Merge pull request #4076 from BerriAI/litellm_log_litellm_response_request_OTEL

[FEAT]- OTEL log litellm request / response
This commit is contained in:
Ishaan Jaff 2024-06-08 10:01:10 -07:00 committed by GitHub
commit d88b63264b
No known key found for this signature in database
GPG key ID: B5690EEEBB952194

View file

@ -223,10 +223,106 @@ class OpenTelemetry(CustomLogger):
self.set_attributes(span, kwargs, response_obj)
span.end(end_time=self._to_ns(end_time))
def set_attributes(self, span, kwargs, response_obj):
for key in ["model", "api_base", "api_version"]:
if key in kwargs:
span.set_attribute(key, kwargs[key])
def set_attributes(self, span: Span, kwargs, response_obj):
from opentelemetry.semconv.ai import SpanAttributes
optional_params = kwargs.get("optional_params", {})
litellm_params = kwargs.get("litellm_params", {}) or {}
# https://github.com/open-telemetry/semantic-conventions/blob/main/model/registry/gen-ai.yaml
# Following Conventions here: https://github.com/open-telemetry/semantic-conventions/blob/main/docs/gen-ai/llm-spans.md
#############################################
########## LLM Request Attributes ###########
#############################################
# The name of the LLM a request is being made to
span.set_attribute(SpanAttributes.LLM_REQUEST_MODEL, kwargs.get("model"))
# The Generative AI Provider: Azure, OpenAI, etc.
span.set_attribute(
SpanAttributes.LLM_SYSTEM,
litellm_params.get("custom_llm_provider", "Unknown"),
)
# The maximum number of tokens the LLM generates for a request.
span.set_attribute(
SpanAttributes.LLM_REQUEST_MAX_TOKENS, optional_params.get("max_tokens")
)
# The temperature setting for the LLM request.
span.set_attribute(
SpanAttributes.LLM_REQUEST_TEMPERATURE, optional_params.get("temperature")
)
# The top_p sampling setting for the LLM request.
span.set_attribute(
SpanAttributes.LLM_REQUEST_TOP_P, optional_params.get("top_p")
)
span.set_attribute(
SpanAttributes.LLM_IS_STREAMING, optional_params.get("stream")
)
span.set_attribute(
SpanAttributes.LLM_REQUEST_FUNCTIONS,
optional_params.get("tools"),
)
span.set_attribute(SpanAttributes.LLM_USER, optional_params.get("user"))
for idx, prompt in enumerate(kwargs.get("messages")):
span.set_attribute(
f"{SpanAttributes.LLM_PROMPTS}.{idx}.role",
prompt.get("role"),
)
span.set_attribute(
f"{SpanAttributes.LLM_PROMPTS}.{idx}.content",
prompt.get("content"),
)
#############################################
########## LLM Response Attributes ##########
#############################################
for idx, choice in enumerate(response_obj.get("choices")):
span.set_attribute(
f"{SpanAttributes.LLM_COMPLETIONS}.{idx}.finish_reason",
choice.get("finish_reason"),
)
span.set_attribute(
f"{SpanAttributes.LLM_COMPLETIONS}.{idx}.role",
choice.get("message").get("role"),
)
span.set_attribute(
f"{SpanAttributes.LLM_COMPLETIONS}.{idx}.content",
choice.get("message").get("content"),
)
# The unique identifier for the completion.
span.set_attribute("gen_ai.response.id", response_obj.get("id"))
# The model used to generate the response.
span.set_attribute(SpanAttributes.LLM_RESPONSE_MODEL, response_obj.get("model"))
usage = response_obj.get("usage")
if usage:
span.set_attribute(
SpanAttributes.LLM_USAGE_TOTAL_TOKENS,
usage.get("total_tokens"),
)
# The number of tokens used in the LLM response (completion).
span.set_attribute(
SpanAttributes.LLM_USAGE_COMPLETION_TOKENS,
usage.get("completion_tokens"),
)
# The number of tokens used in the LLM prompt.
span.set_attribute(
SpanAttributes.LLM_USAGE_PROMPT_TOKENS,
usage.get("prompt_tokens"),
)
def _to_ns(self, dt):
return int(dt.timestamp() * 1e9)
@ -244,7 +340,7 @@ class OpenTelemetry(CustomLogger):
proxy_server_request = litellm_params.get("proxy_server_request", {}) or {}
headers = proxy_server_request.get("headers", {}) or {}
traceparent = headers.get("traceparent", None)
_metadata = litellm_params.get("metadata", {})
_metadata = litellm_params.get("metadata", {}) or {}
parent_otel_span = _metadata.get("litellm_parent_otel_span", None)
"""