Revert "(perf) move s3 logging to Batch logging + async [94% faster p… (#6275)

* Revert "(perf) move s3 logging to Batch logging + async [94% faster perf under 100 RPS on 1 litellm instance] (#6165)"

This reverts commit 2a5624af47.

* fix test s3

* add test_basic_s3_logging
This commit is contained in:
Ishaan Jaff 2024-10-17 16:14:57 +05:30 committed by GitHub
parent 81766e7049
commit dd4f01a75e
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
8 changed files with 171 additions and 343 deletions

View file

@ -53,7 +53,6 @@ _custom_logger_compatible_callbacks_literal = Literal[
"arize", "arize",
"langtrace", "langtrace",
"gcs_bucket", "gcs_bucket",
"s3",
"opik", "opik",
] ]
_known_custom_logger_compatible_callbacks: List = list( _known_custom_logger_compatible_callbacks: List = list(

View file

@ -21,7 +21,6 @@ class CustomBatchLogger(CustomLogger):
self, self,
flush_lock: Optional[asyncio.Lock] = None, flush_lock: Optional[asyncio.Lock] = None,
batch_size: Optional[int] = DEFAULT_BATCH_SIZE, batch_size: Optional[int] = DEFAULT_BATCH_SIZE,
flush_interval: Optional[int] = DEFAULT_FLUSH_INTERVAL_SECONDS,
**kwargs, **kwargs,
) -> None: ) -> None:
""" """
@ -29,7 +28,7 @@ class CustomBatchLogger(CustomLogger):
flush_lock (Optional[asyncio.Lock], optional): Lock to use when flushing the queue. Defaults to None. Only used for custom loggers that do batching flush_lock (Optional[asyncio.Lock], optional): Lock to use when flushing the queue. Defaults to None. Only used for custom loggers that do batching
""" """
self.log_queue: List = [] self.log_queue: List = []
self.flush_interval = flush_interval or DEFAULT_FLUSH_INTERVAL_SECONDS self.flush_interval = DEFAULT_FLUSH_INTERVAL_SECONDS # 10 seconds
self.batch_size: int = batch_size or DEFAULT_BATCH_SIZE self.batch_size: int = batch_size or DEFAULT_BATCH_SIZE
self.last_flush_time = time.time() self.last_flush_time = time.time()
self.flush_lock = flush_lock self.flush_lock = flush_lock

View file

@ -1,67 +1,43 @@
""" #### What this does ####
s3 Bucket Logging Integration # On success + failure, log events to Supabase
async_log_success_event: Processes the event, stores it in memory for 10 seconds or until MAX_BATCH_SIZE and then flushes to s3 import datetime
import os
NOTE 1: S3 does not provide a BATCH PUT API endpoint, so we create tasks to upload each element individually import subprocess
NOTE 2: We create a httpx client with a concurrent limit of 1 to upload to s3. Files should get uploaded BUT they should not impact latency of LLM calling logic import sys
""" import traceback
import uuid
import asyncio from typing import Optional
import json
from datetime import datetime
from typing import Dict, List, Optional
import litellm import litellm
from litellm._logging import print_verbose, verbose_logger from litellm._logging import print_verbose, verbose_logger
from litellm.llms.base_aws_llm import BaseAWSLLM
from litellm.llms.custom_httpx.http_handler import (
_get_httpx_client,
get_async_httpx_client,
httpxSpecialProvider,
)
from litellm.types.integrations.s3 import s3BatchLoggingElement
from litellm.types.utils import StandardLoggingPayload from litellm.types.utils import StandardLoggingPayload
from .custom_batch_logger import CustomBatchLogger
# Default Flush interval and batch size for s3 class S3Logger:
# Flush to s3 every 10 seconds OR every 1K requests in memory
DEFAULT_S3_FLUSH_INTERVAL_SECONDS = 10
DEFAULT_S3_BATCH_SIZE = 1000
class S3Logger(CustomBatchLogger, BaseAWSLLM):
# Class variables or attributes # Class variables or attributes
def __init__( def __init__(
self, self,
s3_bucket_name: Optional[str] = None, s3_bucket_name=None,
s3_path: Optional[str] = None, s3_path=None,
s3_region_name: Optional[str] = None, s3_region_name=None,
s3_api_version: Optional[str] = None, s3_api_version=None,
s3_use_ssl: bool = True, s3_use_ssl=True,
s3_verify: Optional[bool] = None, s3_verify=None,
s3_endpoint_url: Optional[str] = None, s3_endpoint_url=None,
s3_aws_access_key_id: Optional[str] = None, s3_aws_access_key_id=None,
s3_aws_secret_access_key: Optional[str] = None, s3_aws_secret_access_key=None,
s3_aws_session_token: Optional[str] = None, s3_aws_session_token=None,
s3_flush_interval: Optional[int] = DEFAULT_S3_FLUSH_INTERVAL_SECONDS,
s3_batch_size: Optional[int] = DEFAULT_S3_BATCH_SIZE,
s3_config=None, s3_config=None,
**kwargs, **kwargs,
): ):
import boto3
try: try:
verbose_logger.debug( verbose_logger.debug(
f"in init s3 logger - s3_callback_params {litellm.s3_callback_params}" f"in init s3 logger - s3_callback_params {litellm.s3_callback_params}"
) )
# IMPORTANT: We use a concurrent limit of 1 to upload to s3
# Files should get uploaded BUT they should not impact latency of LLM calling logic
self.async_httpx_client = get_async_httpx_client(
llm_provider=httpxSpecialProvider.LoggingCallback,
params={"concurrent_limit": 1},
)
if litellm.s3_callback_params is not None: if litellm.s3_callback_params is not None:
# read in .env variables - example os.environ/AWS_BUCKET_NAME # read in .env variables - example os.environ/AWS_BUCKET_NAME
for key, value in litellm.s3_callback_params.items(): for key, value in litellm.s3_callback_params.items():
@ -87,282 +63,107 @@ class S3Logger(CustomBatchLogger, BaseAWSLLM):
s3_path = litellm.s3_callback_params.get("s3_path") s3_path = litellm.s3_callback_params.get("s3_path")
# done reading litellm.s3_callback_params # done reading litellm.s3_callback_params
s3_flush_interval = litellm.s3_callback_params.get(
"s3_flush_interval", DEFAULT_S3_FLUSH_INTERVAL_SECONDS
)
s3_batch_size = litellm.s3_callback_params.get(
"s3_batch_size", DEFAULT_S3_BATCH_SIZE
)
self.bucket_name = s3_bucket_name self.bucket_name = s3_bucket_name
self.s3_path = s3_path self.s3_path = s3_path
verbose_logger.debug(f"s3 logger using endpoint url {s3_endpoint_url}") verbose_logger.debug(f"s3 logger using endpoint url {s3_endpoint_url}")
self.s3_bucket_name = s3_bucket_name # Create an S3 client with custom endpoint URL
self.s3_region_name = s3_region_name self.s3_client = boto3.client(
self.s3_api_version = s3_api_version "s3",
self.s3_use_ssl = s3_use_ssl region_name=s3_region_name,
self.s3_verify = s3_verify endpoint_url=s3_endpoint_url,
self.s3_endpoint_url = s3_endpoint_url api_version=s3_api_version,
self.s3_aws_access_key_id = s3_aws_access_key_id use_ssl=s3_use_ssl,
self.s3_aws_secret_access_key = s3_aws_secret_access_key verify=s3_verify,
self.s3_aws_session_token = s3_aws_session_token aws_access_key_id=s3_aws_access_key_id,
self.s3_config = s3_config aws_secret_access_key=s3_aws_secret_access_key,
self.init_kwargs = kwargs aws_session_token=s3_aws_session_token,
config=s3_config,
asyncio.create_task(self.periodic_flush()) **kwargs,
self.flush_lock = asyncio.Lock()
verbose_logger.debug(
f"s3 flush interval: {s3_flush_interval}, s3 batch size: {s3_batch_size}"
) )
# Call CustomLogger's __init__
CustomBatchLogger.__init__(
self,
flush_lock=self.flush_lock,
flush_interval=s3_flush_interval,
batch_size=s3_batch_size,
)
self.log_queue: List[s3BatchLoggingElement] = []
# Call BaseAWSLLM's __init__
BaseAWSLLM.__init__(self)
except Exception as e: except Exception as e:
print_verbose(f"Got exception on init s3 client {str(e)}") print_verbose(f"Got exception on init s3 client {str(e)}")
raise e raise e
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time): async def _async_log_event(
self, kwargs, response_obj, start_time, end_time, print_verbose
):
self.log_event(kwargs, response_obj, start_time, end_time, print_verbose)
def log_event(self, kwargs, response_obj, start_time, end_time, print_verbose):
try: try:
verbose_logger.debug( verbose_logger.debug(
f"s3 Logging - Enters logging function for model {kwargs}" f"s3 Logging - Enters logging function for model {kwargs}"
) )
s3_batch_logging_element = self.create_s3_batch_logging_element( # construct payload to send to s3
start_time=start_time, # follows the same params as langfuse.py
standard_logging_payload=kwargs.get("standard_logging_object", None), litellm_params = kwargs.get("litellm_params", {})
s3_path=self.s3_path, metadata = (
litellm_params.get("metadata", {}) or {}
) # if litellm_params['metadata'] == None
# Clean Metadata before logging - never log raw metadata
# the raw metadata can contain circular references which leads to infinite recursion
# we clean out all extra litellm metadata params before logging
clean_metadata = {}
if isinstance(metadata, dict):
for key, value in metadata.items():
# clean litellm metadata before logging
if key in [
"headers",
"endpoint",
"caching_groups",
"previous_models",
]:
continue
else:
clean_metadata[key] = value
# Ensure everything in the payload is converted to str
payload: Optional[StandardLoggingPayload] = kwargs.get(
"standard_logging_object", None
) )
if s3_batch_logging_element is None: if payload is None:
raise ValueError("s3_batch_logging_element is None")
verbose_logger.debug(
"\ns3 Logger - Logging payload = %s", s3_batch_logging_element
)
self.log_queue.append(s3_batch_logging_element)
verbose_logger.debug(
"s3 logging: queue length %s, batch size %s",
len(self.log_queue),
self.batch_size,
)
if len(self.log_queue) >= self.batch_size:
await self.flush_queue()
except Exception as e:
verbose_logger.exception(f"s3 Layer Error - {str(e)}")
pass
def log_success_event(self, kwargs, response_obj, start_time, end_time):
"""
Synchronous logging function to log to s3
Does not batch logging requests, instantly logs on s3 Bucket
"""
try:
s3_batch_logging_element = self.create_s3_batch_logging_element(
start_time=start_time,
standard_logging_payload=kwargs.get("standard_logging_object", None),
s3_path=self.s3_path,
)
if s3_batch_logging_element is None:
raise ValueError("s3_batch_logging_element is None")
verbose_logger.debug(
"\ns3 Logger - Logging payload = %s", s3_batch_logging_element
)
# log the element sync httpx client
self.upload_data_to_s3(s3_batch_logging_element)
except Exception as e:
verbose_logger.exception(f"s3 Layer Error - {str(e)}")
pass
async def async_upload_data_to_s3(
self, batch_logging_element: s3BatchLoggingElement
):
try:
import hashlib
import boto3
import requests
from botocore.auth import SigV4Auth
from botocore.awsrequest import AWSRequest
from botocore.credentials import Credentials
except ImportError:
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
try:
credentials: Credentials = self.get_credentials(
aws_access_key_id=self.s3_aws_access_key_id,
aws_secret_access_key=self.s3_aws_secret_access_key,
aws_session_token=self.s3_aws_session_token,
aws_region_name=self.s3_region_name,
)
# Prepare the URL
url = f"https://{self.bucket_name}.s3.{self.s3_region_name}.amazonaws.com/{batch_logging_element.s3_object_key}"
if self.s3_endpoint_url:
url = self.s3_endpoint_url + "/" + batch_logging_element.s3_object_key
# Convert JSON to string
json_string = json.dumps(batch_logging_element.payload)
# Calculate SHA256 hash of the content
content_hash = hashlib.sha256(json_string.encode("utf-8")).hexdigest()
# Prepare the request
headers = {
"Content-Type": "application/json",
"x-amz-content-sha256": content_hash,
"Content-Language": "en",
"Content-Disposition": f'inline; filename="{batch_logging_element.s3_object_download_filename}"',
"Cache-Control": "private, immutable, max-age=31536000, s-maxage=0",
}
req = requests.Request("PUT", url, data=json_string, headers=headers)
prepped = req.prepare()
# Sign the request
aws_request = AWSRequest(
method=prepped.method,
url=prepped.url,
data=prepped.body,
headers=prepped.headers,
)
SigV4Auth(credentials, "s3", self.s3_region_name).add_auth(aws_request)
# Prepare the signed headers
signed_headers = dict(aws_request.headers.items())
# Make the request
response = await self.async_httpx_client.put(
url, data=json_string, headers=signed_headers
)
response.raise_for_status()
except Exception as e:
verbose_logger.exception(f"Error uploading to s3: {str(e)}")
async def async_send_batch(self):
"""
Sends runs from self.log_queue
Returns: None
Raises: Does not raise an exception, will only verbose_logger.exception()
"""
if not self.log_queue:
return return
for payload in self.log_queue: s3_file_name = litellm.utils.get_logging_id(start_time, payload) or ""
asyncio.create_task(self.async_upload_data_to_s3(payload))
def create_s3_batch_logging_element(
self,
start_time: datetime,
standard_logging_payload: Optional[StandardLoggingPayload],
s3_path: Optional[str],
) -> Optional[s3BatchLoggingElement]:
"""
Helper function to create an s3BatchLoggingElement.
Args:
start_time (datetime): The start time of the logging event.
standard_logging_payload (Optional[StandardLoggingPayload]): The payload to be logged.
s3_path (Optional[str]): The S3 path prefix.
Returns:
Optional[s3BatchLoggingElement]: The created s3BatchLoggingElement, or None if payload is None.
"""
if standard_logging_payload is None:
return None
s3_file_name = (
litellm.utils.get_logging_id(start_time, standard_logging_payload) or ""
)
s3_object_key = ( s3_object_key = (
(s3_path.rstrip("/") + "/" if s3_path else "") (self.s3_path.rstrip("/") + "/" if self.s3_path else "")
+ start_time.strftime("%Y-%m-%d") + start_time.strftime("%Y-%m-%d")
+ "/" + "/"
+ s3_file_name + s3_file_name
) # we need the s3 key to include the time, so we log cache hits too
s3_object_key += ".json"
s3_object_download_filename = (
"time-"
+ start_time.strftime("%Y-%m-%dT%H-%M-%S-%f")
+ "_"
+ payload["id"]
+ ".json" + ".json"
) )
s3_object_download_filename = f"time-{start_time.strftime('%Y-%m-%dT%H-%M-%S-%f')}_{standard_logging_payload['id']}.json" import json
return s3BatchLoggingElement( payload_str = json.dumps(payload)
payload=standard_logging_payload, # type: ignore
s3_object_key=s3_object_key, print_verbose(f"\ns3 Logger - Logging payload = {payload_str}")
s3_object_download_filename=s3_object_download_filename,
response = self.s3_client.put_object(
Bucket=self.bucket_name,
Key=s3_object_key,
Body=payload_str,
ContentType="application/json",
ContentLanguage="en",
ContentDisposition=f'inline; filename="{s3_object_download_filename}"',
CacheControl="private, immutable, max-age=31536000, s-maxage=0",
) )
def upload_data_to_s3(self, batch_logging_element: s3BatchLoggingElement): print_verbose(f"Response from s3:{str(response)}")
try:
import hashlib
import boto3 print_verbose(f"s3 Layer Logging - final response object: {response_obj}")
import requests return response
from botocore.auth import SigV4Auth
from botocore.awsrequest import AWSRequest
from botocore.credentials import Credentials
except ImportError:
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
try:
credentials: Credentials = self.get_credentials(
aws_access_key_id=self.s3_aws_access_key_id,
aws_secret_access_key=self.s3_aws_secret_access_key,
aws_session_token=self.s3_aws_session_token,
aws_region_name=self.s3_region_name,
)
# Prepare the URL
url = f"https://{self.bucket_name}.s3.{self.s3_region_name}.amazonaws.com/{batch_logging_element.s3_object_key}"
if self.s3_endpoint_url:
url = self.s3_endpoint_url + "/" + batch_logging_element.s3_object_key
# Convert JSON to string
json_string = json.dumps(batch_logging_element.payload)
# Calculate SHA256 hash of the content
content_hash = hashlib.sha256(json_string.encode("utf-8")).hexdigest()
# Prepare the request
headers = {
"Content-Type": "application/json",
"x-amz-content-sha256": content_hash,
"Content-Language": "en",
"Content-Disposition": f'inline; filename="{batch_logging_element.s3_object_download_filename}"',
"Cache-Control": "private, immutable, max-age=31536000, s-maxage=0",
}
req = requests.Request("PUT", url, data=json_string, headers=headers)
prepped = req.prepare()
# Sign the request
aws_request = AWSRequest(
method=prepped.method,
url=prepped.url,
data=prepped.body,
headers=prepped.headers,
)
SigV4Auth(credentials, "s3", self.s3_region_name).add_auth(aws_request)
# Prepare the signed headers
signed_headers = dict(aws_request.headers.items())
httpx_client = _get_httpx_client()
# Make the request
response = httpx_client.put(url, data=json_string, headers=signed_headers)
response.raise_for_status()
except Exception as e: except Exception as e:
verbose_logger.exception(f"Error uploading to s3: {str(e)}") verbose_logger.exception(f"s3 Layer Error - {str(e)}")
pass

View file

@ -119,6 +119,7 @@ lagoLogger = None
dataDogLogger = None dataDogLogger = None
prometheusLogger = None prometheusLogger = None
dynamoLogger = None dynamoLogger = None
s3Logger = None
genericAPILogger = None genericAPILogger = None
clickHouseLogger = None clickHouseLogger = None
greenscaleLogger = None greenscaleLogger = None
@ -1328,6 +1329,36 @@ class Logging:
user_id=kwargs.get("user", None), user_id=kwargs.get("user", None),
print_verbose=print_verbose, print_verbose=print_verbose,
) )
if callback == "s3":
global s3Logger
if s3Logger is None:
s3Logger = S3Logger()
if self.stream:
if "complete_streaming_response" in self.model_call_details:
print_verbose(
"S3Logger Logger: Got Stream Event - Completed Stream Response"
)
s3Logger.log_event(
kwargs=self.model_call_details,
response_obj=self.model_call_details[
"complete_streaming_response"
],
start_time=start_time,
end_time=end_time,
print_verbose=print_verbose,
)
else:
print_verbose(
"S3Logger Logger: Got Stream Event - No complete stream response as yet"
)
else:
s3Logger.log_event(
kwargs=self.model_call_details,
response_obj=result,
start_time=start_time,
end_time=end_time,
print_verbose=print_verbose,
)
if ( if (
callback == "openmeter" callback == "openmeter"
and self.model_call_details.get("litellm_params", {}).get( and self.model_call_details.get("litellm_params", {}).get(
@ -2163,7 +2194,7 @@ def set_callbacks(callback_list, function_id=None):
""" """
Globally sets the callback client Globally sets the callback client
""" """
global sentry_sdk_instance, capture_exception, add_breadcrumb, posthog, slack_app, alerts_channel, traceloopLogger, athinaLogger, heliconeLogger, aispendLogger, berrispendLogger, supabaseClient, liteDebuggerClient, lunaryLogger, promptLayerLogger, langFuseLogger, customLogger, weightsBiasesLogger, logfireLogger, dynamoLogger, dataDogLogger, prometheusLogger, greenscaleLogger, openMeterLogger global sentry_sdk_instance, capture_exception, add_breadcrumb, posthog, slack_app, alerts_channel, traceloopLogger, athinaLogger, heliconeLogger, aispendLogger, berrispendLogger, supabaseClient, liteDebuggerClient, lunaryLogger, promptLayerLogger, langFuseLogger, customLogger, weightsBiasesLogger, logfireLogger, dynamoLogger, s3Logger, dataDogLogger, prometheusLogger, greenscaleLogger, openMeterLogger
try: try:
for callback in callback_list: for callback in callback_list:
@ -2237,6 +2268,8 @@ def set_callbacks(callback_list, function_id=None):
dataDogLogger = DataDogLogger() dataDogLogger = DataDogLogger()
elif callback == "dynamodb": elif callback == "dynamodb":
dynamoLogger = DyanmoDBLogger() dynamoLogger = DyanmoDBLogger()
elif callback == "s3":
s3Logger = S3Logger()
elif callback == "wandb": elif callback == "wandb":
weightsBiasesLogger = WeightsBiasesLogger() weightsBiasesLogger = WeightsBiasesLogger()
elif callback == "logfire": elif callback == "logfire":
@ -2330,14 +2363,6 @@ def _init_custom_logger_compatible_class(
_datadog_logger = DataDogLogger() _datadog_logger = DataDogLogger()
_in_memory_loggers.append(_datadog_logger) _in_memory_loggers.append(_datadog_logger)
return _datadog_logger # type: ignore return _datadog_logger # type: ignore
elif logging_integration == "s3":
for callback in _in_memory_loggers:
if isinstance(callback, S3Logger):
return callback # type: ignore
_s3_logger = S3Logger()
_in_memory_loggers.append(_s3_logger)
return _s3_logger # type: ignore
elif logging_integration == "gcs_bucket": elif logging_integration == "gcs_bucket":
for callback in _in_memory_loggers: for callback in _in_memory_loggers:
if isinstance(callback, GCSBucketLogger): if isinstance(callback, GCSBucketLogger):
@ -2504,10 +2529,6 @@ def get_custom_logger_compatible_class(
for callback in _in_memory_loggers: for callback in _in_memory_loggers:
if isinstance(callback, PrometheusLogger): if isinstance(callback, PrometheusLogger):
return callback return callback
elif logging_integration == "s3":
for callback in _in_memory_loggers:
if isinstance(callback, S3Logger):
return callback
elif logging_integration == "datadog": elif logging_integration == "datadog":
for callback in _in_memory_loggers: for callback in _in_memory_loggers:
if isinstance(callback, DataDogLogger): if isinstance(callback, DataDogLogger):

View file

@ -3,7 +3,12 @@ model_list:
litellm_params: litellm_params:
model: openai/fake model: openai/fake
api_key: fake-key api_key: fake-key
api_base: https://exampleopenaiendpoint-production.up.railway.app/ api_base: https://exampleopenaiendpoint-production.up.railwaz.app/
- model_name: db-openai-endpoint
litellm_params:
model: openai/gpt-5
api_key: fake-key
api_base: https://exampleopenaiendpoint-production.up.railwxaz.app/
litellm_settings: litellm_settings:
callbacks: ["arize"] callbacks: ["arize"]

View file

@ -1,14 +0,0 @@
from typing import Dict
from pydantic import BaseModel
class s3BatchLoggingElement(BaseModel):
"""
Type of element stored in self.log_queue in S3Logger
"""
payload: Dict
s3_object_key: str
s3_object_download_filename: str

View file

@ -208,6 +208,7 @@ lagoLogger = None
dataDogLogger = None dataDogLogger = None
prometheusLogger = None prometheusLogger = None
dynamoLogger = None dynamoLogger = None
s3Logger = None
genericAPILogger = None genericAPILogger = None
clickHouseLogger = None clickHouseLogger = None
greenscaleLogger = None greenscaleLogger = None

View file

@ -12,16 +12,18 @@ import litellm
litellm.num_retries = 3 litellm.num_retries = 3
import time, random import time, random
from litellm._logging import verbose_logger
import logging
import pytest import pytest
import boto3 import boto3
from litellm._logging import verbose_logger
import logging
@pytest.mark.asyncio @pytest.mark.asyncio
@pytest.mark.parametrize("sync_mode", [True, False]) @pytest.mark.parametrize(
@pytest.mark.flaky(retries=6, delay=1) "sync_mode,streaming", [(True, True), (True, False), (False, True), (False, False)]
async def test_basic_s3_logging(sync_mode): )
@pytest.mark.flaky(retries=3, delay=1)
async def test_basic_s3_logging(sync_mode, streaming):
verbose_logger.setLevel(level=logging.DEBUG) verbose_logger.setLevel(level=logging.DEBUG)
litellm.success_callback = ["s3"] litellm.success_callback = ["s3"]
litellm.s3_callback_params = { litellm.s3_callback_params = {
@ -31,27 +33,41 @@ async def test_basic_s3_logging(sync_mode):
"s3_region_name": "us-west-2", "s3_region_name": "us-west-2",
} }
litellm.set_verbose = True litellm.set_verbose = True
response_id = None
if sync_mode is True: if sync_mode is True:
response = litellm.completion( response = litellm.completion(
model="gpt-3.5-turbo", model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "This is a test"}], messages=[{"role": "user", "content": "This is a test"}],
mock_response="It's simple to use and easy to get started", mock_response="It's simple to use and easy to get started",
stream=streaming,
) )
if streaming:
for chunk in response:
print()
response_id = chunk.id
else:
response_id = response.id
time.sleep(2)
else: else:
response = await litellm.acompletion( response = await litellm.acompletion(
model="gpt-3.5-turbo", model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "This is a test"}], messages=[{"role": "user", "content": "This is a test"}],
mock_response="It's simple to use and easy to get started", mock_response="It's simple to use and easy to get started",
stream=streaming,
) )
if streaming:
async for chunk in response:
print(chunk)
response_id = chunk.id
else:
response_id = response.id
await asyncio.sleep(2)
print(f"response: {response}") print(f"response: {response}")
await asyncio.sleep(12)
total_objects, all_s3_keys = list_all_s3_objects("load-testing-oct") total_objects, all_s3_keys = list_all_s3_objects("load-testing-oct")
# assert that atlest one key has response.id in it # assert that atlest one key has response.id in it
assert any(response.id in key for key in all_s3_keys) assert any(response_id in key for key in all_s3_keys)
s3 = boto3.client("s3") s3 = boto3.client("s3")
# delete all objects # delete all objects
for key in all_s3_keys: for key in all_s3_keys: