forked from phoenix/litellm-mirror
Merge pull request #5004 from BerriAI/litellm_codestral_fim_support
feat(vertex_ai_partner.py): add vertex ai codestral FIM support
This commit is contained in:
commit
d8778380d8
7 changed files with 199 additions and 40 deletions
|
@ -833,7 +833,11 @@ curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|||
|
||||
| Model Name | Function Call |
|
||||
|------------------|--------------------------------------|
|
||||
| meta/llama3-405b-instruct-maas | `completion('vertex_ai/mistral-large@2407', messages)` |
|
||||
| mistral-large@latest | `completion('vertex_ai/mistral-large@latest', messages)` |
|
||||
| mistral-large@2407 | `completion('vertex_ai/mistral-large@2407', messages)` |
|
||||
| mistral-nemo@latest | `completion('vertex_ai/mistral-nemo@latest', messages)` |
|
||||
| codestral@latest | `completion('vertex_ai/codestral@latest', messages)` |
|
||||
| codestral@@2405 | `completion('vertex_ai/codestral@2405', messages)` |
|
||||
|
||||
### Usage
|
||||
|
||||
|
@ -866,12 +870,12 @@ print("\nModel Response", response)
|
|||
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: anthropic-mistral
|
||||
- model_name: vertex-mistral
|
||||
litellm_params:
|
||||
model: vertex_ai/mistral-large@2407
|
||||
vertex_ai_project: "my-test-project"
|
||||
vertex_ai_location: "us-east-1"
|
||||
- model_name: anthropic-mistral
|
||||
- model_name: vertex-mistral
|
||||
litellm_params:
|
||||
model: vertex_ai/mistral-large@2407
|
||||
vertex_ai_project: "my-test-project"
|
||||
|
@ -893,7 +897,7 @@ curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|||
--header 'Authorization: Bearer sk-1234' \
|
||||
--header 'Content-Type: application/json' \
|
||||
--data '{
|
||||
"model": "anthropic-mistral", # 👈 the 'model_name' in config
|
||||
"model": "vertex-mistral", # 👈 the 'model_name' in config
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
|
@ -907,6 +911,94 @@ curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|||
</Tabs>
|
||||
|
||||
|
||||
|
||||
### Usage - Codestral FIM
|
||||
|
||||
Call Codestral on VertexAI via the OpenAI [`/v1/completion`](https://platform.openai.com/docs/api-reference/completions/create) endpoint for FIM tasks.
|
||||
|
||||
Note: You can also call Codestral via `/chat/completion`.
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="sdk" label="SDK">
|
||||
|
||||
```python
|
||||
from litellm import completion
|
||||
import os
|
||||
|
||||
# os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = ""
|
||||
# OR run `!gcloud auth print-access-token` in your terminal
|
||||
|
||||
model = "codestral@2405"
|
||||
|
||||
vertex_ai_project = "your-vertex-project" # can also set this as os.environ["VERTEXAI_PROJECT"]
|
||||
vertex_ai_location = "your-vertex-location" # can also set this as os.environ["VERTEXAI_LOCATION"]
|
||||
|
||||
response = text_completion(
|
||||
model="vertex_ai/" + model,
|
||||
vertex_ai_project=vertex_ai_project,
|
||||
vertex_ai_location=vertex_ai_location,
|
||||
prompt="def is_odd(n): \n return n % 2 == 1 \ndef test_is_odd():",
|
||||
suffix="return True", # optional
|
||||
temperature=0, # optional
|
||||
top_p=1, # optional
|
||||
max_tokens=10, # optional
|
||||
min_tokens=10, # optional
|
||||
seed=10, # optional
|
||||
stop=["return"], # optional
|
||||
)
|
||||
|
||||
print("\nModel Response", response)
|
||||
```
|
||||
</TabItem>
|
||||
<TabItem value="proxy" label="Proxy">
|
||||
|
||||
**1. Add to config**
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: vertex-codestral
|
||||
litellm_params:
|
||||
model: vertex_ai/codestral@2405
|
||||
vertex_ai_project: "my-test-project"
|
||||
vertex_ai_location: "us-east-1"
|
||||
- model_name: vertex-codestral
|
||||
litellm_params:
|
||||
model: vertex_ai/codestral@2405
|
||||
vertex_ai_project: "my-test-project"
|
||||
vertex_ai_location: "us-west-1"
|
||||
```
|
||||
|
||||
**2. Start proxy**
|
||||
|
||||
```bash
|
||||
litellm --config /path/to/config.yaml
|
||||
|
||||
# RUNNING at http://0.0.0.0:4000
|
||||
```
|
||||
|
||||
**3. Test it!**
|
||||
|
||||
```bash
|
||||
curl -X POST 'http://0.0.0.0:4000/completions' \
|
||||
-H 'Authorization: Bearer sk-1234' \
|
||||
-H 'Content-Type: application/json' \
|
||||
-d '{
|
||||
"model": "vertex-codestral", # 👈 the 'model_name' in config
|
||||
"prompt": "def is_odd(n): \n return n % 2 == 1 \ndef test_is_odd():",
|
||||
"suffix":"return True", # optional
|
||||
"temperature":0, # optional
|
||||
"top_p":1, # optional
|
||||
"max_tokens":10, # optional
|
||||
"min_tokens":10, # optional
|
||||
"seed":10, # optional
|
||||
"stop":["return"], # optional
|
||||
}'
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
|
||||
## Model Garden
|
||||
| Model Name | Function Call |
|
||||
|------------------|--------------------------------------|
|
||||
|
|
|
@ -5,6 +5,7 @@ import os
|
|||
import traceback
|
||||
|
||||
from packaging.version import Version
|
||||
from pydantic import BaseModel
|
||||
|
||||
import litellm
|
||||
from litellm._logging import verbose_logger
|
||||
|
@ -43,8 +44,8 @@ class LangFuseLogger:
|
|||
self.langfuse_debug = os.getenv("LANGFUSE_DEBUG")
|
||||
|
||||
parameters = {
|
||||
"public_key": self.public_key,
|
||||
"secret_key": self.secret_key,
|
||||
"public_key": "pk-lf-b3db7e8e-c2f6-4fc7-825c-a541a8fbe003",
|
||||
"secret_key": "sk-lf-b11ef3a8-361c-4445-9652-12318b8596e4",
|
||||
"host": self.langfuse_host,
|
||||
"release": self.langfuse_release,
|
||||
"debug": self.langfuse_debug,
|
||||
|
@ -331,7 +332,7 @@ class LangFuseLogger:
|
|||
metadata = copy.deepcopy(
|
||||
metadata
|
||||
) # Avoid modifying the original metadata
|
||||
except:
|
||||
except Exception:
|
||||
new_metadata = {}
|
||||
for key, value in metadata.items():
|
||||
if (
|
||||
|
@ -342,6 +343,8 @@ class LangFuseLogger:
|
|||
or isinstance(value, float)
|
||||
):
|
||||
new_metadata[key] = copy.deepcopy(value)
|
||||
elif isinstance(value, BaseModel):
|
||||
new_metadata[key] = value.model_dump()
|
||||
metadata = new_metadata
|
||||
|
||||
supports_tags = Version(langfuse.version.__version__) >= Version("2.6.3")
|
||||
|
|
|
@ -1,28 +1,33 @@
|
|||
# What is this?
|
||||
## Controller file for TextCompletionCodestral Integration - https://codestral.com/
|
||||
|
||||
from functools import partial
|
||||
import os, types
|
||||
import traceback
|
||||
import copy
|
||||
import json
|
||||
from enum import Enum
|
||||
import requests, copy # type: ignore
|
||||
import os
|
||||
import time
|
||||
from typing import Callable, Optional, List, Literal, Union
|
||||
import traceback
|
||||
import types
|
||||
from enum import Enum
|
||||
from functools import partial
|
||||
from typing import Callable, List, Literal, Optional, Union
|
||||
|
||||
import httpx # type: ignore
|
||||
import requests # type: ignore
|
||||
|
||||
import litellm
|
||||
from litellm.litellm_core_utils.core_helpers import map_finish_reason
|
||||
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler
|
||||
from litellm.types.llms.databricks import GenericStreamingChunk
|
||||
from litellm.utils import (
|
||||
TextCompletionResponse,
|
||||
Usage,
|
||||
Choices,
|
||||
CustomStreamWrapper,
|
||||
Message,
|
||||
Choices,
|
||||
TextCompletionResponse,
|
||||
Usage,
|
||||
)
|
||||
from litellm.litellm_core_utils.core_helpers import map_finish_reason
|
||||
from litellm.types.llms.databricks import GenericStreamingChunk
|
||||
import litellm
|
||||
from .prompt_templates.factory import prompt_factory, custom_prompt
|
||||
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler
|
||||
|
||||
from .base import BaseLLM
|
||||
import httpx # type: ignore
|
||||
from .prompt_templates.factory import custom_prompt, prompt_factory
|
||||
|
||||
|
||||
class TextCompletionCodestralError(Exception):
|
||||
|
@ -329,7 +334,12 @@ class CodestralTextCompletion(BaseLLM):
|
|||
) -> Union[TextCompletionResponse, CustomStreamWrapper]:
|
||||
headers = self._validate_environment(api_key, headers)
|
||||
|
||||
completion_url = api_base or "https://codestral.mistral.ai/v1/fim/completions"
|
||||
if optional_params.pop("custom_endpoint", None) is True:
|
||||
completion_url = api_base
|
||||
else:
|
||||
completion_url = (
|
||||
api_base or "https://codestral.mistral.ai/v1/fim/completions"
|
||||
)
|
||||
|
||||
if model in custom_prompt_dict:
|
||||
# check if the model has a registered custom prompt
|
||||
|
@ -426,6 +436,7 @@ class CodestralTextCompletion(BaseLLM):
|
|||
return _response
|
||||
### SYNC COMPLETION
|
||||
else:
|
||||
|
||||
response = requests.post(
|
||||
url=completion_url,
|
||||
headers=headers,
|
||||
|
@ -464,8 +475,11 @@ class CodestralTextCompletion(BaseLLM):
|
|||
headers={},
|
||||
) -> TextCompletionResponse:
|
||||
|
||||
async_handler = AsyncHTTPHandler(timeout=httpx.Timeout(timeout=timeout))
|
||||
async_handler = AsyncHTTPHandler(
|
||||
timeout=httpx.Timeout(timeout=timeout), concurrent_limit=1
|
||||
)
|
||||
try:
|
||||
|
||||
response = await async_handler.post(
|
||||
api_base, headers=headers, data=json.dumps(data)
|
||||
)
|
||||
|
|
|
@ -140,10 +140,10 @@ class VertexAIPartnerModels(BaseLLM):
|
|||
custom_prompt_dict: dict,
|
||||
headers: Optional[dict],
|
||||
timeout: Union[float, httpx.Timeout],
|
||||
litellm_params: dict,
|
||||
vertex_project=None,
|
||||
vertex_location=None,
|
||||
vertex_credentials=None,
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
acompletion: bool = False,
|
||||
client=None,
|
||||
|
@ -154,6 +154,7 @@ class VertexAIPartnerModels(BaseLLM):
|
|||
|
||||
from litellm.llms.databricks import DatabricksChatCompletion
|
||||
from litellm.llms.openai import OpenAIChatCompletion
|
||||
from litellm.llms.text_completion_codestral import CodestralTextCompletion
|
||||
from litellm.llms.vertex_httpx import VertexLLM
|
||||
except Exception:
|
||||
|
||||
|
@ -178,12 +179,7 @@ class VertexAIPartnerModels(BaseLLM):
|
|||
)
|
||||
|
||||
openai_like_chat_completions = DatabricksChatCompletion()
|
||||
|
||||
## Load Config
|
||||
# config = litellm.VertexAILlama3.get_config()
|
||||
# for k, v in config.items():
|
||||
# if k not in optional_params:
|
||||
# optional_params[k] = v
|
||||
codestral_fim_completions = CodestralTextCompletion()
|
||||
|
||||
## CONSTRUCT API BASE
|
||||
stream: bool = optional_params.get("stream", False) or False
|
||||
|
@ -206,6 +202,28 @@ class VertexAIPartnerModels(BaseLLM):
|
|||
|
||||
model = model.split("@")[0]
|
||||
|
||||
if "codestral" in model and litellm_params.get("text_completion") is True:
|
||||
optional_params["model"] = model
|
||||
text_completion_model_response = litellm.TextCompletionResponse(
|
||||
stream=stream
|
||||
)
|
||||
return codestral_fim_completions.completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
api_base=api_base,
|
||||
api_key=access_token,
|
||||
custom_prompt_dict=custom_prompt_dict,
|
||||
model_response=text_completion_model_response,
|
||||
print_verbose=print_verbose,
|
||||
logging_obj=logging_obj,
|
||||
optional_params=optional_params,
|
||||
acompletion=acompletion,
|
||||
litellm_params=litellm_params,
|
||||
logger_fn=logger_fn,
|
||||
timeout=timeout,
|
||||
encoding=encoding,
|
||||
)
|
||||
|
||||
return openai_like_chat_completions.completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
|
|
|
@ -986,6 +986,7 @@ def completion(
|
|||
output_cost_per_second=output_cost_per_second,
|
||||
output_cost_per_token=output_cost_per_token,
|
||||
cooldown_time=cooldown_time,
|
||||
text_completion=kwargs.get("text_completion"),
|
||||
)
|
||||
logging.update_environment_variables(
|
||||
model=model,
|
||||
|
@ -2085,7 +2086,7 @@ def completion(
|
|||
model_response=model_response,
|
||||
print_verbose=print_verbose,
|
||||
optional_params=new_params,
|
||||
litellm_params=litellm_params,
|
||||
litellm_params=litellm_params, # type: ignore
|
||||
logger_fn=logger_fn,
|
||||
encoding=encoding,
|
||||
vertex_location=vertex_ai_location,
|
||||
|
|
|
@ -4104,9 +4104,19 @@ async def test_async_text_completion_chat_model_stream():
|
|||
# asyncio.run(test_async_text_completion_chat_model_stream())
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"model", ["vertex_ai/codestral@2405", "text-completion-codestral/codestral-2405"] #
|
||||
)
|
||||
@pytest.mark.asyncio
|
||||
async def test_completion_codestral_fim_api():
|
||||
async def test_completion_codestral_fim_api(model):
|
||||
try:
|
||||
if model == "vertex_ai/codestral@2405":
|
||||
from litellm.tests.test_amazing_vertex_completion import (
|
||||
load_vertex_ai_credentials,
|
||||
)
|
||||
|
||||
load_vertex_ai_credentials()
|
||||
|
||||
litellm.set_verbose = True
|
||||
import logging
|
||||
|
||||
|
@ -4114,7 +4124,7 @@ async def test_completion_codestral_fim_api():
|
|||
|
||||
verbose_logger.setLevel(level=logging.DEBUG)
|
||||
response = await litellm.atext_completion(
|
||||
model="text-completion-codestral/codestral-2405",
|
||||
model=model,
|
||||
prompt="def is_odd(n): \n return n % 2 == 1 \ndef test_is_odd():",
|
||||
suffix="return True",
|
||||
temperature=0,
|
||||
|
@ -4137,9 +4147,19 @@ async def test_completion_codestral_fim_api():
|
|||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"model",
|
||||
["vertex_ai/codestral@2405", "text-completion-codestral/codestral-2405"],
|
||||
)
|
||||
@pytest.mark.asyncio
|
||||
async def test_completion_codestral_fim_api_stream():
|
||||
async def test_completion_codestral_fim_api_stream(model):
|
||||
try:
|
||||
if model == "vertex_ai/codestral@2405":
|
||||
from litellm.tests.test_amazing_vertex_completion import (
|
||||
load_vertex_ai_credentials,
|
||||
)
|
||||
|
||||
load_vertex_ai_credentials()
|
||||
import logging
|
||||
|
||||
from litellm._logging import verbose_logger
|
||||
|
@ -4148,7 +4168,7 @@ async def test_completion_codestral_fim_api_stream():
|
|||
|
||||
# verbose_logger.setLevel(level=logging.DEBUG)
|
||||
response = await litellm.atext_completion(
|
||||
model="text-completion-codestral/codestral-2405",
|
||||
model=model,
|
||||
prompt="def is_odd(n): \n return n % 2 == 1 \ndef test_is_odd():",
|
||||
suffix="return True",
|
||||
temperature=0,
|
||||
|
|
|
@ -2258,6 +2258,7 @@ def get_litellm_params(
|
|||
output_cost_per_token=None,
|
||||
output_cost_per_second=None,
|
||||
cooldown_time=None,
|
||||
text_completion=None,
|
||||
):
|
||||
litellm_params = {
|
||||
"acompletion": acompletion,
|
||||
|
@ -2281,6 +2282,7 @@ def get_litellm_params(
|
|||
"output_cost_per_token": output_cost_per_token,
|
||||
"output_cost_per_second": output_cost_per_second,
|
||||
"cooldown_time": cooldown_time,
|
||||
"text_completion": text_completion,
|
||||
}
|
||||
|
||||
return litellm_params
|
||||
|
@ -3127,6 +3129,11 @@ def get_optional_params(
|
|||
model=model, custom_llm_provider=custom_llm_provider
|
||||
)
|
||||
_check_valid_arg(supported_params=supported_params)
|
||||
if "codestral" in model:
|
||||
optional_params = litellm.MistralTextCompletionConfig().map_openai_params(
|
||||
non_default_params=non_default_params, optional_params=optional_params
|
||||
)
|
||||
else:
|
||||
optional_params = litellm.MistralConfig().map_openai_params(
|
||||
non_default_params=non_default_params,
|
||||
optional_params=optional_params,
|
||||
|
@ -4239,6 +4246,10 @@ def get_supported_openai_params(
|
|||
return litellm.VertexAILlama3Config().get_supported_openai_params()
|
||||
if model.startswith("mistral"):
|
||||
return litellm.MistralConfig().get_supported_openai_params()
|
||||
if model.startswith("codestral"):
|
||||
return (
|
||||
litellm.MistralTextCompletionConfig().get_supported_openai_params()
|
||||
)
|
||||
return litellm.VertexAIConfig().get_supported_openai_params()
|
||||
elif request_type == "embeddings":
|
||||
return litellm.VertexAITextEmbeddingConfig().get_supported_openai_params()
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue