
This commit is contained in:
parent
1b3050477a
commit
d5c65c6be2
3 changed files with 199 additions and 33 deletions
|
@ -4,15 +4,23 @@ from enum import Enum
|
|||
import requests # type: ignore
|
||||
import time
|
||||
from typing import Callable, Optional, List, Sequence, Any, Union, Dict
|
||||
from litellm.utils import ModelResponse, Choices, Usage, map_finish_reason, CustomStreamWrapper, Message, EmbeddingResponse
|
||||
from litellm.utils import (
|
||||
ModelResponse,
|
||||
Choices,
|
||||
Delta,
|
||||
Usage,
|
||||
map_finish_reason,
|
||||
CustomStreamWrapper,
|
||||
Message,
|
||||
EmbeddingResponse,
|
||||
)
|
||||
import litellm
|
||||
from .prompt_templates.factory import prompt_factory, custom_prompt
|
||||
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler
|
||||
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
|
||||
from .base import BaseLLM
|
||||
import httpx # type: ignore
|
||||
|
||||
|
||||
|
||||
class TritonError(Exception):
|
||||
def __init__(self, status_code: int, message: str) -> None:
|
||||
self.status_code = status_code
|
||||
|
@ -26,6 +34,7 @@ class TritonError(Exception):
|
|||
self.message
|
||||
) # Call the base class constructor with the parameters it needs
|
||||
|
||||
|
||||
class TritonChatCompletion(BaseLLM):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
@ -127,41 +136,68 @@ class TritonChatCompletion(BaseLLM):
|
|||
optional_params=None,
|
||||
client=None,
|
||||
stream: bool = False,
|
||||
acompletion: bool = False,
|
||||
) -> ModelResponse:
|
||||
|
||||
type_of_model = ""
|
||||
optional_params.pop("stream", False)
|
||||
if api_base.endswith("generate"): ### This is a trtllm model
|
||||
text_input = messages[0]["content"]
|
||||
data_for_triton: Dict[str, Any] = {
|
||||
"text_input": str(text_input),
|
||||
"text_input": prompt_factory(model=model, messages=messages),
|
||||
"parameters": {
|
||||
"max_tokens": int(optional_params.get("max_tokens", 20)),
|
||||
"max_tokens": int(optional_params.get("max_tokens", 2000)),
|
||||
"bad_words": [""],
|
||||
"stop_words": [""]
|
||||
}
|
||||
"stop_words": [""],
|
||||
},
|
||||
"stream": bool(stream),
|
||||
}
|
||||
data_for_triton["parameters"].update(optional_params)
|
||||
type_of_model = "trtllm"
|
||||
|
||||
elif api_base.endswith("infer"): ### This is an infer model with a custom model on triton
|
||||
elif api_base.endswith(
|
||||
"infer"
|
||||
): ### This is an infer model with a custom model on triton
|
||||
text_input = messages[0]["content"]
|
||||
data_for_triton = {
|
||||
"inputs": [{"name": "text_input", "shape": [1], "datatype": "BYTES", "data": [text_input]}]
|
||||
"inputs": [
|
||||
{
|
||||
"name": "text_input",
|
||||
"shape": [1],
|
||||
"datatype": "BYTES",
|
||||
"data": [text_input],
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
for k, v in optional_params.items():
|
||||
if not (k == "stream" or k == "max_retries"):
|
||||
datatype = "INT32" if isinstance(v, int) else "BYTES"
|
||||
datatype = "FP32" if isinstance(v, float) else datatype
|
||||
data_for_triton['inputs'].append({"name": k, "shape": [1], "datatype": datatype, "data": [v]})
|
||||
data_for_triton["inputs"].append(
|
||||
{"name": k, "shape": [1], "datatype": datatype, "data": [v]}
|
||||
)
|
||||
|
||||
if "max_tokens" not in optional_params:
|
||||
data_for_triton['inputs'].append({"name": "max_tokens", "shape": [1], "datatype": "INT32", "data": [20]})
|
||||
data_for_triton["inputs"].append(
|
||||
{
|
||||
"name": "max_tokens",
|
||||
"shape": [1],
|
||||
"datatype": "INT32",
|
||||
"data": [20],
|
||||
}
|
||||
)
|
||||
|
||||
type_of_model = "infer"
|
||||
else: ## Unknown model type passthrough
|
||||
data_for_triton = {
|
||||
"inputs": [{"name": "text_input", "shape": [1], "datatype": "BYTES", "data": [messages[0]["content"]]}]
|
||||
"inputs": [
|
||||
{
|
||||
"name": "text_input",
|
||||
"shape": [1],
|
||||
"datatype": "BYTES",
|
||||
"data": [messages[0]["content"]],
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
if logging_obj:
|
||||
|
@ -174,24 +210,108 @@ class TritonChatCompletion(BaseLLM):
|
|||
"http_client": client,
|
||||
},
|
||||
)
|
||||
handler = requests.Session()
|
||||
handler.timeout = (600.0, 5.0)
|
||||
|
||||
response = handler.post(url=api_base, json=data_for_triton)
|
||||
headers = {"Content-Type": "application/json"}
|
||||
data_for_triton = json.dumps(data_for_triton)
|
||||
|
||||
if acompletion:
|
||||
return self.acompletion(
|
||||
model,
|
||||
data_for_triton,
|
||||
headers=headers,
|
||||
logging_obj=logging_obj,
|
||||
api_base=api_base,
|
||||
stream=stream,
|
||||
model_response=model_response,
|
||||
type_of_model=type_of_model,
|
||||
)
|
||||
else:
|
||||
handler = HTTPHandler()
|
||||
if stream:
|
||||
return self._handle_stream(
|
||||
handler, api_base, data_for_triton, model, logging_obj
|
||||
)
|
||||
else:
|
||||
response = handler.post(url=api_base, data=data_for_triton, headers=headers)
|
||||
return self._handle_response(
|
||||
response, model_response, logging_obj, type_of_model=type_of_model
|
||||
)
|
||||
|
||||
async def acompletion(
|
||||
self,
|
||||
model: str,
|
||||
data_for_triton,
|
||||
api_base,
|
||||
stream,
|
||||
logging_obj,
|
||||
headers,
|
||||
model_response,
|
||||
type_of_model,
|
||||
) -> ModelResponse:
|
||||
handler = AsyncHTTPHandler()
|
||||
if stream:
|
||||
return self._ahandle_stream(
|
||||
handler, api_base, data_for_triton, model, logging_obj
|
||||
)
|
||||
else:
|
||||
response = await handler.post(
|
||||
url=api_base, data=data_for_triton, headers=headers
|
||||
)
|
||||
|
||||
return self._handle_response(
|
||||
response, model_response, logging_obj, type_of_model=type_of_model
|
||||
)
|
||||
|
||||
def _handle_stream(self, handler, api_base, data_for_triton, model, logging_obj):
|
||||
response = handler.post(
|
||||
url=api_base + "_stream", data=data_for_triton, stream=True
|
||||
)
|
||||
streamwrapper = litellm.CustomStreamWrapper(
|
||||
response.iter_lines(),
|
||||
model=model,
|
||||
custom_llm_provider="triton",
|
||||
logging_obj=logging_obj,
|
||||
)
|
||||
for chunk in streamwrapper:
|
||||
yield (chunk)
|
||||
|
||||
async def _ahandle_stream(
|
||||
self, handler, api_base, data_for_triton, model, logging_obj
|
||||
):
|
||||
response = await handler.post(
|
||||
url=api_base + "_stream", data=data_for_triton, stream=True
|
||||
)
|
||||
streamwrapper = litellm.CustomStreamWrapper(
|
||||
response.aiter_lines(),
|
||||
model=model,
|
||||
custom_llm_provider="triton",
|
||||
logging_obj=logging_obj,
|
||||
)
|
||||
async for chunk in streamwrapper:
|
||||
yield (chunk)
|
||||
|
||||
def _handle_response(self, response, model_response, logging_obj, type_of_model):
|
||||
if logging_obj:
|
||||
logging_obj.post_call(original_response=response)
|
||||
|
||||
if response.status_code != 200:
|
||||
raise TritonError(status_code=response.status_code, message=response.text)
|
||||
_json_response = response.json()
|
||||
|
||||
_json_response = response.json()
|
||||
model_response.model = _json_response.get("model_name", "None")
|
||||
if type_of_model == "trtllm":
|
||||
model_response.choices = [Choices(index=0, message=Message(content=_json_response['text_output']))]
|
||||
model_response.choices = [
|
||||
Choices(index=0, message=Message(content=_json_response["text_output"]))
|
||||
]
|
||||
elif type_of_model == "infer":
|
||||
model_response.choices = [Choices(index=0, message=Message(content=_json_response['outputs'][0]['data']))]
|
||||
model_response.choices = [
|
||||
Choices(
|
||||
index=0,
|
||||
message=Message(content=_json_response["outputs"][0]["data"]),
|
||||
)
|
||||
]
|
||||
else:
|
||||
model_response.choices = [Choices(index=0, message=Message(content=_json_response['outputs']))]
|
||||
|
||||
model_response.choices = [
|
||||
Choices(index=0, message=Message(content=_json_response["outputs"]))
|
||||
]
|
||||
return model_response
|
||||
|
|
|
@ -333,6 +333,7 @@ async def acompletion(
|
|||
or custom_llm_provider == "predibase"
|
||||
or custom_llm_provider == "bedrock"
|
||||
or custom_llm_provider == "databricks"
|
||||
or custom_llm_provider == "triton"
|
||||
or custom_llm_provider in litellm.openai_compatible_providers
|
||||
): # currently implemented aiohttp calls for just azure, openai, hf, ollama, vertex ai soon all.
|
||||
init_response = await loop.run_in_executor(None, func_with_context)
|
||||
|
@ -2267,6 +2268,8 @@ def completion(
|
|||
model_response=model_response,
|
||||
optional_params=optional_params,
|
||||
logging_obj=logging,
|
||||
stream=stream,
|
||||
acompletion=acompletion
|
||||
)
|
||||
|
||||
## RESPONSE OBJECT
|
||||
|
|
|
@ -11013,6 +11013,42 @@ class CustomStreamWrapper:
|
|||
except Exception as e:
|
||||
raise e
|
||||
|
||||
def handle_triton_stream(self, chunk):
|
||||
try:
|
||||
if isinstance(chunk, dict):
|
||||
parsed_response = chunk
|
||||
elif isinstance(chunk, (str, bytes)):
|
||||
if isinstance(chunk, bytes):
|
||||
chunk = chunk.decode("utf-8")
|
||||
if "text_output" in chunk:
|
||||
response = chunk.replace("data: ", "").strip()
|
||||
parsed_response = json.loads(response)
|
||||
else:
|
||||
return {
|
||||
"text": "",
|
||||
"is_finished": False,
|
||||
"prompt_tokens": 0,
|
||||
"completion_tokens": 0,
|
||||
}
|
||||
else:
|
||||
print_verbose(f"chunk: {chunk} (Type: {type(chunk)})")
|
||||
raise ValueError(
|
||||
f"Unable to parse response. Original response: {chunk}"
|
||||
)
|
||||
text = parsed_response.get("text_output", "")
|
||||
finish_reason = parsed_response.get("stop_reason")
|
||||
is_finished = parsed_response.get("is_finished", False)
|
||||
return {
|
||||
"text": text,
|
||||
"is_finished": is_finished,
|
||||
"finish_reason": finish_reason,
|
||||
"prompt_tokens": parsed_response.get("input_token_count", 0),
|
||||
"completion_tokens": parsed_response.get("generated_token_count", 0),
|
||||
}
|
||||
return {"text": "", "is_finished": False}
|
||||
except Exception as e:
|
||||
raise e
|
||||
|
||||
def handle_clarifai_completion_chunk(self, chunk):
|
||||
try:
|
||||
if isinstance(chunk, dict):
|
||||
|
@ -11337,6 +11373,12 @@ class CustomStreamWrapper:
|
|||
completion_obj["content"] = response_obj["text"]
|
||||
if response_obj["is_finished"]:
|
||||
self.received_finish_reason = response_obj["finish_reason"]
|
||||
elif self.custom_llm_provider == "triton":
|
||||
response_obj = self.handle_triton_stream(chunk)
|
||||
completion_obj["content"] = response_obj["text"]
|
||||
print_verbose(f"completion obj content: {completion_obj['content']}")
|
||||
if response_obj["is_finished"]:
|
||||
self.received_finish_reason = response_obj["finish_reason"]
|
||||
elif self.custom_llm_provider == "text-completion-openai":
|
||||
response_obj = self.handle_openai_text_completion_chunk(chunk)
|
||||
completion_obj["content"] = response_obj["text"]
|
||||
|
@ -11773,6 +11815,7 @@ class CustomStreamWrapper:
|
|||
or self.custom_llm_provider == "predibase"
|
||||
or self.custom_llm_provider == "databricks"
|
||||
or self.custom_llm_provider == "bedrock"
|
||||
or self.custom_llm_provider == "triton"
|
||||
or self.custom_llm_provider in litellm.openai_compatible_endpoints
|
||||
):
|
||||
async for chunk in self.completion_stream:
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue