forked from phoenix/litellm-mirror
Merge pull request #3030 from BerriAI/docs_groq_tool_calling_example
Docs - add groq tool calling example
This commit is contained in:
commit
e28120a7cc
1 changed files with 102 additions and 1 deletions
|
@ -50,4 +50,105 @@ We support ALL Groq models, just set `groq/` as a prefix when sending completion
|
||||||
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||||
| llama2-70b-4096 | `completion(model="groq/llama2-70b-4096", messages)` |
|
| llama2-70b-4096 | `completion(model="groq/llama2-70b-4096", messages)` |
|
||||||
| mixtral-8x7b-32768 | `completion(model="groq/mixtral-8x7b-32768", messages)` |
|
| mixtral-8x7b-32768 | `completion(model="groq/mixtral-8x7b-32768", messages)` |
|
||||||
| gemma-7b-it | `completion(model="groq/gemma-7b-it", messages)` |
|
| gemma-7b-it | `completion(model="groq/gemma-7b-it", messages)` |
|
||||||
|
|
||||||
|
## Groq - Tool / Function Calling Example
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Example dummy function hard coded to return the current weather
|
||||||
|
import json
|
||||||
|
def get_current_weather(location, unit="fahrenheit"):
|
||||||
|
"""Get the current weather in a given location"""
|
||||||
|
if "tokyo" in location.lower():
|
||||||
|
return json.dumps({"location": "Tokyo", "temperature": "10", "unit": "celsius"})
|
||||||
|
elif "san francisco" in location.lower():
|
||||||
|
return json.dumps(
|
||||||
|
{"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"}
|
||||||
|
)
|
||||||
|
elif "paris" in location.lower():
|
||||||
|
return json.dumps({"location": "Paris", "temperature": "22", "unit": "celsius"})
|
||||||
|
else:
|
||||||
|
return json.dumps({"location": location, "temperature": "unknown"})
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# Step 1: send the conversation and available functions to the model
|
||||||
|
messages = [
|
||||||
|
{
|
||||||
|
"role": "system",
|
||||||
|
"content": "You are a function calling LLM that uses the data extracted from get_current_weather to answer questions about the weather in San Francisco.",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": "What's the weather like in San Francisco?",
|
||||||
|
},
|
||||||
|
]
|
||||||
|
tools = [
|
||||||
|
{
|
||||||
|
"type": "function",
|
||||||
|
"function": {
|
||||||
|
"name": "get_current_weather",
|
||||||
|
"description": "Get the current weather in a given location",
|
||||||
|
"parameters": {
|
||||||
|
"type": "object",
|
||||||
|
"properties": {
|
||||||
|
"location": {
|
||||||
|
"type": "string",
|
||||||
|
"description": "The city and state, e.g. San Francisco, CA",
|
||||||
|
},
|
||||||
|
"unit": {
|
||||||
|
"type": "string",
|
||||||
|
"enum": ["celsius", "fahrenheit"],
|
||||||
|
},
|
||||||
|
},
|
||||||
|
"required": ["location"],
|
||||||
|
},
|
||||||
|
},
|
||||||
|
}
|
||||||
|
]
|
||||||
|
response = litellm.completion(
|
||||||
|
model="groq/llama2-70b-4096",
|
||||||
|
messages=messages,
|
||||||
|
tools=tools,
|
||||||
|
tool_choice="auto", # auto is default, but we'll be explicit
|
||||||
|
)
|
||||||
|
print("Response\n", response)
|
||||||
|
response_message = response.choices[0].message
|
||||||
|
tool_calls = response_message.tool_calls
|
||||||
|
|
||||||
|
|
||||||
|
# Step 2: check if the model wanted to call a function
|
||||||
|
if tool_calls:
|
||||||
|
# Step 3: call the function
|
||||||
|
# Note: the JSON response may not always be valid; be sure to handle errors
|
||||||
|
available_functions = {
|
||||||
|
"get_current_weather": get_current_weather,
|
||||||
|
}
|
||||||
|
messages.append(
|
||||||
|
response_message
|
||||||
|
) # extend conversation with assistant's reply
|
||||||
|
print("Response message\n", response_message)
|
||||||
|
# Step 4: send the info for each function call and function response to the model
|
||||||
|
for tool_call in tool_calls:
|
||||||
|
function_name = tool_call.function.name
|
||||||
|
function_to_call = available_functions[function_name]
|
||||||
|
function_args = json.loads(tool_call.function.arguments)
|
||||||
|
function_response = function_to_call(
|
||||||
|
location=function_args.get("location"),
|
||||||
|
unit=function_args.get("unit"),
|
||||||
|
)
|
||||||
|
messages.append(
|
||||||
|
{
|
||||||
|
"tool_call_id": tool_call.id,
|
||||||
|
"role": "tool",
|
||||||
|
"name": function_name,
|
||||||
|
"content": function_response,
|
||||||
|
}
|
||||||
|
) # extend conversation with function response
|
||||||
|
print(f"messages: {messages}")
|
||||||
|
second_response = litellm.completion(
|
||||||
|
model="groq/llama2-70b-4096", messages=messages
|
||||||
|
) # get a new response from the model where it can see the function response
|
||||||
|
print("second response\n", second_response)
|
||||||
|
```
|
Loading…
Add table
Add a link
Reference in a new issue