Add support for Triton streaming & triton async completions

This commit is contained in:
Sophia Loris 2024-07-19 09:35:27 -05:00
parent 1b3050477a
commit d5c65c6be2
3 changed files with 199 additions and 33 deletions

View file

@ -4,15 +4,23 @@ from enum import Enum
import requests # type: ignore
import time
from typing import Callable, Optional, List, Sequence, Any, Union, Dict
from litellm.utils import ModelResponse, Choices, Usage, map_finish_reason, CustomStreamWrapper, Message, EmbeddingResponse
from litellm.utils import (
ModelResponse,
Choices,
Delta,
Usage,
map_finish_reason,
CustomStreamWrapper,
Message,
EmbeddingResponse,
)
import litellm
from .prompt_templates.factory import prompt_factory, custom_prompt
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
from .base import BaseLLM
import httpx # type: ignore
class TritonError(Exception):
def __init__(self, status_code: int, message: str) -> None:
self.status_code = status_code
@ -26,6 +34,7 @@ class TritonError(Exception):
self.message
) # Call the base class constructor with the parameters it needs
class TritonChatCompletion(BaseLLM):
def __init__(self) -> None:
super().__init__()
@ -127,41 +136,68 @@ class TritonChatCompletion(BaseLLM):
optional_params=None,
client=None,
stream: bool = False,
acompletion: bool = False,
) -> ModelResponse:
type_of_model = ""
optional_params.pop("stream", False)
if api_base.endswith("generate"): ### This is a trtllm model
text_input = messages[0]["content"]
data_for_triton: Dict[str, Any] = {
"text_input": str(text_input),
"text_input": prompt_factory(model=model, messages=messages),
"parameters": {
"max_tokens": int(optional_params.get("max_tokens", 20)),
"max_tokens": int(optional_params.get("max_tokens", 2000)),
"bad_words": [""],
"stop_words": [""]
}
"stop_words": [""],
},
"stream": bool(stream),
}
data_for_triton["parameters"].update(optional_params)
type_of_model = "trtllm"
elif api_base.endswith("infer"): ### This is an infer model with a custom model on triton
elif api_base.endswith(
"infer"
): ### This is an infer model with a custom model on triton
text_input = messages[0]["content"]
data_for_triton = {
"inputs": [{"name": "text_input", "shape": [1], "datatype": "BYTES", "data": [text_input]}]
"inputs": [
{
"name": "text_input",
"shape": [1],
"datatype": "BYTES",
"data": [text_input],
}
]
}
for k, v in optional_params.items():
if not (k == "stream" or k == "max_retries"):
datatype = "INT32" if isinstance(v, int) else "BYTES"
datatype = "FP32" if isinstance(v, float) else datatype
data_for_triton['inputs'].append({"name": k, "shape": [1], "datatype": datatype, "data": [v]})
data_for_triton["inputs"].append(
{"name": k, "shape": [1], "datatype": datatype, "data": [v]}
)
if "max_tokens" not in optional_params:
data_for_triton['inputs'].append({"name": "max_tokens", "shape": [1], "datatype": "INT32", "data": [20]})
data_for_triton["inputs"].append(
{
"name": "max_tokens",
"shape": [1],
"datatype": "INT32",
"data": [20],
}
)
type_of_model = "infer"
else: ## Unknown model type passthrough
data_for_triton = {
"inputs": [{"name": "text_input", "shape": [1], "datatype": "BYTES", "data": [messages[0]["content"]]}]
"inputs": [
{
"name": "text_input",
"shape": [1],
"datatype": "BYTES",
"data": [messages[0]["content"]],
}
]
}
if logging_obj:
@ -174,24 +210,108 @@ class TritonChatCompletion(BaseLLM):
"http_client": client,
},
)
handler = requests.Session()
handler.timeout = (600.0, 5.0)
response = handler.post(url=api_base, json=data_for_triton)
headers = {"Content-Type": "application/json"}
data_for_triton = json.dumps(data_for_triton)
if acompletion:
return self.acompletion(
model,
data_for_triton,
headers=headers,
logging_obj=logging_obj,
api_base=api_base,
stream=stream,
model_response=model_response,
type_of_model=type_of_model,
)
else:
handler = HTTPHandler()
if stream:
return self._handle_stream(
handler, api_base, data_for_triton, model, logging_obj
)
else:
response = handler.post(url=api_base, data=data_for_triton, headers=headers)
return self._handle_response(
response, model_response, logging_obj, type_of_model=type_of_model
)
async def acompletion(
self,
model: str,
data_for_triton,
api_base,
stream,
logging_obj,
headers,
model_response,
type_of_model,
) -> ModelResponse:
handler = AsyncHTTPHandler()
if stream:
return self._ahandle_stream(
handler, api_base, data_for_triton, model, logging_obj
)
else:
response = await handler.post(
url=api_base, data=data_for_triton, headers=headers
)
return self._handle_response(
response, model_response, logging_obj, type_of_model=type_of_model
)
def _handle_stream(self, handler, api_base, data_for_triton, model, logging_obj):
response = handler.post(
url=api_base + "_stream", data=data_for_triton, stream=True
)
streamwrapper = litellm.CustomStreamWrapper(
response.iter_lines(),
model=model,
custom_llm_provider="triton",
logging_obj=logging_obj,
)
for chunk in streamwrapper:
yield (chunk)
async def _ahandle_stream(
self, handler, api_base, data_for_triton, model, logging_obj
):
response = await handler.post(
url=api_base + "_stream", data=data_for_triton, stream=True
)
streamwrapper = litellm.CustomStreamWrapper(
response.aiter_lines(),
model=model,
custom_llm_provider="triton",
logging_obj=logging_obj,
)
async for chunk in streamwrapper:
yield (chunk)
def _handle_response(self, response, model_response, logging_obj, type_of_model):
if logging_obj:
logging_obj.post_call(original_response=response)
if response.status_code != 200:
raise TritonError(status_code=response.status_code, message=response.text)
_json_response = response.json()
_json_response = response.json()
model_response.model = _json_response.get("model_name", "None")
if type_of_model == "trtllm":
model_response.choices = [Choices(index=0, message=Message(content=_json_response['text_output']))]
model_response.choices = [
Choices(index=0, message=Message(content=_json_response["text_output"]))
]
elif type_of_model == "infer":
model_response.choices = [Choices(index=0, message=Message(content=_json_response['outputs'][0]['data']))]
model_response.choices = [
Choices(
index=0,
message=Message(content=_json_response["outputs"][0]["data"]),
)
]
else:
model_response.choices = [Choices(index=0, message=Message(content=_json_response['outputs']))]
model_response.choices = [
Choices(index=0, message=Message(content=_json_response["outputs"]))
]
return model_response

View file

@ -333,6 +333,7 @@ async def acompletion(
or custom_llm_provider == "predibase"
or custom_llm_provider == "bedrock"
or custom_llm_provider == "databricks"
or custom_llm_provider == "triton"
or custom_llm_provider in litellm.openai_compatible_providers
): # currently implemented aiohttp calls for just azure, openai, hf, ollama, vertex ai soon all.
init_response = await loop.run_in_executor(None, func_with_context)
@ -2267,6 +2268,8 @@ def completion(
model_response=model_response,
optional_params=optional_params,
logging_obj=logging,
stream=stream,
acompletion=acompletion
)
## RESPONSE OBJECT

View file

@ -11013,6 +11013,42 @@ class CustomStreamWrapper:
except Exception as e:
raise e
def handle_triton_stream(self, chunk):
try:
if isinstance(chunk, dict):
parsed_response = chunk
elif isinstance(chunk, (str, bytes)):
if isinstance(chunk, bytes):
chunk = chunk.decode("utf-8")
if "text_output" in chunk:
response = chunk.replace("data: ", "").strip()
parsed_response = json.loads(response)
else:
return {
"text": "",
"is_finished": False,
"prompt_tokens": 0,
"completion_tokens": 0,
}
else:
print_verbose(f"chunk: {chunk} (Type: {type(chunk)})")
raise ValueError(
f"Unable to parse response. Original response: {chunk}"
)
text = parsed_response.get("text_output", "")
finish_reason = parsed_response.get("stop_reason")
is_finished = parsed_response.get("is_finished", False)
return {
"text": text,
"is_finished": is_finished,
"finish_reason": finish_reason,
"prompt_tokens": parsed_response.get("input_token_count", 0),
"completion_tokens": parsed_response.get("generated_token_count", 0),
}
return {"text": "", "is_finished": False}
except Exception as e:
raise e
def handle_clarifai_completion_chunk(self, chunk):
try:
if isinstance(chunk, dict):
@ -11337,6 +11373,12 @@ class CustomStreamWrapper:
completion_obj["content"] = response_obj["text"]
if response_obj["is_finished"]:
self.received_finish_reason = response_obj["finish_reason"]
elif self.custom_llm_provider == "triton":
response_obj = self.handle_triton_stream(chunk)
completion_obj["content"] = response_obj["text"]
print_verbose(f"completion obj content: {completion_obj['content']}")
if response_obj["is_finished"]:
self.received_finish_reason = response_obj["finish_reason"]
elif self.custom_llm_provider == "text-completion-openai":
response_obj = self.handle_openai_text_completion_chunk(chunk)
completion_obj["content"] = response_obj["text"]
@ -11773,6 +11815,7 @@ class CustomStreamWrapper:
or self.custom_llm_provider == "predibase"
or self.custom_llm_provider == "databricks"
or self.custom_llm_provider == "bedrock"
or self.custom_llm_provider == "triton"
or self.custom_llm_provider in litellm.openai_compatible_endpoints
):
async for chunk in self.completion_stream: