making logging a class - adding input-callbacks

This commit is contained in:
Krrish Dholakia 2023-08-19 20:03:31 -07:00
parent 9ac577ed6f
commit d792be89de
12 changed files with 237 additions and 315 deletions

View file

@ -22,11 +22,13 @@ create table
messages json null default '{}'::json,
response json null default '{}'::json,
end_user text null default ''::text,
status text null default ''::text,
error json null default '{}'::json,
response_time real null default '0'::real,
total_cost real null,
additional_details json null default '{}'::json,
constraint request_logs_pkey primary key (id)
litellm_call_id text unique,
primary key (id)
) tablespace pg_default;
```

View file

@ -1,6 +1,6 @@
import threading
from typing import Callable, List, Optional
input_callback: List[str] = []
success_callback: List[str] = []
failure_callback: List[str] = []
set_verbose = False
@ -216,7 +216,6 @@ from .timeout import timeout
from .testing import *
from .utils import (
client,
logging,
exception_type,
get_optional_params,
modify_integration,
@ -224,6 +223,7 @@ from .utils import (
cost_per_token,
completion_cost,
get_litellm_params,
Logging
)
from .main import * # type: ignore
from .integrations import *

View file

@ -144,6 +144,28 @@ class Supabase:
)
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
def input_log_event(self, model, messages, end_user, litellm_call_id, print_verbose):
try:
print_verbose(
f"Supabase Logging - Enters input logging function for model {model}"
)
supabase_data_obj = {
"model": model,
"messages": messages,
"end_user": end_user,
"status": "initiated",
"litellm_call_id": litellm_call_id
}
data, count = (
self.supabase_client.table(self.supabase_table_name)
.insert(supabase_data_obj)
.execute()
)
print(f"data: {data}")
pass
except:
pass
def log_event(
self,
model,
@ -152,6 +174,7 @@ class Supabase:
response_obj,
start_time,
end_time,
litellm_call_id,
print_verbose,
):
try:
@ -176,16 +199,20 @@ class Supabase:
"messages": messages,
"response": response_obj["choices"][0]["message"]["content"],
"end_user": end_user,
"litellm_call_id": litellm_call_id,
"status": "success"
}
print_verbose(
f"Supabase Logging - final data object: {supabase_data_obj}"
)
data, count = (
self.supabase_client.table(self.supabase_table_name)
.insert(supabase_data_obj)
.upsert(supabase_data_obj)
.execute()
)
elif "error" in response_obj:
if "Unable to map your input to a model." in response_obj["error"]:
total_cost = 0
supabase_data_obj = {
"response_time": response_time,
"model": response_obj["model"],
@ -193,13 +220,15 @@ class Supabase:
"messages": messages,
"error": response_obj["error"],
"end_user": end_user,
"litellm_call_id": litellm_call_id,
"status": "failure"
}
print_verbose(
f"Supabase Logging - final data object: {supabase_data_obj}"
)
data, count = (
self.supabase_client.table(self.supabase_table_name)
.insert(supabase_data_obj)
.upsert(supabase_data_obj)
.execute()
)

View file

@ -1,7 +1,6 @@
import os, json
from enum import Enum
import requests
from litellm import logging
import time
from typing import Callable
from litellm.utils import ModelResponse
@ -22,11 +21,12 @@ class AnthropicError(Exception):
class AnthropicLLM:
def __init__(self, encoding, default_max_tokens_to_sample, api_key=None):
def __init__(self, encoding, default_max_tokens_to_sample, logging_obj, api_key=None):
self.encoding = encoding
self.default_max_tokens_to_sample = default_max_tokens_to_sample
self.completion_url = "https://api.anthropic.com/v1/complete"
self.api_key = api_key
self.logging_obj = logging_obj
self.validate_environment(api_key=api_key)
def validate_environment(
@ -84,6 +84,7 @@ class AnthropicLLM:
}
## LOGGING
self.logging_obj.pre_call(input=prompt, api_key=self.api_key, additional_args={"complete_input_dict": data})
logging(
model=model,
input=prompt,
@ -101,16 +102,7 @@ class AnthropicLLM:
return response.iter_lines()
else:
## LOGGING
logging(
model=model,
input=prompt,
additional_args={
"litellm_params": litellm_params,
"optional_params": optional_params,
"original_response": response.text,
},
logger_fn=logger_fn,
)
self.logging_obj.post_call(input=prompt, api_key=self.api_key, original_response=response.text, additional_args={"complete_input_dict": data})
print_verbose(f"raw model_response: {response.text}")
## RESPONSE OBJECT
completion_response = response.json()

View file

@ -2,7 +2,6 @@
import os, json
from enum import Enum
import requests
from litellm import logging
import time
from typing import Callable
from litellm.utils import ModelResponse
@ -19,8 +18,9 @@ class HuggingfaceError(Exception):
class HuggingfaceRestAPILLM:
def __init__(self, encoding, api_key=None) -> None:
def __init__(self, encoding, logging_obj, api_key=None) -> None:
self.encoding = encoding
self.logging_obj = logging_obj
self.validate_environment(api_key=api_key)
def validate_environment(
@ -74,18 +74,10 @@ class HuggingfaceRestAPILLM:
optional_params["max_new_tokens"] = value
data = {
"inputs": prompt,
# "parameters": optional_params
"parameters": optional_params
}
## LOGGING
logging(
model=model,
input=prompt,
additional_args={
"litellm_params": litellm_params,
"optional_params": optional_params,
},
logger_fn=logger_fn,
)
logging.pre_call(input=prompt, api_key=self.api_key, additional_args={"complete_input_dict": data})
## COMPLETION CALL
response = requests.post(
completion_url, headers=self.headers, data=json.dumps(data)
@ -94,17 +86,7 @@ class HuggingfaceRestAPILLM:
return response.iter_lines()
else:
## LOGGING
logging(
model=model,
input=prompt,
additional_args={
"litellm_params": litellm_params,
"optional_params": optional_params,
"original_response": response.text,
},
logger_fn=logger_fn,
)
print_verbose(f"raw model_response: {response.text}")
logging.post_call(input=prompt, api_key=self.api_key, original_response=response.text, additional_args={"complete_input_dict": data})
## RESPONSE OBJECT
completion_response = response.json()
print_verbose(f"response: {completion_response}")

View file

@ -6,11 +6,11 @@ from copy import deepcopy
import litellm
from litellm import ( # type: ignore
client,
logging,
exception_type,
timeout,
get_optional_params,
get_litellm_params,
Logging
)
from litellm.utils import (
get_secret,
@ -85,6 +85,7 @@ def completion(
azure=False,
custom_llm_provider=None,
custom_api_base=None,
litellm_call_id=None,
# model specific optional params
# used by text-bison only
top_k=40,
@ -129,8 +130,9 @@ def completion(
verbose=verbose,
custom_llm_provider=custom_llm_provider,
custom_api_base=custom_api_base,
litellm_call_id=litellm_call_id
)
logging = Logging(model=model, messages=messages, optional_params=optional_params, litellm_params=litellm_params)
if custom_llm_provider == "azure":
# azure configs
openai.api_type = "azure"
@ -144,16 +146,14 @@ def completion(
if litellm.api_version is not None
else get_secret("AZURE_API_VERSION")
)
if not api_key and litellm.azure_key:
api_key = litellm.azure_key
elif not api_key and get_secret("AZURE_API_KEY"):
api_key = get_secret("AZURE_API_KEY")
# set key
openai.api_key = api_key or litellm.azure_key or get_secret("AZURE_API_KEY")
openai.api_key = api_key
## LOGGING
logging(
model=model,
input=messages,
additional_args=optional_params,
custom_llm_provider=custom_llm_provider,
logger_fn=logger_fn,
)
logging.pre_call(input=messages, api_key=openai.api_key, additional_args={"headers": litellm.headers, "api_version": openai.api_version, "api_base": openai.api_base})
## COMPLETION CALL
if litellm.headers:
response = openai.ChatCompletion.create(
@ -166,6 +166,8 @@ def completion(
response = openai.ChatCompletion.create(
model=model, messages=messages, **optional_params
)
## LOGGING
logging.post_call(input=messages, api_key=openai.api_key, original_response=response, additional_args={"headers": litellm.headers, "api_version": openai.api_version, "api_base": openai.api_base})
elif (
model in litellm.open_ai_chat_completion_models
or custom_llm_provider == "custom_openai"
@ -182,18 +184,15 @@ def completion(
if litellm.organization:
openai.organization = litellm.organization
# set API KEY
openai.api_key = (
api_key or litellm.openai_key or get_secret("OPENAI_API_KEY")
)
if not api_key and litellm.openai_key:
api_key = litellm.openai_key
elif not api_key and get_secret("AZURE_API_KEY"):
api_key = get_secret("OPENAI_API_KEY")
openai.api_key = api_key
## LOGGING
logging(
model=model,
input=messages,
additional_args=args,
custom_llm_provider=custom_llm_provider,
logger_fn=logger_fn,
)
logging.pre_call(input=messages, api_key=api_key, additional_args={"headers": litellm.headers, "api_base": api_base})
## COMPLETION CALL
if litellm.headers:
response = openai.ChatCompletion.create(
@ -206,6 +205,8 @@ def completion(
response = openai.ChatCompletion.create(
model=model, messages=messages, **optional_params
)
## LOGGING
logging.post_call(input=messages, api_key=api_key, original_response=response, additional_args={"headers": litellm.headers})
elif model in litellm.open_ai_text_completion_models:
openai.api_type = "openai"
openai.api_base = (
@ -214,20 +215,19 @@ def completion(
else "https://api.openai.com/v1"
)
openai.api_version = None
openai.api_key = (
api_key or litellm.openai_key or get_secret("OPENAI_API_KEY")
)
# set API KEY
if not api_key and litellm.openai_key:
api_key = litellm.openai_key
elif not api_key and get_secret("AZURE_API_KEY"):
api_key = get_secret("OPENAI_API_KEY")
openai.api_key = api_key
if litellm.organization:
openai.organization = litellm.organization
prompt = " ".join([message["content"] for message in messages])
## LOGGING
logging(
model=model,
input=prompt,
additional_args=optional_params,
custom_llm_provider=custom_llm_provider,
logger_fn=logger_fn,
)
logging.pre_call(input=prompt, api_key=api_key, additional_args={"openai_organization": litellm.organization, "headers": litellm.headers, "api_base": openai.api_base, "api_type": openai.api_type})
## COMPLETION CALL
if litellm.headers:
response = openai.Completion.create(
@ -237,19 +237,10 @@ def completion(
)
else:
response = openai.Completion.create(model=model, prompt=prompt)
completion_response = response["choices"][0]["text"]
## LOGGING
logging(
model=model,
input=prompt,
custom_llm_provider=custom_llm_provider,
additional_args={
"max_tokens": max_tokens,
"original_response": completion_response,
},
logger_fn=logger_fn,
)
logging.post_call(input=prompt, api_key=api_key, original_response=response, additional_args={"openai_organization": litellm.organization, "headers": litellm.headers, "api_base": openai.api_base, "api_type": openai.api_type})
## RESPONSE OBJECT
completion_response = response["choices"][0]["text"]
model_response["choices"][0]["message"]["content"] = completion_response
model_response["created"] = response["created"]
model_response["model"] = model
@ -278,13 +269,7 @@ def completion(
input["max_length"] = max_tokens # for t5 models
input["max_new_tokens"] = max_tokens # for llama2 models
## LOGGING
logging(
model=model,
input=input,
custom_llm_provider=custom_llm_provider,
additional_args={"max_tokens": max_tokens},
logger_fn=logger_fn,
)
logging.pre_call(input=prompt, api_key=replicate_key, additional_args={"complete_input_dict": input, "max_tokens": max_tokens})
## COMPLETION CALL
output = replicate.run(model, input=input)
if "stream" in optional_params and optional_params["stream"] == True:
@ -297,16 +282,8 @@ def completion(
response += item
completion_response = response
## LOGGING
logging(
model=model,
input=prompt,
custom_llm_provider=custom_llm_provider,
additional_args={
"max_tokens": max_tokens,
"original_response": completion_response,
},
logger_fn=logger_fn,
)
logging.post_call(input=prompt, api_key=replicate_key, original_response=completion_response, additional_args={"complete_input_dict": input, "max_tokens": max_tokens})
## USAGE
prompt_tokens = len(encoding.encode(prompt))
completion_tokens = len(encoding.encode(completion_response))
## RESPONSE OBJECT
@ -327,6 +304,7 @@ def completion(
encoding=encoding,
default_max_tokens_to_sample=litellm.max_tokens,
api_key=anthropic_key,
logging_obj = logging # model call logging done inside the class as we make need to modify I/O to fit anthropic's requirements
)
model_response = anthropic_client.completion(
model=model,
@ -362,13 +340,7 @@ def completion(
"OR_API_KEY"
)
## LOGGING
logging(
model=model,
input=messages,
additional_args=optional_params,
custom_llm_provider=custom_llm_provider,
logger_fn=logger_fn,
)
logging.pre_call(input=messages, api_key=openai.api_key)
## COMPLETION CALL
if litellm.headers:
response = openai.ChatCompletion.create(
@ -395,6 +367,8 @@ def completion(
},
**optional_params,
)
## LOGGING
logging.post_call(input=messages, api_key=openai.api_key, original_response=response)
elif model in litellm.cohere_models:
# import cohere/if it fails then pip install cohere
install_and_import("cohere")
@ -409,31 +383,17 @@ def completion(
co = cohere.Client(cohere_key)
prompt = " ".join([message["content"] for message in messages])
## LOGGING
logging(
model=model,
input=prompt,
custom_llm_provider=custom_llm_provider,
logger_fn=logger_fn,
)
logging.pre_call(input=prompt, api_key=cohere_key)
## COMPLETION CALL
response = co.generate(model=model, prompt=prompt, **optional_params)
if "stream" in optional_params and optional_params["stream"] == True:
# don't try to access stream object,
response = CustomStreamWrapper(response, model)
return response
completion_response = response[0].text
## LOGGING
logging(
model=model,
input=prompt,
custom_llm_provider=custom_llm_provider,
additional_args={
"max_tokens": max_tokens,
"original_response": completion_response,
},
logger_fn=logger_fn,
)
logging.post_call(input=prompt, api_key=cohere_key, original_response=response)
## USAGE
completion_response = response[0].text
prompt_tokens = len(encoding.encode(prompt))
completion_tokens = len(encoding.encode(completion_response))
## RESPONSE OBJECT
@ -457,7 +417,7 @@ def completion(
or os.environ.get("HUGGINGFACE_API_KEY")
)
huggingface_client = HuggingfaceRestAPILLM(
encoding=encoding, api_key=huggingface_key
encoding=encoding, api_key=huggingface_key, logging_obj=logging
)
model_response = huggingface_client.completion(
model=model,
@ -492,12 +452,7 @@ def completion(
) # TODO: Add chat support for together AI
## LOGGING
logging(
model=model,
input=prompt,
custom_llm_provider=custom_llm_provider,
logger_fn=logger_fn,
)
logging.pre_call(input=prompt, api_key=TOGETHER_AI_TOKEN)
if stream == True:
return together_ai_completion_streaming(
{
@ -519,17 +474,7 @@ def completion(
headers=headers,
)
## LOGGING
logging(
model=model,
input=prompt,
custom_llm_provider=custom_llm_provider,
additional_args={
"max_tokens": max_tokens,
"original_response": res.text,
},
logger_fn=logger_fn,
)
logging.post_call(input=prompt, api_key=TOGETHER_AI_TOKEN, original_response=res.text)
# make this safe for reading, if output does not exist raise an error
json_response = res.json()
if "output" not in json_response:
@ -562,16 +507,7 @@ def completion(
prompt = " ".join([message["content"] for message in messages])
## LOGGING
logging(
model=model,
input=prompt,
custom_llm_provider=custom_llm_provider,
additional_args={
"litellm_params": litellm_params,
"optional_params": optional_params,
},
logger_fn=logger_fn,
)
logging.pre_call(input=prompt, api_key=None)
chat_model = ChatModel.from_pretrained(model)
@ -579,16 +515,7 @@ def completion(
completion_response = chat.send_message(prompt, **optional_params)
## LOGGING
logging(
model=model,
input=prompt,
custom_llm_provider=custom_llm_provider,
additional_args={
"max_tokens": max_tokens,
"original_response": completion_response,
},
logger_fn=logger_fn,
)
logging.post_call(input=prompt, api_key=None, original_response=completion_response)
## RESPONSE OBJECT
model_response["choices"][0]["message"]["content"] = completion_response
@ -607,27 +534,13 @@ def completion(
prompt = " ".join([message["content"] for message in messages])
## LOGGING
logging(
model=model,
input=prompt,
custom_llm_provider=custom_llm_provider,
logger_fn=logger_fn,
)
logging.pre_call(input=prompt, api_key=None)
vertex_model = TextGenerationModel.from_pretrained(model)
completion_response = vertex_model.predict(prompt, **optional_params)
## LOGGING
logging(
model=model,
input=prompt,
custom_llm_provider=custom_llm_provider,
additional_args={
"max_tokens": max_tokens,
"original_response": completion_response,
},
logger_fn=logger_fn,
)
logging.post_call(input=prompt, api_key=None, original_response=completion_response)
## RESPONSE OBJECT
model_response["choices"][0]["message"]["content"] = completion_response
model_response["created"] = time.time()
@ -641,12 +554,7 @@ def completion(
prompt = " ".join([message["content"] for message in messages])
## LOGGING
logging(
model=model,
input=prompt,
custom_llm_provider=custom_llm_provider,
logger_fn=logger_fn,
)
logging.pre_call(input=prompt, api_key=ai21.api_key)
ai21_response = ai21.Completion.execute(
model=model,
@ -655,16 +563,7 @@ def completion(
completion_response = ai21_response["completions"][0]["data"]["text"]
## LOGGING
logging(
model=model,
input=prompt,
custom_llm_provider=custom_llm_provider,
additional_args={
"max_tokens": max_tokens,
"original_response": completion_response,
},
logger_fn=logger_fn,
)
logging.post_call(input=prompt, api_key=ai21.api_key, original_response=completion_response)
## RESPONSE OBJECT
model_response["choices"][0]["message"]["content"] = completion_response
@ -678,7 +577,8 @@ def completion(
prompt = " ".join([message["content"] for message in messages])
## LOGGING
logging(model=model, input=prompt, azure=azure, logger_fn=logger_fn)
logging.pre_call(input=prompt, api_key=None, additional_args={"endpoint": endpoint})
generator = get_ollama_response_stream(endpoint, model, prompt)
# assume all responses are streamed
return generator
@ -693,12 +593,7 @@ def completion(
prompt = " ".join([message["content"] for message in messages])
## LOGGING
logging(
model=model,
input=prompt,
custom_llm_provider=custom_llm_provider,
logger_fn=logger_fn,
)
logging.pre_call(input=prompt, api_key=base_ten_key)
base_ten__model = baseten.deployed_model_version_id(model)
@ -708,16 +603,8 @@ def completion(
if type(completion_response) == dict:
completion_response = completion_response["generated_text"]
logging(
model=model,
input=prompt,
custom_llm_provider=custom_llm_provider,
additional_args={
"max_tokens": max_tokens,
"original_response": completion_response,
},
logger_fn=logger_fn,
)
## LOGGING
logging.post_call(input=prompt, api_key=base_ten_key, original_response=completion_response)
## RESPONSE OBJECT
model_response["choices"][0]["message"]["content"] = completion_response
@ -734,26 +621,14 @@ def completion(
prompt = " ".join([message["content"] for message in messages])
## LOGGING
logging(
model=model,
input=prompt,
custom_llm_provider=custom_llm_provider,
logger_fn=logger_fn,
)
logging.pre_call(input=prompt, api_key=None, additional_args={"url": url, "max_new_tokens": 100})
response = requests.post(
url, data={"inputs": prompt, "max_new_tokens": 100, "model": model}
)
## LOGGING
logging(
model=model,
input=prompt,
custom_llm_provider=custom_llm_provider,
additional_args={
"max_tokens": max_tokens,
"original_response": response,
},
logger_fn=logger_fn,
)
logging.post_call(input=prompt, api_key=None, original_response=response.text, additional_args={"url": url, "max_new_tokens": 100})
completion_response = response.json()["outputs"]
# RESPONSE OBJECT
@ -762,13 +637,6 @@ def completion(
model_response["model"] = model
response = model_response
else:
## LOGGING
logging(
model=model,
input=messages,
custom_llm_provider=custom_llm_provider,
logger_fn=logger_fn,
)
args = locals()
raise ValueError(
f"Unable to map your input to a model. Check your input - {args}"
@ -776,14 +644,7 @@ def completion(
return response
except Exception as e:
## LOGGING
logging(
model=model,
input=messages,
custom_llm_provider=custom_llm_provider,
additional_args={"max_tokens": max_tokens},
logger_fn=logger_fn,
exception=e,
)
logging.post_call(input=messages, api_key=api_key, original_response=e)
## Map to OpenAI Exception
raise exception_type(
model=model, custom_llm_provider=custom_llm_provider, original_exception=e
@ -825,7 +686,7 @@ def embedding(model, input=[], azure=False, force_timeout=60, logger_fn=None):
openai.api_version = get_secret("AZURE_API_VERSION")
openai.api_key = get_secret("AZURE_API_KEY")
## LOGGING
logging(model=model, input=input, azure=azure, logger_fn=logger_fn)
logging.pre_call(model=model, input=input, azure=azure, logger_fn=logger_fn)
## EMBEDDING CALL
response = openai.Embedding.create(input=input, engine=model)
print_verbose(f"response_value: {str(response)[:50]}")

View file

@ -1,27 +1,28 @@
# #### What this tests ####
# # This tests if logging to the helicone integration actually works
# # pytest mistakes intentional bad calls as failed tests -> [TODO] fix this
# import sys, os
# import traceback
# import pytest
#### What this tests ####
# This tests if logging to the helicone integration actually works
# pytest mistakes intentional bad calls as failed tests -> [TODO] fix this
import sys, os
import traceback
import pytest
# sys.path.insert(0, os.path.abspath('../..')) # Adds the parent directory to the system path
# import litellm
# from litellm import embedding, completion
sys.path.insert(0, os.path.abspath('../..')) # Adds the parent directory to the system path
import litellm
from litellm import embedding, completion
# litellm.success_callback = ["supabase"]
# litellm.failure_callback = ["supabase"]
litellm.input_callback = ["supabase"]
litellm.success_callback = ["supabase"]
litellm.failure_callback = ["supabase"]
# litellm.modify_integration("supabase",{"table_name": "litellm_logs"})
litellm.modify_integration("supabase",{"table_name": "test_table"})
# litellm.set_verbose = True
litellm.set_verbose = True
# user_message = "Hello, how are you?"
# messages = [{ "content": user_message,"role": "user"}]
user_message = "Hello, how are you?"
messages = [{ "content": user_message,"role": "user"}]
# #openai call
# response = completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hi 👋 - i'm openai"}])
#openai call
response = completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hi 👋 - i'm openai"}])
# #bad request call
# response = completion(model="chatgpt-test", messages=[{"role": "user", "content": "Hi 👋 - i'm a bad request"}])
#bad request call
response = completion(model="chatgpt-test", messages=[{"role": "user", "content": "Hi 👋 - i'm a bad request"}])

View file

@ -135,48 +135,105 @@ def install_and_import(package: str):
####### LOGGING ###################
# Logging function -> log the exact model details + what's being sent | Non-Blocking
def logging(
model=None,
input=None,
custom_llm_provider=None,
azure=False,
class Logging:
def __init__(self, model, messages, optional_params, litellm_params):
self.model = model
self.messages = messages
self.optional_params = optional_params
self.litellm_params = litellm_params
self.logger_fn = litellm_params["logger_fn"]
self.model_call_details = {
"model": model,
"messages": messages,
"optional_params": self.optional_params,
"litellm_params": self.litellm_params,
}
def pre_call(self, input, api_key, additional_args={}):
try:
print(f"logging pre call for model: {self.model}")
self.model_call_details["input"] = input
self.model_call_details["api_key"] = api_key
self.model_call_details["additional_args"] = additional_args
## User Logging -> if you pass in a custom logging function
print_verbose(
f"Logging Details: logger_fn - {self.logger_fn} | callable(logger_fn) - {callable(self.logger_fn)}"
)
if self.logger_fn and callable(self.logger_fn):
try:
self.logger_fn(
self.model_call_details
) # Expectation: any logger function passed in by the user should accept a dict object
except Exception as e:
print_verbose(
f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {traceback.format_exc()}"
)
## Input Integration Logging -> If you want to log the fact that an attempt to call the model was made
for callback in litellm.input_callback:
try:
if callback == "supabase":
print_verbose("reaches supabase for logging!")
model = self.model
messages = self.messages
print(f"litellm._thread_context: {litellm._thread_context}")
supabaseClient.input_log_event(
model=model,
messages=messages,
end_user=litellm._thread_context.user,
litellm_call_id=self.litellm_params["litellm_call_id"],
print_verbose=print_verbose,
)
pass
except:
pass
except:
print_verbose(
f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {traceback.format_exc()}"
)
pass
def post_call(self, input, api_key, original_response, additional_args={}):
# Do something here
try:
self.model_call_details["input"] = input
self.model_call_details["api_key"] = api_key
self.model_call_details["original_response"] = original_response
self.model_call_details["additional_args"] = additional_args
## User Logging -> if you pass in a custom logging function
print_verbose(
f"Logging Details: logger_fn - {self.logger_fn} | callable(logger_fn) - {callable(self.logger_fn)}"
)
if self.logger_fn and callable(self.logger_fn):
try:
self.logger_fn(
self.model_call_details
) # Expectation: any logger function passed in by the user should accept a dict object
except Exception as e:
print_verbose(
f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {traceback.format_exc()}"
)
except:
print_verbose(
f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {traceback.format_exc()}"
)
pass
# Add more methods as needed
def exception_logging(
additional_args={},
logger_fn=None,
exception=None,
):
try:
model_call_details = {}
if model:
model_call_details["model"] = model
if azure:
model_call_details["azure"] = azure
if custom_llm_provider:
model_call_details["custom_llm_provider"] = custom_llm_provider
if exception:
model_call_details["exception"] = exception
if input:
model_call_details["input"] = input
if len(additional_args):
model_call_details["additional_args"] = additional_args
# log additional call details -> api key, etc.
if model:
if (
azure == True
or model in litellm.open_ai_chat_completion_models
or model in litellm.open_ai_chat_completion_models
or model in litellm.open_ai_embedding_models
):
model_call_details["api_type"] = openai.api_type
model_call_details["api_base"] = openai.api_base
model_call_details["api_version"] = openai.api_version
model_call_details["api_key"] = openai.api_key
elif "replicate" in model:
model_call_details["api_key"] = os.environ.get("REPLICATE_API_TOKEN")
elif model in litellm.anthropic_models:
model_call_details["api_key"] = os.environ.get("ANTHROPIC_API_KEY")
elif model in litellm.cohere_models:
model_call_details["api_key"] = os.environ.get("COHERE_API_KEY")
model_call_details["additional_args"] = additional_args
## User Logging -> if you pass in a custom logging function or want to use sentry breadcrumbs
print_verbose(
f"Logging Details: logger_fn - {logger_fn} | callable(logger_fn) - {callable(logger_fn)}"
@ -206,10 +263,10 @@ def client(original_function):
try:
global callback_list, add_breadcrumb, user_logger_fn
if (
len(litellm.success_callback) > 0 or len(litellm.failure_callback) > 0
len(litellm.input_callback) > 0 or len(litellm.success_callback) > 0 or len(litellm.failure_callback) > 0
) and len(callback_list) == 0:
callback_list = list(
set(litellm.success_callback + litellm.failure_callback)
set(litellm.input_callback + litellm.success_callback + litellm.failure_callback)
)
set_callbacks(
callback_list=callback_list,
@ -299,13 +356,16 @@ def client(original_function):
result = None
try:
function_setup(*args, **kwargs)
## MODEL CALL
litellm_call_id = str(uuid.uuid4())
kwargs["litellm_call_id"] = litellm_call_id
## [OPTIONAL] CHECK CACHE
start_time = datetime.datetime.now()
if (litellm.caching or litellm.caching_with_models) and (
cached_result := check_cache(*args, **kwargs)
) is not None:
result = cached_result
else:
## MODEL CALL
result = original_function(*args, **kwargs)
end_time = datetime.datetime.now()
## Add response to CACHE
@ -399,6 +459,7 @@ def get_litellm_params(
together_ai=False,
custom_llm_provider=None,
custom_api_base=None,
litellm_call_id=None,
):
litellm_params = {
"return_async": return_async,
@ -408,6 +469,7 @@ def get_litellm_params(
"verbose": verbose,
"custom_llm_provider": custom_llm_provider,
"custom_api_base": custom_api_base,
"litellm_call_id": litellm_call_id
}
return litellm_params
@ -567,7 +629,8 @@ def set_callbacks(callback_list):
global sentry_sdk_instance, capture_exception, add_breadcrumb, posthog, slack_app, alerts_channel, heliconeLogger, aispendLogger, berrispendLogger, supabaseClient
try:
for callback in callback_list:
if callback == "sentry" or "SENTRY_API_URL" in os.environ:
print(f"callback: {callback}")
if callback == "sentry":
try:
import sentry_sdk
except ImportError:
@ -623,6 +686,7 @@ def set_callbacks(callback_list):
elif callback == "berrispend":
berrispendLogger = BerriSpendLogger()
elif callback == "supabase":
print(f"instantiating supabase")
supabaseClient = Supabase()
except Exception as e:
raise e
@ -743,7 +807,6 @@ def handle_failure(exception, traceback_exception, start_time, end_time, args, k
"completion_tokens": 0,
},
}
print(f"litellm._thread_context: {litellm._thread_context}")
supabaseClient.log_event(
model=model,
messages=messages,
@ -751,9 +814,9 @@ def handle_failure(exception, traceback_exception, start_time, end_time, args, k
response_obj=result,
start_time=start_time,
end_time=end_time,
litellm_call_id=kwargs["litellm_call_id"],
print_verbose=print_verbose,
)
except:
print_verbose(
f"Error Occurred while logging failure: {traceback.format_exc()}"
@ -769,7 +832,7 @@ def handle_failure(exception, traceback_exception, start_time, end_time, args, k
pass
except Exception as e:
## LOGGING
logging(logger_fn=user_logger_fn, exception=e)
exception_logging(logger_fn=user_logger_fn, exception=e)
pass
@ -849,11 +912,12 @@ def handle_success(args, kwargs, result, start_time, end_time):
response_obj=result,
start_time=start_time,
end_time=end_time,
litellm_call_id=kwargs["litellm_call_id"],
print_verbose=print_verbose,
)
except Exception as e:
## LOGGING
logging(logger_fn=user_logger_fn, exception=e)
exception_logging(logger_fn=user_logger_fn, exception=e)
print_verbose(
f"[Non-Blocking] Success Callback Error - {traceback.format_exc()}"
)
@ -864,7 +928,7 @@ def handle_success(args, kwargs, result, start_time, end_time):
pass
except Exception as e:
## LOGGING
logging(logger_fn=user_logger_fn, exception=e)
exception_logging(logger_fn=user_logger_fn, exception=e)
print_verbose(
f"[Non-Blocking] Success Callback Error - {traceback.format_exc()}"
)
@ -912,15 +976,6 @@ def exception_type(model, original_exception, custom_llm_provider):
exception_type = type(original_exception).__name__
else:
exception_type = ""
logging(
model=model,
additional_args={
"error_str": error_str,
"exception_type": exception_type,
"original_exception": original_exception,
},
logger_fn=user_logger_fn,
)
if "claude" in model: # one of the anthropics
if hasattr(original_exception, "status_code"):
print_verbose(f"status_code: {original_exception.status_code}")
@ -1030,7 +1085,7 @@ def exception_type(model, original_exception, custom_llm_provider):
raise original_exception
except Exception as e:
## LOGGING
logging(
exception_logging(
logger_fn=user_logger_fn,
additional_args={
"exception_mapping_worked": exception_mapping_worked,