Merge branch 'main' into litellm_budget_per_key

This commit is contained in:
Ishaan Jaff 2024-01-22 15:49:57 -08:00 committed by GitHub
commit db68774d60
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
20 changed files with 731 additions and 183 deletions

View file

@ -0,0 +1,34 @@
import Image from '@theme/IdealImage';
# Custom Pricing - Sagemaker, etc.
Use this to register custom pricing (cost per token or cost per second) for models.
## Quick Start
Register custom pricing for sagemaker completion + embedding models.
For cost per second pricing, you **just** need to register `input_cost_per_second`.
**Step 1: Add pricing to config.yaml**
```yaml
model_list:
- model_name: sagemaker-completion-model
litellm_params:
model: sagemaker/berri-benchmarking-Llama-2-70b-chat-hf-4
input_cost_per_second: 0.000420
- model_name: sagemaker-embedding-model
litellm_params:
model: sagemaker/berri-benchmarking-gpt-j-6b-fp16
input_cost_per_second: 0.000420
```
**Step 2: Start proxy**
```bash
litellm /path/to/config.yaml
```
**Step 3: View Spend Logs**
<Image img={require('../../img/spend_logs_table.png')} />

View file

@ -440,6 +440,97 @@ general_settings:
$ litellm --config /path/to/config.yaml
```
## Custom /key/generate
If you need to add custom logic before generating a Proxy API Key (Example Validating `team_id`)
### 1. Write a custom `custom_generate_key_fn`
The input to the custom_generate_key_fn function is a single parameter: `data` [(Type: GenerateKeyRequest)](https://github.com/BerriAI/litellm/blob/main/litellm/proxy/_types.py#L125)
The output of your `custom_generate_key_fn` should be a dictionary with the following structure
```python
{
"decision": False,
"message": "This violates LiteLLM Proxy Rules. No team id provided.",
}
```
- decision (Type: bool): A boolean value indicating whether the key generation is allowed (True) or not (False).
- message (Type: str, Optional): An optional message providing additional information about the decision. This field is included when the decision is False.
```python
async def custom_generate_key_fn(data: GenerateKeyRequest)-> dict:
"""
Asynchronous function for generating a key based on the input data.
Args:
data (GenerateKeyRequest): The input data for key generation.
Returns:
dict: A dictionary containing the decision and an optional message.
{
"decision": False,
"message": "This violates LiteLLM Proxy Rules. No team id provided.",
}
"""
# decide if a key should be generated or not
print("using custom auth function!")
data_json = data.json() # type: ignore
# Unpacking variables
team_id = data_json.get("team_id")
duration = data_json.get("duration")
models = data_json.get("models")
aliases = data_json.get("aliases")
config = data_json.get("config")
spend = data_json.get("spend")
user_id = data_json.get("user_id")
max_parallel_requests = data_json.get("max_parallel_requests")
metadata = data_json.get("metadata")
tpm_limit = data_json.get("tpm_limit")
rpm_limit = data_json.get("rpm_limit")
if team_id is not None and team_id == "litellm-core-infra@gmail.com":
# only team_id="litellm-core-infra@gmail.com" can make keys
return {
"decision": True,
}
else:
print("Failed custom auth")
return {
"decision": False,
"message": "This violates LiteLLM Proxy Rules. No team id provided.",
}
```
### 2. Pass the filepath (relative to the config.yaml)
Pass the filepath to the config.yaml
e.g. if they're both in the same dir - `./config.yaml` and `./custom_auth.py`, this is what it looks like:
```yaml
model_list:
- model_name: "openai-model"
litellm_params:
model: "gpt-3.5-turbo"
litellm_settings:
drop_params: True
set_verbose: True
general_settings:
custom_key_generate: custom_auth.custom_generate_key_fn
```
## [BETA] Dynamo DB

Binary file not shown.

After

Width:  |  Height:  |  Size: 189 KiB

View file

@ -139,6 +139,7 @@ const sidebars = {
"items": [
"proxy/call_hooks",
"proxy/rules",
"proxy/custom_pricing"
]
},
"proxy/deploy",

View file

@ -12,15 +12,6 @@ formatter = logging.Formatter("\033[92m%(name)s - %(levelname)s\033[0m: %(messag
handler.setFormatter(formatter)
def print_verbose(print_statement):
try:
if set_verbose:
print(print_statement) # noqa
except:
pass
verbose_proxy_logger = logging.getLogger("LiteLLM Proxy")
verbose_router_logger = logging.getLogger("LiteLLM Router")
verbose_logger = logging.getLogger("LiteLLM")
@ -29,3 +20,18 @@ verbose_logger = logging.getLogger("LiteLLM")
verbose_router_logger.addHandler(handler)
verbose_proxy_logger.addHandler(handler)
verbose_logger.addHandler(handler)
def print_verbose(print_statement):
try:
if set_verbose:
print(print_statement) # noqa
verbose_logger.setLevel(level=logging.DEBUG) # set package log to debug
verbose_router_logger.setLevel(
level=logging.DEBUG
) # set router logs to debug
verbose_proxy_logger.setLevel(
level=logging.DEBUG
) # set proxy logs to debug
except:
pass

View file

@ -629,12 +629,23 @@ class AzureChatCompletion(BaseLLM):
client_session = litellm.aclient_session or httpx.AsyncClient(
transport=AsyncCustomHTTPTransport(),
)
openai_aclient = AsyncAzureOpenAI(
azure_client = AsyncAzureOpenAI(
http_client=client_session, **azure_client_params
)
else:
openai_aclient = client
response = await openai_aclient.images.generate(**data, timeout=timeout)
azure_client = client
## LOGGING
logging_obj.pre_call(
input=data["prompt"],
api_key=azure_client.api_key,
additional_args={
"headers": {"api_key": azure_client.api_key},
"api_base": azure_client._base_url._uri_reference,
"acompletion": True,
"complete_input_dict": data,
},
)
response = await azure_client.images.generate(**data, timeout=timeout)
stringified_response = response.model_dump()
## LOGGING
logging_obj.post_call(
@ -719,7 +730,7 @@ class AzureChatCompletion(BaseLLM):
input=prompt,
api_key=azure_client.api_key,
additional_args={
"headers": {"Authorization": f"Bearer {azure_client.api_key}"},
"headers": {"api_key": azure_client.api_key},
"api_base": azure_client._base_url._uri_reference,
"acompletion": False,
"complete_input_dict": data,

View file

@ -43,7 +43,7 @@ class AsyncCustomHTTPTransport(httpx.AsyncHTTPTransport):
request=request,
)
time.sleep(int(response.headers.get("retry-after")) or 10)
await asyncio.sleep(int(response.headers.get("retry-after") or 10))
response = await super().handle_async_request(request)
await response.aread()
@ -95,7 +95,6 @@ class CustomHTTPTransport(httpx.HTTPTransport):
request.method = "GET"
response = super().handle_request(request)
response.read()
timeout_secs: int = 120
start_time = time.time()
while response.json()["status"] not in ["succeeded", "failed"]:
@ -112,11 +111,9 @@ class CustomHTTPTransport(httpx.HTTPTransport):
content=json.dumps(timeout).encode("utf-8"),
request=request,
)
time.sleep(int(response.headers.get("retry-after")) or 10)
time.sleep(int(response.headers.get("retry-after", None) or 10))
response = super().handle_request(request)
response.read()
if response.json()["status"] == "failed":
error_data = response.json()
return httpx.Response(

View file

@ -348,6 +348,13 @@ def mock_completion(
prompt_tokens=10, completion_tokens=20, total_tokens=30
)
try:
_, custom_llm_provider, _, _ = litellm.utils.get_llm_provider(model=model)
model_response._hidden_params["custom_llm_provider"] = custom_llm_provider
except:
# dont let setting a hidden param block a mock_respose
pass
return model_response
except:
@ -450,6 +457,8 @@ def completion(
### CUSTOM MODEL COST ###
input_cost_per_token = kwargs.get("input_cost_per_token", None)
output_cost_per_token = kwargs.get("output_cost_per_token", None)
input_cost_per_second = kwargs.get("input_cost_per_second", None)
output_cost_per_second = kwargs.get("output_cost_per_second", None)
### CUSTOM PROMPT TEMPLATE ###
initial_prompt_value = kwargs.get("initial_prompt_value", None)
roles = kwargs.get("roles", None)
@ -527,6 +536,8 @@ def completion(
"tpm",
"input_cost_per_token",
"output_cost_per_token",
"input_cost_per_second",
"output_cost_per_second",
"hf_model_name",
"model_info",
"proxy_server_request",
@ -589,6 +600,19 @@ def completion(
}
}
)
if (
input_cost_per_second is not None
): # time based pricing just needs cost in place
output_cost_per_second = output_cost_per_second or 0.0
litellm.register_model(
{
model: {
"input_cost_per_second": input_cost_per_second,
"output_cost_per_second": output_cost_per_second,
"litellm_provider": custom_llm_provider,
}
}
)
### BUILD CUSTOM PROMPT TEMPLATE -- IF GIVEN ###
custom_prompt_dict = {} # type: ignore
if (
@ -2240,6 +2264,11 @@ def embedding(
encoding_format = kwargs.get("encoding_format", None)
proxy_server_request = kwargs.get("proxy_server_request", None)
aembedding = kwargs.get("aembedding", None)
### CUSTOM MODEL COST ###
input_cost_per_token = kwargs.get("input_cost_per_token", None)
output_cost_per_token = kwargs.get("output_cost_per_token", None)
input_cost_per_second = kwargs.get("input_cost_per_second", None)
output_cost_per_second = kwargs.get("output_cost_per_second", None)
openai_params = [
"user",
"request_timeout",
@ -2288,6 +2317,8 @@ def embedding(
"tpm",
"input_cost_per_token",
"output_cost_per_token",
"input_cost_per_second",
"output_cost_per_second",
"hf_model_name",
"proxy_server_request",
"model_info",
@ -2313,6 +2344,28 @@ def embedding(
custom_llm_provider=custom_llm_provider,
**non_default_params,
)
### REGISTER CUSTOM MODEL PRICING -- IF GIVEN ###
if input_cost_per_token is not None and output_cost_per_token is not None:
litellm.register_model(
{
model: {
"input_cost_per_token": input_cost_per_token,
"output_cost_per_token": output_cost_per_token,
"litellm_provider": custom_llm_provider,
}
}
)
if input_cost_per_second is not None: # time based pricing just needs cost in place
output_cost_per_second = output_cost_per_second or 0.0
litellm.register_model(
{
model: {
"input_cost_per_second": input_cost_per_second,
"output_cost_per_second": output_cost_per_second,
"litellm_provider": custom_llm_provider,
}
}
)
try:
response = None
logging = litellm_logging_obj
@ -3281,7 +3334,9 @@ def stream_chunk_builder_text_completion(chunks: list, messages: Optional[List]
return response
def stream_chunk_builder(chunks: list, messages: Optional[list] = None):
def stream_chunk_builder(
chunks: list, messages: Optional[list] = None, start_time=None, end_time=None
):
model_response = litellm.ModelResponse()
# set hidden params from chunk to model_response
if model_response is not None and hasattr(model_response, "_hidden_params"):
@ -3456,5 +3511,8 @@ def stream_chunk_builder(chunks: list, messages: Optional[list] = None):
response["usage"]["prompt_tokens"] + response["usage"]["completion_tokens"]
)
return convert_to_model_response_object(
response_object=response, model_response_object=model_response
response_object=response,
model_response_object=model_response,
start_time=start_time,
end_time=end_time,
)

View file

@ -1,4 +1,4 @@
from litellm.proxy._types import UserAPIKeyAuth
from litellm.proxy._types import UserAPIKeyAuth, GenerateKeyRequest
from fastapi import Request
from dotenv import load_dotenv
import os
@ -14,3 +14,40 @@ async def user_api_key_auth(request: Request, api_key: str) -> UserAPIKeyAuth:
raise Exception
except:
raise Exception
async def generate_key_fn(data: GenerateKeyRequest):
"""
Asynchronously decides if a key should be generated or not based on the provided data.
Args:
data (GenerateKeyRequest): The data to be used for decision making.
Returns:
bool: True if a key should be generated, False otherwise.
"""
# decide if a key should be generated or not
data_json = data.json() # type: ignore
# Unpacking variables
team_id = data_json.get("team_id")
duration = data_json.get("duration")
models = data_json.get("models")
aliases = data_json.get("aliases")
config = data_json.get("config")
spend = data_json.get("spend")
user_id = data_json.get("user_id")
max_parallel_requests = data_json.get("max_parallel_requests")
metadata = data_json.get("metadata")
tpm_limit = data_json.get("tpm_limit")
rpm_limit = data_json.get("rpm_limit")
if team_id is not None and len(team_id) > 0:
return {
"decision": True,
}
else:
return {
"decision": True,
"message": "This violates LiteLLM Proxy Rules. No team id provided.",
}

View file

@ -62,8 +62,9 @@ litellm_settings:
# setting callback class
# callbacks: custom_callbacks.proxy_handler_instance # sets litellm.callbacks = [proxy_handler_instance]
# general_settings:
# master_key: sk-1234
general_settings:
master_key: sk-1234
custom_key_generate: custom_auth.generate_key_fn
# database_type: "dynamo_db"
# database_args: { # 👈 all args - https://github.com/BerriAI/litellm/blob/befbcbb7ac8f59835ce47415c128decf37aac328/litellm/proxy/_types.py#L190
# "billing_mode": "PAY_PER_REQUEST",

View file

@ -187,6 +187,7 @@ prisma_client: Optional[PrismaClient] = None
custom_db_client: Optional[DBClient] = None
user_api_key_cache = DualCache()
user_custom_auth = None
user_custom_key_generate = None
use_background_health_checks = None
use_queue = False
health_check_interval = None
@ -584,7 +585,7 @@ async def track_cost_callback(
"user_api_key_user_id", None
)
verbose_proxy_logger.debug(
verbose_proxy_logger.info(
f"streaming response_cost {response_cost}, for user_id {user_id}"
)
if user_api_key and (
@ -609,7 +610,7 @@ async def track_cost_callback(
user_id = user_id or kwargs["litellm_params"]["metadata"].get(
"user_api_key_user_id", None
)
verbose_proxy_logger.debug(
verbose_proxy_logger.info(
f"response_cost {response_cost}, for user_id {user_id}"
)
if user_api_key and (
@ -896,7 +897,7 @@ class ProxyConfig:
"""
Load config values into proxy global state
"""
global master_key, user_config_file_path, otel_logging, user_custom_auth, user_custom_auth_path, use_background_health_checks, health_check_interval, use_queue, custom_db_client
global master_key, user_config_file_path, otel_logging, user_custom_auth, user_custom_auth_path, user_custom_key_generate, use_background_health_checks, health_check_interval, use_queue, custom_db_client
# Load existing config
config = await self.get_config(config_file_path=config_file_path)
@ -1074,6 +1075,12 @@ class ProxyConfig:
user_custom_auth = get_instance_fn(
value=custom_auth, config_file_path=config_file_path
)
custom_key_generate = general_settings.get("custom_key_generate", None)
if custom_key_generate is not None:
user_custom_key_generate = get_instance_fn(
value=custom_key_generate, config_file_path=config_file_path
)
## dynamodb
database_type = general_settings.get("database_type", None)
if database_type is not None and (
@ -2189,7 +2196,16 @@ async def generate_key_fn(
- expires: (datetime) Datetime object for when key expires.
- user_id: (str) Unique user id - used for tracking spend across multiple keys for same user id.
"""
global user_custom_key_generate
verbose_proxy_logger.debug("entered /key/generate")
if user_custom_key_generate is not None:
result = await user_custom_key_generate(data)
decision = result.get("decision", True)
message = result.get("message", "Authentication Failed - Custom Auth Rule")
if not decision:
raise HTTPException(status_code=status.HTTP_403_FORBIDDEN, detail=message)
data_json = data.json() # type: ignore
# if we get max_budget passed to /key/generate, then use it as key_max_budget. Since generate_key_helper_fn is used to make new users
@ -2978,7 +2994,7 @@ async def get_routes():
@router.on_event("shutdown")
async def shutdown_event():
global prisma_client, master_key, user_custom_auth
global prisma_client, master_key, user_custom_auth, user_custom_key_generate
if prisma_client:
verbose_proxy_logger.debug("Disconnecting from Prisma")
await prisma_client.disconnect()
@ -2988,7 +3004,7 @@ async def shutdown_event():
def cleanup_router_config_variables():
global master_key, user_config_file_path, otel_logging, user_custom_auth, user_custom_auth_path, use_background_health_checks, health_check_interval, prisma_client, custom_db_client
global master_key, user_config_file_path, otel_logging, user_custom_auth, user_custom_auth_path, user_custom_key_generate, use_background_health_checks, health_check_interval, prisma_client, custom_db_client
# Set all variables to None
master_key = None
@ -2996,6 +3012,7 @@ def cleanup_router_config_variables():
otel_logging = None
user_custom_auth = None
user_custom_auth_path = None
user_custom_key_generate = None
use_background_health_checks = None
health_check_interval = None
prisma_client = None

View file

@ -449,6 +449,7 @@ class PrismaClient:
"update": {}, # don't do anything if it already exists
},
)
verbose_proxy_logger.info(f"Data Inserted into Keys Table")
return new_verification_token
elif table_name == "user":
db_data = self.jsonify_object(data=data)
@ -459,6 +460,7 @@ class PrismaClient:
"update": {}, # don't do anything if it already exists
},
)
verbose_proxy_logger.info(f"Data Inserted into User Table")
return new_user_row
elif table_name == "config":
"""
@ -483,6 +485,7 @@ class PrismaClient:
tasks.append(updated_table_row)
await asyncio.gather(*tasks)
verbose_proxy_logger.info(f"Data Inserted into Config Table")
elif table_name == "spend":
db_data = self.jsonify_object(data=data)
new_spend_row = await self.db.litellm_spendlogs.upsert(
@ -492,6 +495,7 @@ class PrismaClient:
"update": {}, # don't do anything if it already exists
},
)
verbose_proxy_logger.info(f"Data Inserted into Spend Table")
return new_spend_row
except Exception as e:

View file

@ -997,6 +997,9 @@ class Router:
"""
try:
kwargs["model"] = mg
kwargs.setdefault("metadata", {}).update(
{"model_group": mg}
) # update model_group used, if fallbacks are done
response = await self.async_function_with_retries(
*args, **kwargs
)
@ -1025,8 +1028,10 @@ class Router:
f"Falling back to model_group = {mg}"
)
kwargs["model"] = mg
kwargs["metadata"]["model_group"] = mg
response = await self.async_function_with_retries(
kwargs.setdefault("metadata", {}).update(
{"model_group": mg}
) # update model_group used, if fallbacks are done
response = await self.async_function_with_fallbacks(
*args, **kwargs
)
return response
@ -1191,6 +1196,9 @@ class Router:
## LOGGING
kwargs = self.log_retry(kwargs=kwargs, e=original_exception)
kwargs["model"] = mg
kwargs.setdefault("metadata", {}).update(
{"model_group": mg}
) # update model_group used, if fallbacks are done
response = self.function_with_fallbacks(*args, **kwargs)
return response
except Exception as e:
@ -1214,6 +1222,9 @@ class Router:
## LOGGING
kwargs = self.log_retry(kwargs=kwargs, e=original_exception)
kwargs["model"] = mg
kwargs.setdefault("metadata", {}).update(
{"model_group": mg}
) # update model_group used, if fallbacks are done
response = self.function_with_fallbacks(*args, **kwargs)
return response
except Exception as e:

View file

@ -1372,16 +1372,21 @@ def test_customprompt_together_ai():
def test_completion_sagemaker():
try:
print("testing sagemaker")
litellm.set_verbose = True
print("testing sagemaker")
response = completion(
model="sagemaker/berri-benchmarking-Llama-2-70b-chat-hf-4",
messages=messages,
temperature=0.2,
max_tokens=80,
input_cost_per_second=0.000420,
)
# Add any assertions here to check the response
print(response)
cost = completion_cost(completion_response=response)
assert (
cost > 0.0 and cost < 1.0
) # should never be > $1 for a single completion call
except Exception as e:
pytest.fail(f"Error occurred: {e}")

View file

@ -1,14 +1,17 @@
### What this tests ####
import sys, os, time, inspect, asyncio, traceback
import pytest
sys.path.insert(0, os.path.abspath('../..'))
sys.path.insert(0, os.path.abspath("../.."))
from litellm import completion, embedding
import litellm
from litellm.integrations.custom_logger import CustomLogger
class MyCustomHandler(CustomLogger):
complete_streaming_response_in_callback = ""
def __init__(self):
self.success: bool = False # type: ignore
self.failure: bool = False # type: ignore
@ -45,7 +48,6 @@ class MyCustomHandler(CustomLogger):
if kwargs.get("stream") == True:
self.sync_stream_collected_response = response_obj
def log_failure_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Failure")
self.failure = True
@ -72,14 +74,20 @@ class MyCustomHandler(CustomLogger):
self.async_completion_kwargs_fail = kwargs
class TmpFunction:
complete_streaming_response_in_callback = ""
async_success: bool = False
async def async_test_logging_fn(self, kwargs, completion_obj, start_time, end_time):
print(f"ON ASYNC LOGGING")
self.async_success = True
print(f'kwargs.get("complete_streaming_response"): {kwargs.get("complete_streaming_response")}')
self.complete_streaming_response_in_callback = kwargs.get("complete_streaming_response")
print(
f'kwargs.get("complete_streaming_response"): {kwargs.get("complete_streaming_response")}'
)
self.complete_streaming_response_in_callback = kwargs.get(
"complete_streaming_response"
)
def test_async_chat_openai_stream():
@ -88,29 +96,39 @@ def test_async_chat_openai_stream():
# litellm.set_verbose = True
litellm.success_callback = [tmp_function.async_test_logging_fn]
complete_streaming_response = ""
async def call_gpt():
nonlocal complete_streaming_response
response = await litellm.acompletion(model="gpt-3.5-turbo",
messages=[{
"role": "user",
"content": "Hi 👋 - i'm openai"
}],
stream=True)
response = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hi 👋 - i'm openai"}],
stream=True,
)
async for chunk in response:
complete_streaming_response += chunk["choices"][0]["delta"]["content"] or ""
complete_streaming_response += (
chunk["choices"][0]["delta"]["content"] or ""
)
print(complete_streaming_response)
asyncio.run(call_gpt())
complete_streaming_response = complete_streaming_response.strip("'")
response1 = tmp_function.complete_streaming_response_in_callback["choices"][0]["message"]["content"]
response1 = tmp_function.complete_streaming_response_in_callback["choices"][0][
"message"
]["content"]
response2 = complete_streaming_response
# assert [ord(c) for c in response1] == [ord(c) for c in response2]
print(f"response1: {response1}")
print(f"response2: {response2}")
assert response1 == response2
assert tmp_function.async_success == True
except Exception as e:
print(e)
pytest.fail(f"An error occurred - {str(e)}")
# test_async_chat_openai_stream()
def test_completion_azure_stream_moderation_failure():
try:
customHandler = MyCustomHandler()
@ -152,27 +170,32 @@ def test_async_custom_handler_stream():
},
]
complete_streaming_response = ""
async def test_1():
nonlocal complete_streaming_response
response = await litellm.acompletion(
model="azure/chatgpt-v-2",
messages=messages,
stream=True
model="azure/chatgpt-v-2", messages=messages, stream=True
)
async for chunk in response:
complete_streaming_response += chunk["choices"][0]["delta"]["content"] or ""
complete_streaming_response += (
chunk["choices"][0]["delta"]["content"] or ""
)
print(complete_streaming_response)
asyncio.run(test_1())
response_in_success_handler = customHandler2.stream_collected_response
response_in_success_handler = response_in_success_handler["choices"][0]["message"]["content"]
response_in_success_handler = response_in_success_handler["choices"][0][
"message"
]["content"]
print("\n\n")
print("response_in_success_handler: ", response_in_success_handler)
print("complete_streaming_response: ", complete_streaming_response)
assert response_in_success_handler == complete_streaming_response
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# test_async_custom_handler_stream()
@ -194,9 +217,7 @@ def test_azure_completion_stream():
complete_streaming_response = ""
response = litellm.completion(
model="azure/chatgpt-v-2",
messages=messages,
stream=True
model="azure/chatgpt-v-2", messages=messages, stream=True
)
for chunk in response:
complete_streaming_response += chunk["choices"][0]["delta"]["content"] or ""
@ -204,7 +225,9 @@ def test_azure_completion_stream():
time.sleep(0.5) # wait 1/2 second before checking callbacks
response_in_success_handler = customHandler2.sync_stream_collected_response
response_in_success_handler = response_in_success_handler["choices"][0]["message"]["content"]
response_in_success_handler = response_in_success_handler["choices"][0][
"message"
]["content"]
print("\n\n")
print("response_in_success_handler: ", response_in_success_handler)
print("complete_streaming_response: ", complete_streaming_response)
@ -212,6 +235,7 @@ def test_azure_completion_stream():
except Exception as e:
pytest.fail(f"Error occurred: {e}")
@pytest.mark.asyncio
async def test_async_custom_handler_completion():
try:
@ -222,14 +246,21 @@ async def test_async_custom_handler_completion():
litellm.callbacks = [customHandler_success]
response = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=[{
messages=[
{
"role": "user",
"content": "hello from litellm test",
}]
}
],
)
await asyncio.sleep(1)
assert customHandler_success.async_success == True, "async success is not set to True even after success"
assert customHandler_success.async_completion_kwargs.get("model") == "gpt-3.5-turbo"
assert (
customHandler_success.async_success == True
), "async success is not set to True even after success"
assert (
customHandler_success.async_completion_kwargs.get("model")
== "gpt-3.5-turbo"
)
# failure
litellm.callbacks = [customHandler_failure]
messages = [
@ -249,15 +280,28 @@ async def test_async_custom_handler_completion():
)
except:
pass
assert customHandler_failure.async_failure == True, "async failure is not set to True even after failure"
assert customHandler_failure.async_completion_kwargs_fail.get("model") == "gpt-3.5-turbo"
assert len(str(customHandler_failure.async_completion_kwargs_fail.get("exception"))) > 10 # expect APIError("OpenAIException - Error code: 401 - {'error': {'message': 'Incorrect API key provided: test. You can find your API key at https://platform.openai.com/account/api-keys.', 'type': 'invalid_request_error', 'param': None, 'code': 'invalid_api_key'}}"), 'traceback_exception': 'Traceback (most recent call last):\n File "/Users/ishaanjaffer/Github/litellm/litellm/llms/openai.py", line 269, in acompletion\n response = await openai_aclient.chat.completions.create(**data)\n File "/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages/openai/resources/chat/completions.py", line 119
assert (
customHandler_failure.async_failure == True
), "async failure is not set to True even after failure"
assert (
customHandler_failure.async_completion_kwargs_fail.get("model")
== "gpt-3.5-turbo"
)
assert (
len(
str(customHandler_failure.async_completion_kwargs_fail.get("exception"))
)
> 10
) # expect APIError("OpenAIException - Error code: 401 - {'error': {'message': 'Incorrect API key provided: test. You can find your API key at https://platform.openai.com/account/api-keys.', 'type': 'invalid_request_error', 'param': None, 'code': 'invalid_api_key'}}"), 'traceback_exception': 'Traceback (most recent call last):\n File "/Users/ishaanjaffer/Github/litellm/litellm/llms/openai.py", line 269, in acompletion\n response = await openai_aclient.chat.completions.create(**data)\n File "/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages/openai/resources/chat/completions.py", line 119
litellm.callbacks = []
print("Passed setting async failure")
except Exception as e:
pytest.fail(f"An exception occurred - {str(e)}")
# asyncio.run(test_async_custom_handler_completion())
@pytest.mark.asyncio
async def test_async_custom_handler_embedding():
try:
@ -267,30 +311,53 @@ async def test_async_custom_handler_embedding():
assert customHandler_embedding.async_success_embedding == False
response = await litellm.aembedding(
model="text-embedding-ada-002",
input = ["hello world"],
input=["hello world"],
)
await asyncio.sleep(1)
assert customHandler_embedding.async_success_embedding == True, "async_success_embedding is not set to True even after success"
assert customHandler_embedding.async_embedding_kwargs.get("model") == "text-embedding-ada-002"
assert customHandler_embedding.async_embedding_response["usage"]["prompt_tokens"] ==2
assert (
customHandler_embedding.async_success_embedding == True
), "async_success_embedding is not set to True even after success"
assert (
customHandler_embedding.async_embedding_kwargs.get("model")
== "text-embedding-ada-002"
)
assert (
customHandler_embedding.async_embedding_response["usage"]["prompt_tokens"]
== 2
)
print("Passed setting async success: Embedding")
# failure
assert customHandler_embedding.async_failure_embedding == False
try:
response = await litellm.aembedding(
model="text-embedding-ada-002",
input = ["hello world"],
input=["hello world"],
api_key="my-bad-key",
)
except:
pass
assert customHandler_embedding.async_failure_embedding == True, "async failure embedding is not set to True even after failure"
assert customHandler_embedding.async_embedding_kwargs_fail.get("model") == "text-embedding-ada-002"
assert len(str(customHandler_embedding.async_embedding_kwargs_fail.get("exception"))) > 10 # exppect APIError("OpenAIException - Error code: 401 - {'error': {'message': 'Incorrect API key provided: test. You can find your API key at https://platform.openai.com/account/api-keys.', 'type': 'invalid_request_error', 'param': None, 'code': 'invalid_api_key'}}"), 'traceback_exception': 'Traceback (most recent call last):\n File "/Users/ishaanjaffer/Github/litellm/litellm/llms/openai.py", line 269, in acompletion\n response = await openai_aclient.chat.completions.create(**data)\n File "/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages/openai/resources/chat/completions.py", line 119
assert (
customHandler_embedding.async_failure_embedding == True
), "async failure embedding is not set to True even after failure"
assert (
customHandler_embedding.async_embedding_kwargs_fail.get("model")
== "text-embedding-ada-002"
)
assert (
len(
str(
customHandler_embedding.async_embedding_kwargs_fail.get("exception")
)
)
> 10
) # exppect APIError("OpenAIException - Error code: 401 - {'error': {'message': 'Incorrect API key provided: test. You can find your API key at https://platform.openai.com/account/api-keys.', 'type': 'invalid_request_error', 'param': None, 'code': 'invalid_api_key'}}"), 'traceback_exception': 'Traceback (most recent call last):\n File "/Users/ishaanjaffer/Github/litellm/litellm/llms/openai.py", line 269, in acompletion\n response = await openai_aclient.chat.completions.create(**data)\n File "/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages/openai/resources/chat/completions.py", line 119
except Exception as e:
pytest.fail(f"An exception occurred - {str(e)}")
# asyncio.run(test_async_custom_handler_embedding())
@pytest.mark.asyncio
async def test_async_custom_handler_embedding_optional_param():
"""
@ -300,16 +367,19 @@ async def test_async_custom_handler_embedding_optional_param():
customHandler_optional_params = MyCustomHandler()
litellm.callbacks = [customHandler_optional_params]
response = await litellm.aembedding(
model="azure/azure-embedding-model",
input = ["hello world"],
user = "John"
model="azure/azure-embedding-model", input=["hello world"], user="John"
)
await asyncio.sleep(1) # success callback is async
assert customHandler_optional_params.user == "John"
assert customHandler_optional_params.user == customHandler_optional_params.data_sent_to_api["user"]
assert (
customHandler_optional_params.user
== customHandler_optional_params.data_sent_to_api["user"]
)
# asyncio.run(test_async_custom_handler_embedding_optional_param())
@pytest.mark.asyncio
async def test_async_custom_handler_embedding_optional_param_bedrock():
"""
@ -323,9 +393,7 @@ async def test_async_custom_handler_embedding_optional_param_bedrock():
customHandler_optional_params = MyCustomHandler()
litellm.callbacks = [customHandler_optional_params]
response = await litellm.aembedding(
model="bedrock/amazon.titan-embed-text-v1",
input = ["hello world"],
user = "John"
model="bedrock/amazon.titan-embed-text-v1", input=["hello world"], user="John"
)
await asyncio.sleep(1) # success callback is async
assert customHandler_optional_params.user == "John"
@ -334,16 +402,36 @@ async def test_async_custom_handler_embedding_optional_param_bedrock():
def test_redis_cache_completion_stream():
from litellm import Cache
# Important Test - This tests if we can add to streaming cache, when custom callbacks are set
import random
try:
print("\nrunning test_redis_cache_completion_stream")
litellm.set_verbose = True
random_number = random.randint(1, 100000) # add a random number to ensure it's always adding / reading from cache
messages = [{"role": "user", "content": f"write a one sentence poem about: {random_number}"}]
litellm.cache = Cache(type="redis", host=os.environ['REDIS_HOST'], port=os.environ['REDIS_PORT'], password=os.environ['REDIS_PASSWORD'])
random_number = random.randint(
1, 100000
) # add a random number to ensure it's always adding / reading from cache
messages = [
{
"role": "user",
"content": f"write a one sentence poem about: {random_number}",
}
]
litellm.cache = Cache(
type="redis",
host=os.environ["REDIS_HOST"],
port=os.environ["REDIS_PORT"],
password=os.environ["REDIS_PASSWORD"],
)
print("test for caching, streaming + completion")
response1 = completion(model="gpt-3.5-turbo", messages=messages, max_tokens=40, temperature=0.2, stream=True)
response1 = completion(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=40,
temperature=0.2,
stream=True,
)
response_1_content = ""
for chunk in response1:
print(chunk)
@ -351,14 +439,22 @@ def test_redis_cache_completion_stream():
print(response_1_content)
time.sleep(0.1) # sleep for 0.1 seconds allow set cache to occur
response2 = completion(model="gpt-3.5-turbo", messages=messages, max_tokens=40, temperature=0.2, stream=True)
response2 = completion(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=40,
temperature=0.2,
stream=True,
)
response_2_content = ""
for chunk in response2:
print(chunk)
response_2_content += chunk.choices[0].delta.content or ""
print("\nresponse 1", response_1_content)
print("\nresponse 2", response_2_content)
assert response_1_content == response_2_content, f"Response 1 != Response 2. Same params, Response 1{response_1_content} != Response 2{response_2_content}"
assert (
response_1_content == response_2_content
), f"Response 1 != Response 2. Same params, Response 1{response_1_content} != Response 2{response_2_content}"
litellm.success_callback = []
litellm._async_success_callback = []
litellm.cache = None
@ -366,4 +462,6 @@ def test_redis_cache_completion_stream():
print(e)
litellm.success_callback = []
raise e
# test_redis_cache_completion_stream()

View file

@ -10,7 +10,7 @@ sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import litellm
from litellm import embedding, completion
from litellm import embedding, completion, completion_cost
litellm.set_verbose = False
@ -341,8 +341,30 @@ def test_sagemaker_embeddings():
response = litellm.embedding(
model="sagemaker/berri-benchmarking-gpt-j-6b-fp16",
input=["good morning from litellm", "this is another item"],
input_cost_per_second=0.000420,
)
print(f"response: {response}")
cost = completion_cost(completion_response=response)
assert (
cost > 0.0 and cost < 1.0
) # should never be > $1 for a single embedding call
except Exception as e:
pytest.fail(f"Error occurred: {e}")
@pytest.mark.asyncio
async def test_sagemaker_aembeddings():
try:
response = await litellm.aembedding(
model="sagemaker/berri-benchmarking-gpt-j-6b-fp16",
input=["good morning from litellm", "this is another item"],
input_cost_per_second=0.000420,
)
print(f"response: {response}")
cost = completion_cost(completion_response=response)
assert (
cost > 0.0 and cost < 1.0
) # should never be > $1 for a single embedding call
except Exception as e:
pytest.fail(f"Error occurred: {e}")

View file

@ -35,6 +35,7 @@ import pytest, logging, asyncio
import litellm, asyncio
from litellm.proxy.proxy_server import (
new_user,
generate_key_fn,
user_api_key_auth,
user_update,
delete_key_fn,
@ -53,6 +54,7 @@ from litellm.proxy._types import (
DynamoDBArgs,
DeleteKeyRequest,
UpdateKeyRequest,
GenerateKeyRequest,
)
from litellm.proxy.utils import DBClient
from starlette.datastructures import URL
@ -598,6 +600,85 @@ def test_generate_and_update_key(prisma_client):
print(e.detail)
pytest.fail(f"An exception occurred - {str(e)}")
def test_key_generate_with_custom_auth(prisma_client):
# custom - generate key function
async def custom_generate_key_fn(data: GenerateKeyRequest) -> dict:
"""
Asynchronous function for generating a key based on the input data.
Args:
data (GenerateKeyRequest): The input data for key generation.
Returns:
dict: A dictionary containing the decision and an optional message.
{
"decision": False,
"message": "This violates LiteLLM Proxy Rules. No team id provided.",
}
"""
# decide if a key should be generated or not
print("using custom auth function!")
data_json = data.json() # type: ignore
# Unpacking variables
team_id = data_json.get("team_id")
duration = data_json.get("duration")
models = data_json.get("models")
aliases = data_json.get("aliases")
config = data_json.get("config")
spend = data_json.get("spend")
user_id = data_json.get("user_id")
max_parallel_requests = data_json.get("max_parallel_requests")
metadata = data_json.get("metadata")
tpm_limit = data_json.get("tpm_limit")
rpm_limit = data_json.get("rpm_limit")
if team_id is not None and team_id == "litellm-core-infra@gmail.com":
# only team_id="litellm-core-infra@gmail.com" can make keys
return {
"decision": True,
}
else:
print("Failed custom auth")
return {
"decision": False,
"message": "This violates LiteLLM Proxy Rules. No team id provided.",
}
setattr(litellm.proxy.proxy_server, "prisma_client", prisma_client)
setattr(litellm.proxy.proxy_server, "master_key", "sk-1234")
setattr(
litellm.proxy.proxy_server, "user_custom_key_generate", custom_generate_key_fn
)
try:
request = GenerateKeyRequest()
key = await generate_key_fn(request)
pytest.fail(f"Expected an exception. Got {key}")
except Exception as e:
# this should fail
print("Got Exception", e)
print(e.detail)
print("First request failed!. This is expected")
assert (
"This violates LiteLLM Proxy Rules. No team id provided."
in e.detail
)
request_2 = GenerateKeyRequest(
team_id="litellm-core-infra@gmail.com",
)
key = await generate_key_fn(request_2)
print(key)
generated_key = key.key
asyncio.run(test())
except Exception as e:
print("Got Exception", e)
print(e.detail)
pytest.fail(f"An exception occurred - {str(e)}")
def test_call_with_key_over_budget(prisma_client):
# 12. Make a call with a key over budget, expect to fail

View file

@ -716,7 +716,7 @@ def test_usage_based_routing_fallbacks():
# Constants for TPM and RPM allocation
AZURE_FAST_TPM = 3
AZURE_BASIC_TPM = 4
OPENAI_TPM = 2000
OPENAI_TPM = 400
ANTHROPIC_TPM = 100000
def get_azure_params(deployment_name: str):
@ -775,6 +775,7 @@ def test_usage_based_routing_fallbacks():
model_list=model_list,
fallbacks=fallbacks_list,
set_verbose=True,
debug_level="DEBUG",
routing_strategy="usage-based-routing",
redis_host=os.environ["REDIS_HOST"],
redis_port=os.environ["REDIS_PORT"],
@ -783,17 +784,32 @@ def test_usage_based_routing_fallbacks():
messages = [
{"content": "Tell me a joke.", "role": "user"},
]
response = router.completion(
model="azure/gpt-4-fast", messages=messages, timeout=5
model="azure/gpt-4-fast",
messages=messages,
timeout=5,
mock_response="very nice to meet you",
)
print("response: ", response)
print("response._hidden_params: ", response._hidden_params)
# in this test, we expect azure/gpt-4 fast to fail, then azure-gpt-4 basic to fail and then openai-gpt-4 to pass
# the token count of this message is > AZURE_FAST_TPM, > AZURE_BASIC_TPM
assert response._hidden_params["custom_llm_provider"] == "openai"
# now make 100 mock requests to OpenAI - expect it to fallback to anthropic-claude-instant-1.2
for i in range(20):
response = router.completion(
model="azure/gpt-4-fast",
messages=messages,
timeout=5,
mock_response="very nice to meet you",
)
print("response: ", response)
print("response._hidden_params: ", response._hidden_params)
if i == 19:
# by the 19th call we should have hit TPM LIMIT for OpenAI, it should fallback to anthropic-claude-instant-1.2
assert response._hidden_params["custom_llm_provider"] == "anthropic"
except Exception as e:
pytest.fail(f"An exception occurred {e}")

View file

@ -765,6 +765,7 @@ class Logging:
self.litellm_call_id = litellm_call_id
self.function_id = function_id
self.streaming_chunks = [] # for generating complete stream response
self.sync_streaming_chunks = [] # for generating complete stream response
self.model_call_details = {}
def update_environment_variables(
@ -828,7 +829,7 @@ class Logging:
[f"-H '{k}: {v}'" for k, v in masked_headers.items()]
)
print_verbose(f"PRE-API-CALL ADDITIONAL ARGS: {additional_args}")
verbose_logger.debug(f"PRE-API-CALL ADDITIONAL ARGS: {additional_args}")
curl_command = "\n\nPOST Request Sent from LiteLLM:\n"
curl_command += "curl -X POST \\\n"
@ -994,13 +995,10 @@ class Logging:
self.model_call_details["log_event_type"] = "post_api_call"
# User Logging -> if you pass in a custom logging function
print_verbose(
verbose_logger.debug(
f"RAW RESPONSE:\n{self.model_call_details.get('original_response', self.model_call_details)}\n\n"
)
print_verbose(
f"Logging Details Post-API Call: logger_fn - {self.logger_fn} | callable(logger_fn) - {callable(self.logger_fn)}"
)
print_verbose(
verbose_logger.debug(
f"Logging Details Post-API Call: LiteLLM Params: {self.model_call_details}"
)
if self.logger_fn and callable(self.logger_fn):
@ -1094,20 +1092,20 @@ class Logging:
if (
result.choices[0].finish_reason is not None
): # if it's the last chunk
self.streaming_chunks.append(result)
# print_verbose(f"final set of received chunks: {self.streaming_chunks}")
self.sync_streaming_chunks.append(result)
# print_verbose(f"final set of received chunks: {self.sync_streaming_chunks}")
try:
complete_streaming_response = litellm.stream_chunk_builder(
self.streaming_chunks,
self.sync_streaming_chunks,
messages=self.model_call_details.get("messages", None),
)
except:
complete_streaming_response = None
else:
self.streaming_chunks.append(result)
self.sync_streaming_chunks.append(result)
if complete_streaming_response:
verbose_logger.info(
verbose_logger.debug(
f"Logging Details LiteLLM-Success Call streaming complete"
)
self.model_call_details[
@ -1307,7 +1305,9 @@ class Logging:
)
== False
): # custom logger class
print_verbose(f"success callbacks: Running Custom Logger Class")
verbose_logger.info(
f"success callbacks: Running SYNC Custom Logger Class"
)
if self.stream and complete_streaming_response is None:
callback.log_stream_event(
kwargs=self.model_call_details,
@ -1329,7 +1329,17 @@ class Logging:
start_time=start_time,
end_time=end_time,
)
if callable(callback): # custom logger functions
elif (
callable(callback) == True
and self.model_call_details.get("litellm_params", {}).get(
"acompletion", False
)
== False
and self.model_call_details.get("litellm_params", {}).get(
"aembedding", False
)
== False
): # custom logger functions
print_verbose(
f"success callbacks: Running Custom Callback Function"
)
@ -1364,6 +1374,9 @@ class Logging:
Implementing async callbacks, to handle asyncio event loop issues when custom integrations need to use async functions.
"""
print_verbose(f"Async success callbacks: {litellm._async_success_callback}")
start_time, end_time, result = self._success_handler_helper_fn(
start_time=start_time, end_time=end_time, result=result, cache_hit=cache_hit
)
## BUILD COMPLETE STREAMED RESPONSE
complete_streaming_response = None
if self.stream:
@ -1374,6 +1387,8 @@ class Logging:
complete_streaming_response = litellm.stream_chunk_builder(
self.streaming_chunks,
messages=self.model_call_details.get("messages", None),
start_time=start_time,
end_time=end_time,
)
except Exception as e:
print_verbose(
@ -1387,9 +1402,7 @@ class Logging:
self.model_call_details[
"complete_streaming_response"
] = complete_streaming_response
start_time, end_time, result = self._success_handler_helper_fn(
start_time=start_time, end_time=end_time, result=result, cache_hit=cache_hit
)
for callback in litellm._async_success_callback:
try:
if callback == "cache" and litellm.cache is not None:
@ -1436,7 +1449,6 @@ class Logging:
end_time=end_time,
)
if callable(callback): # custom logger functions
print_verbose(f"Async success callbacks: async_log_event")
await customLogger.async_log_event(
kwargs=self.model_call_details,
response_obj=result,
@ -2134,7 +2146,7 @@ def client(original_function):
litellm.cache.add_cache(result, *args, **kwargs)
# LOG SUCCESS - handle streaming success logging in the _next_ object, remove `handle_success` once it's deprecated
print_verbose(f"Wrapper: Completed Call, calling success_handler")
verbose_logger.info(f"Wrapper: Completed Call, calling success_handler")
threading.Thread(
target=logging_obj.success_handler, args=(result, start_time, end_time)
).start()
@ -2373,7 +2385,9 @@ def client(original_function):
result._hidden_params["model_id"] = kwargs.get("model_info", {}).get(
"id", None
)
if isinstance(result, ModelResponse):
if isinstance(result, ModelResponse) or isinstance(
result, EmbeddingResponse
):
result._response_ms = (
end_time - start_time
).total_seconds() * 1000 # return response latency in ms like openai
@ -2806,7 +2820,11 @@ def token_counter(
def cost_per_token(
model="", prompt_tokens=0, completion_tokens=0, custom_llm_provider=None
model="",
prompt_tokens=0,
completion_tokens=0,
response_time_ms=None,
custom_llm_provider=None,
):
"""
Calculates the cost per token for a given model, prompt tokens, and completion tokens.
@ -2828,15 +2846,36 @@ def cost_per_token(
else:
model_with_provider = model
# see this https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models
print_verbose(f"Looking up model={model} in model_cost_map")
verbose_logger.debug(f"Looking up model={model} in model_cost_map")
if model in model_cost_ref:
verbose_logger.debug(f"Success: model={model} in model_cost_map")
if (
model_cost_ref[model].get("input_cost_per_token", None) is not None
and model_cost_ref[model].get("output_cost_per_token", None) is not None
):
## COST PER TOKEN ##
prompt_tokens_cost_usd_dollar = (
model_cost_ref[model]["input_cost_per_token"] * prompt_tokens
)
completion_tokens_cost_usd_dollar = (
model_cost_ref[model]["output_cost_per_token"] * completion_tokens
)
elif (
model_cost_ref[model].get("input_cost_per_second", None) is not None
and response_time_ms is not None
):
verbose_logger.debug(
f"For model={model} - input_cost_per_second: {model_cost_ref[model].get('input_cost_per_second')}; response time: {response_time_ms}"
)
## COST PER SECOND ##
prompt_tokens_cost_usd_dollar = (
model_cost_ref[model]["input_cost_per_second"] * response_time_ms / 1000
)
completion_tokens_cost_usd_dollar = 0.0
verbose_logger.debug(
f"Returned custom cost for model={model} - prompt_tokens_cost_usd_dollar: {prompt_tokens_cost_usd_dollar}, completion_tokens_cost_usd_dollar: {completion_tokens_cost_usd_dollar}"
)
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
elif model_with_provider in model_cost_ref:
print_verbose(f"Looking up model={model_with_provider} in model_cost_map")
@ -2938,6 +2977,10 @@ def completion_cost(
completion_tokens = completion_response.get("usage", {}).get(
"completion_tokens", 0
)
total_time = completion_response.get("_response_ms", 0)
verbose_logger.debug(
f"completion_response response ms: {completion_response.get('_response_ms')} "
)
model = (
model or completion_response["model"]
) # check if user passed an override for model, if it's none check completion_response['model']
@ -2975,6 +3018,7 @@ def completion_cost(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
custom_llm_provider=custom_llm_provider,
response_time_ms=total_time,
)
return prompt_tokens_cost_usd_dollar + completion_tokens_cost_usd_dollar
except Exception as e:
@ -3005,9 +3049,8 @@ def register_model(model_cost: Union[str, dict]):
for key, value in loaded_model_cost.items():
## override / add new keys to the existing model cost dictionary
if key in litellm.model_cost:
for k, v in loaded_model_cost[key].items():
litellm.model_cost[key][k] = v
litellm.model_cost.setdefault(key, {}).update(value)
verbose_logger.debug(f"{key} added to model cost map")
# add new model names to provider lists
if value.get("litellm_provider") == "openai":
if key not in litellm.open_ai_chat_completion_models:
@ -3300,11 +3343,13 @@ def get_optional_params(
)
def _check_valid_arg(supported_params):
print_verbose(
verbose_logger.debug(
f"\nLiteLLM completion() model= {model}; provider = {custom_llm_provider}"
)
print_verbose(f"\nLiteLLM: Params passed to completion() {passed_params}")
print_verbose(
verbose_logger.debug(
f"\nLiteLLM: Params passed to completion() {passed_params}"
)
verbose_logger.debug(
f"\nLiteLLM: Non-Default params passed to completion() {non_default_params}"
)
unsupported_params = {}
@ -5150,6 +5195,8 @@ def convert_to_model_response_object(
"completion", "embedding", "image_generation"
] = "completion",
stream=False,
start_time=None,
end_time=None,
):
try:
if response_type == "completion" and (
@ -5203,6 +5250,12 @@ def convert_to_model_response_object(
if "model" in response_object:
model_response_object.model = response_object["model"]
if start_time is not None and end_time is not None:
model_response_object._response_ms = ( # type: ignore
end_time - start_time
).total_seconds() * 1000
return model_response_object
elif response_type == "embedding" and (
model_response_object is None
@ -5227,6 +5280,11 @@ def convert_to_model_response_object(
model_response_object.usage.prompt_tokens = response_object["usage"].get("prompt_tokens", 0) # type: ignore
model_response_object.usage.total_tokens = response_object["usage"].get("total_tokens", 0) # type: ignore
if start_time is not None and end_time is not None:
model_response_object._response_ms = ( # type: ignore
end_time - start_time
).total_seconds() * 1000 # return response latency in ms like openai
return model_response_object
elif response_type == "image_generation" and (
model_response_object is None

View file

@ -1,6 +1,6 @@
[tool.poetry]
name = "litellm"
version = "1.18.8"
version = "1.18.9"
description = "Library to easily interface with LLM API providers"
authors = ["BerriAI"]
license = "MIT"
@ -61,7 +61,7 @@ requires = ["poetry-core", "wheel"]
build-backend = "poetry.core.masonry.api"
[tool.commitizen]
version = "1.18.8"
version = "1.18.9"
version_files = [
"pyproject.toml:^version"
]