forked from phoenix/litellm-mirror
Merge branch 'BerriAI:main' into main
This commit is contained in:
commit
e370b0cde3
24 changed files with 580 additions and 52 deletions
|
@ -56,7 +56,7 @@ for chunk in response:
|
|||
print(chunk["choices"][0]["delta"]["content"]) # same as openai format
|
||||
```
|
||||
|
||||
## OpenAI Proxy Usage
|
||||
## Usage with LiteLLM Proxy
|
||||
|
||||
Here's how to call Anthropic with the LiteLLM Proxy Server
|
||||
|
||||
|
@ -69,14 +69,6 @@ export ANTHROPIC_API_KEY="your-api-key"
|
|||
### 2. Start the proxy
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="cli" label="cli">
|
||||
|
||||
```bash
|
||||
$ litellm --model claude-3-opus-20240229
|
||||
|
||||
# Server running on http://0.0.0.0:4000
|
||||
```
|
||||
</TabItem>
|
||||
<TabItem value="config" label="config.yaml">
|
||||
|
||||
```yaml
|
||||
|
@ -91,6 +83,14 @@ model_list:
|
|||
litellm --config /path/to/config.yaml
|
||||
```
|
||||
</TabItem>
|
||||
<TabItem value="cli" label="cli">
|
||||
|
||||
```bash
|
||||
$ litellm --model claude-3-opus-20240229
|
||||
|
||||
# Server running on http://0.0.0.0:4000
|
||||
```
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
### 3. Test it
|
||||
|
|
|
@ -749,6 +749,85 @@ curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
|
||||
## Llama 3 API
|
||||
|
||||
| Model Name | Function Call |
|
||||
|------------------|--------------------------------------|
|
||||
| meta/llama3-405b-instruct-maas | `completion('vertex_ai/meta/llama3-405b-instruct-maas', messages)` |
|
||||
|
||||
### Usage
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="sdk" label="SDK">
|
||||
|
||||
```python
|
||||
from litellm import completion
|
||||
import os
|
||||
|
||||
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = ""
|
||||
|
||||
model = "meta/llama3-405b-instruct-maas"
|
||||
|
||||
vertex_ai_project = "your-vertex-project" # can also set this as os.environ["VERTEXAI_PROJECT"]
|
||||
vertex_ai_location = "your-vertex-location" # can also set this as os.environ["VERTEXAI_LOCATION"]
|
||||
|
||||
response = completion(
|
||||
model="vertex_ai/" + model,
|
||||
messages=[{"role": "user", "content": "hi"}],
|
||||
temperature=0.7,
|
||||
vertex_ai_project=vertex_ai_project,
|
||||
vertex_ai_location=vertex_ai_location,
|
||||
)
|
||||
print("\nModel Response", response)
|
||||
```
|
||||
</TabItem>
|
||||
<TabItem value="proxy" label="Proxy">
|
||||
|
||||
**1. Add to config**
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: anthropic-llama
|
||||
litellm_params:
|
||||
model: vertex_ai/meta/llama3-405b-instruct-maas
|
||||
vertex_ai_project: "my-test-project"
|
||||
vertex_ai_location: "us-east-1"
|
||||
- model_name: anthropic-llama
|
||||
litellm_params:
|
||||
model: vertex_ai/meta/llama3-405b-instruct-maas
|
||||
vertex_ai_project: "my-test-project"
|
||||
vertex_ai_location: "us-west-1"
|
||||
```
|
||||
|
||||
**2. Start proxy**
|
||||
|
||||
```bash
|
||||
litellm --config /path/to/config.yaml
|
||||
|
||||
# RUNNING at http://0.0.0.0:4000
|
||||
```
|
||||
|
||||
**3. Test it!**
|
||||
|
||||
```bash
|
||||
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
||||
--header 'Authorization: Bearer sk-1234' \
|
||||
--header 'Content-Type: application/json' \
|
||||
--data '{
|
||||
"model": "anthropic-llama", # 👈 the 'model_name' in config
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "what llm are you"
|
||||
}
|
||||
],
|
||||
}'
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
## Model Garden
|
||||
| Model Name | Function Call |
|
||||
|------------------|--------------------------------------|
|
||||
|
|
|
@ -266,6 +266,54 @@ curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|||
}'
|
||||
```
|
||||
|
||||
## Disable team from turning on/off guardrails
|
||||
|
||||
|
||||
### 1. Disable team from modifying guardrails
|
||||
|
||||
```bash
|
||||
curl -X POST 'http://0.0.0.0:4000/team/update' \
|
||||
-H 'Authorization: Bearer sk-1234' \
|
||||
-H 'Content-Type: application/json' \
|
||||
-D '{
|
||||
"team_id": "4198d93c-d375-4c83-8d5a-71e7c5473e50",
|
||||
"metadata": {"guardrails": {"modify_guardrails": false}}
|
||||
}'
|
||||
```
|
||||
|
||||
### 2. Try to disable guardrails for a call
|
||||
|
||||
```bash
|
||||
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
||||
--header 'Content-Type: application/json' \
|
||||
--header 'Authorization: Bearer $LITELLM_VIRTUAL_KEY' \
|
||||
--data '{
|
||||
"model": "gpt-3.5-turbo",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Think of 10 random colors."
|
||||
}
|
||||
],
|
||||
"metadata": {"guardrails": {"hide_secrets": false}}
|
||||
}'
|
||||
```
|
||||
|
||||
### 3. Get 403 Error
|
||||
|
||||
```
|
||||
{
|
||||
"error": {
|
||||
"message": {
|
||||
"error": "Your team does not have permission to modify guardrails."
|
||||
},
|
||||
"type": "auth_error",
|
||||
"param": "None",
|
||||
"code": 403
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
Expect to NOT see `+1 412-612-9992` in your server logs on your callback.
|
||||
|
||||
:::info
|
||||
|
|
|
@ -357,6 +357,7 @@ vertex_text_models: List = []
|
|||
vertex_code_text_models: List = []
|
||||
vertex_embedding_models: List = []
|
||||
vertex_anthropic_models: List = []
|
||||
vertex_llama3_models: List = []
|
||||
ai21_models: List = []
|
||||
nlp_cloud_models: List = []
|
||||
aleph_alpha_models: List = []
|
||||
|
@ -399,6 +400,9 @@ for key, value in model_cost.items():
|
|||
elif value.get("litellm_provider") == "vertex_ai-anthropic_models":
|
||||
key = key.replace("vertex_ai/", "")
|
||||
vertex_anthropic_models.append(key)
|
||||
elif value.get("litellm_provider") == "vertex_ai-llama_models":
|
||||
key = key.replace("vertex_ai/", "")
|
||||
vertex_llama3_models.append(key)
|
||||
elif value.get("litellm_provider") == "ai21":
|
||||
ai21_models.append(key)
|
||||
elif value.get("litellm_provider") == "nlp_cloud":
|
||||
|
@ -828,6 +832,7 @@ from .llms.petals import PetalsConfig
|
|||
from .llms.vertex_httpx import VertexGeminiConfig, GoogleAIStudioGeminiConfig
|
||||
from .llms.vertex_ai import VertexAIConfig, VertexAITextEmbeddingConfig
|
||||
from .llms.vertex_ai_anthropic import VertexAIAnthropicConfig
|
||||
from .llms.vertex_ai_llama import VertexAILlama3Config
|
||||
from .llms.sagemaker import SagemakerConfig
|
||||
from .llms.ollama import OllamaConfig
|
||||
from .llms.ollama_chat import OllamaChatConfig
|
||||
|
|
|
@ -385,6 +385,11 @@ class AnthropicConfig:
|
|||
if "user_id" in anthropic_message_request["metadata"]:
|
||||
new_kwargs["user"] = anthropic_message_request["metadata"]["user_id"]
|
||||
|
||||
# Pass litellm proxy specific metadata
|
||||
if "litellm_metadata" in anthropic_message_request:
|
||||
# metadata will be passed to litellm.acompletion(), it's a litellm_param
|
||||
new_kwargs["metadata"] = anthropic_message_request.pop("litellm_metadata")
|
||||
|
||||
## CONVERT TOOL CHOICE
|
||||
if "tool_choice" in anthropic_message_request:
|
||||
new_kwargs["tool_choice"] = self.translate_anthropic_tool_choice_to_openai(
|
||||
|
@ -775,8 +780,17 @@ class AnthropicChatCompletion(BaseLLM):
|
|||
system_prompt = ""
|
||||
for idx, message in enumerate(messages):
|
||||
if message["role"] == "system":
|
||||
system_prompt += message["content"]
|
||||
system_prompt_indices.append(idx)
|
||||
valid_content: bool = False
|
||||
if isinstance(message["content"], str):
|
||||
system_prompt += message["content"]
|
||||
valid_content = True
|
||||
elif isinstance(message["content"], list):
|
||||
for content in message["content"]:
|
||||
system_prompt += content.get("text", "")
|
||||
valid_content = True
|
||||
|
||||
if valid_content:
|
||||
system_prompt_indices.append(idx)
|
||||
if len(system_prompt_indices) > 0:
|
||||
for idx in reversed(system_prompt_indices):
|
||||
messages.pop(idx)
|
||||
|
|
203
litellm/llms/vertex_ai_llama.py
Normal file
203
litellm/llms/vertex_ai_llama.py
Normal file
|
@ -0,0 +1,203 @@
|
|||
# What is this?
|
||||
## Handler for calling llama 3.1 API on Vertex AI
|
||||
import copy
|
||||
import json
|
||||
import os
|
||||
import time
|
||||
import types
|
||||
import uuid
|
||||
from enum import Enum
|
||||
from typing import Any, Callable, List, Optional, Tuple, Union
|
||||
|
||||
import httpx # type: ignore
|
||||
import requests # type: ignore
|
||||
|
||||
import litellm
|
||||
from litellm.litellm_core_utils.core_helpers import map_finish_reason
|
||||
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
|
||||
from litellm.types.llms.anthropic import (
|
||||
AnthropicMessagesTool,
|
||||
AnthropicMessagesToolChoice,
|
||||
)
|
||||
from litellm.types.llms.openai import (
|
||||
ChatCompletionToolParam,
|
||||
ChatCompletionToolParamFunctionChunk,
|
||||
)
|
||||
from litellm.types.utils import ResponseFormatChunk
|
||||
from litellm.utils import CustomStreamWrapper, ModelResponse, Usage
|
||||
|
||||
from .base import BaseLLM
|
||||
from .prompt_templates.factory import (
|
||||
construct_tool_use_system_prompt,
|
||||
contains_tag,
|
||||
custom_prompt,
|
||||
extract_between_tags,
|
||||
parse_xml_params,
|
||||
prompt_factory,
|
||||
response_schema_prompt,
|
||||
)
|
||||
|
||||
|
||||
class VertexAIError(Exception):
|
||||
def __init__(self, status_code, message):
|
||||
self.status_code = status_code
|
||||
self.message = message
|
||||
self.request = httpx.Request(
|
||||
method="POST", url=" https://cloud.google.com/vertex-ai/"
|
||||
)
|
||||
self.response = httpx.Response(status_code=status_code, request=self.request)
|
||||
super().__init__(
|
||||
self.message
|
||||
) # Call the base class constructor with the parameters it needs
|
||||
|
||||
|
||||
class VertexAILlama3Config:
|
||||
"""
|
||||
Reference:https://cloud.google.com/vertex-ai/generative-ai/docs/partner-models/llama#streaming
|
||||
|
||||
The class `VertexAILlama3Config` provides configuration for the VertexAI's Llama API interface. Below are the parameters:
|
||||
|
||||
- `max_tokens` Required (integer) max tokens,
|
||||
|
||||
Note: Please make sure to modify the default parameters as required for your use case.
|
||||
"""
|
||||
|
||||
max_tokens: Optional[int] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
max_tokens: Optional[int] = None,
|
||||
) -> None:
|
||||
locals_ = locals()
|
||||
for key, value in locals_.items():
|
||||
if key == "max_tokens" and value is None:
|
||||
value = self.max_tokens
|
||||
if key != "self" and value is not None:
|
||||
setattr(self.__class__, key, value)
|
||||
|
||||
@classmethod
|
||||
def get_config(cls):
|
||||
return {
|
||||
k: v
|
||||
for k, v in cls.__dict__.items()
|
||||
if not k.startswith("__")
|
||||
and not isinstance(
|
||||
v,
|
||||
(
|
||||
types.FunctionType,
|
||||
types.BuiltinFunctionType,
|
||||
classmethod,
|
||||
staticmethod,
|
||||
),
|
||||
)
|
||||
and v is not None
|
||||
}
|
||||
|
||||
def get_supported_openai_params(self):
|
||||
return [
|
||||
"max_tokens",
|
||||
"stream",
|
||||
]
|
||||
|
||||
def map_openai_params(self, non_default_params: dict, optional_params: dict):
|
||||
for param, value in non_default_params.items():
|
||||
if param == "max_tokens":
|
||||
optional_params["max_tokens"] = value
|
||||
|
||||
return optional_params
|
||||
|
||||
|
||||
class VertexAILlama3(BaseLLM):
|
||||
def __init__(self) -> None:
|
||||
pass
|
||||
|
||||
def create_vertex_llama3_url(
|
||||
self, vertex_location: str, vertex_project: str
|
||||
) -> str:
|
||||
return f"https://{vertex_location}-aiplatform.googleapis.com/v1beta1/projects/{vertex_project}/locations/{vertex_location}/endpoints/openapi"
|
||||
|
||||
def completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: list,
|
||||
model_response: ModelResponse,
|
||||
print_verbose: Callable,
|
||||
encoding,
|
||||
logging_obj,
|
||||
optional_params: dict,
|
||||
custom_prompt_dict: dict,
|
||||
headers: Optional[dict],
|
||||
timeout: Union[float, httpx.Timeout],
|
||||
vertex_project=None,
|
||||
vertex_location=None,
|
||||
vertex_credentials=None,
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
acompletion: bool = False,
|
||||
client=None,
|
||||
):
|
||||
try:
|
||||
import vertexai
|
||||
from google.cloud import aiplatform
|
||||
|
||||
from litellm.llms.openai import OpenAIChatCompletion
|
||||
from litellm.llms.vertex_httpx import VertexLLM
|
||||
except Exception:
|
||||
|
||||
raise VertexAIError(
|
||||
status_code=400,
|
||||
message="""vertexai import failed please run `pip install -U "google-cloud-aiplatform>=1.38"`""",
|
||||
)
|
||||
|
||||
if not (
|
||||
hasattr(vertexai, "preview") or hasattr(vertexai.preview, "language_models")
|
||||
):
|
||||
raise VertexAIError(
|
||||
status_code=400,
|
||||
message="""Upgrade vertex ai. Run `pip install "google-cloud-aiplatform>=1.38"`""",
|
||||
)
|
||||
try:
|
||||
|
||||
vertex_httpx_logic = VertexLLM()
|
||||
|
||||
access_token, project_id = vertex_httpx_logic._ensure_access_token(
|
||||
credentials=vertex_credentials, project_id=vertex_project
|
||||
)
|
||||
|
||||
openai_chat_completions = OpenAIChatCompletion()
|
||||
|
||||
## Load Config
|
||||
# config = litellm.VertexAILlama3.get_config()
|
||||
# for k, v in config.items():
|
||||
# if k not in optional_params:
|
||||
# optional_params[k] = v
|
||||
|
||||
## CONSTRUCT API BASE
|
||||
stream: bool = optional_params.get("stream", False) or False
|
||||
|
||||
optional_params["stream"] = stream
|
||||
|
||||
api_base = self.create_vertex_llama3_url(
|
||||
vertex_location=vertex_location or "us-central1",
|
||||
vertex_project=vertex_project or project_id,
|
||||
)
|
||||
|
||||
return openai_chat_completions.completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
api_base=api_base,
|
||||
api_key=access_token,
|
||||
custom_prompt_dict=custom_prompt_dict,
|
||||
model_response=model_response,
|
||||
print_verbose=print_verbose,
|
||||
logging_obj=logging_obj,
|
||||
optional_params=optional_params,
|
||||
acompletion=acompletion,
|
||||
litellm_params=litellm_params,
|
||||
logger_fn=logger_fn,
|
||||
client=client,
|
||||
timeout=timeout,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
raise VertexAIError(status_code=500, message=str(e))
|
|
@ -1189,7 +1189,7 @@ class VertexLLM(BaseLLM):
|
|||
response.raise_for_status()
|
||||
except httpx.HTTPStatusError as err:
|
||||
error_code = err.response.status_code
|
||||
raise VertexAIError(status_code=error_code, message=response.text)
|
||||
raise VertexAIError(status_code=error_code, message=err.response.text)
|
||||
except httpx.TimeoutException:
|
||||
raise VertexAIError(status_code=408, message="Timeout error occurred.")
|
||||
|
||||
|
|
|
@ -120,6 +120,7 @@ from .llms.prompt_templates.factory import (
|
|||
)
|
||||
from .llms.text_completion_codestral import CodestralTextCompletion
|
||||
from .llms.triton import TritonChatCompletion
|
||||
from .llms.vertex_ai_llama import VertexAILlama3
|
||||
from .llms.vertex_httpx import VertexLLM
|
||||
from .llms.watsonx import IBMWatsonXAI
|
||||
from .types.llms.openai import HttpxBinaryResponseContent
|
||||
|
@ -156,6 +157,7 @@ triton_chat_completions = TritonChatCompletion()
|
|||
bedrock_chat_completion = BedrockLLM()
|
||||
bedrock_converse_chat_completion = BedrockConverseLLM()
|
||||
vertex_chat_completion = VertexLLM()
|
||||
vertex_llama_chat_completion = VertexAILlama3()
|
||||
watsonxai = IBMWatsonXAI()
|
||||
####### COMPLETION ENDPOINTS ################
|
||||
|
||||
|
@ -2064,7 +2066,26 @@ def completion(
|
|||
timeout=timeout,
|
||||
client=client,
|
||||
)
|
||||
|
||||
elif model.startswith("meta/"):
|
||||
model_response = vertex_llama_chat_completion.completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
model_response=model_response,
|
||||
print_verbose=print_verbose,
|
||||
optional_params=new_params,
|
||||
litellm_params=litellm_params,
|
||||
logger_fn=logger_fn,
|
||||
encoding=encoding,
|
||||
vertex_location=vertex_ai_location,
|
||||
vertex_project=vertex_ai_project,
|
||||
vertex_credentials=vertex_credentials,
|
||||
logging_obj=logging,
|
||||
acompletion=acompletion,
|
||||
headers=headers,
|
||||
custom_prompt_dict=custom_prompt_dict,
|
||||
timeout=timeout,
|
||||
client=client,
|
||||
)
|
||||
else:
|
||||
model_response = vertex_ai.completion(
|
||||
model=model,
|
||||
|
@ -2478,28 +2499,25 @@ def completion(
|
|||
return generator
|
||||
|
||||
response = generator
|
||||
|
||||
|
||||
elif custom_llm_provider == "triton":
|
||||
api_base = (
|
||||
litellm.api_base or api_base
|
||||
)
|
||||
api_base = litellm.api_base or api_base
|
||||
model_response = triton_chat_completions.completion(
|
||||
api_base=api_base,
|
||||
timeout=timeout, # type: ignore
|
||||
model=model,
|
||||
messages=messages,
|
||||
model_response=model_response,
|
||||
optional_params=optional_params,
|
||||
logging_obj=logging,
|
||||
stream=stream,
|
||||
acompletion=acompletion
|
||||
api_base=api_base,
|
||||
timeout=timeout, # type: ignore
|
||||
model=model,
|
||||
messages=messages,
|
||||
model_response=model_response,
|
||||
optional_params=optional_params,
|
||||
logging_obj=logging,
|
||||
stream=stream,
|
||||
acompletion=acompletion,
|
||||
)
|
||||
|
||||
## RESPONSE OBJECT
|
||||
response = model_response
|
||||
return response
|
||||
|
||||
|
||||
|
||||
elif custom_llm_provider == "cloudflare":
|
||||
api_key = (
|
||||
api_key
|
||||
|
|
|
@ -1948,6 +1948,16 @@
|
|||
"supports_function_calling": true,
|
||||
"supports_vision": true
|
||||
},
|
||||
"vertex_ai/meta/llama3-405b-instruct-maas": {
|
||||
"max_tokens": 32000,
|
||||
"max_input_tokens": 32000,
|
||||
"max_output_tokens": 32000,
|
||||
"input_cost_per_token": 0.0,
|
||||
"output_cost_per_token": 0.0,
|
||||
"litellm_provider": "vertex_ai-llama_models",
|
||||
"mode": "chat",
|
||||
"source": "https://cloud.google.com/vertex-ai/generative-ai/pricing#partner-models"
|
||||
},
|
||||
"vertex_ai/imagegeneration@006": {
|
||||
"cost_per_image": 0.020,
|
||||
"litellm_provider": "vertex_ai-image-models",
|
||||
|
|
|
@ -1,8 +1,7 @@
|
|||
model_list:
|
||||
- model_name: groq-llama3
|
||||
- model_name: anthropic-claude
|
||||
litellm_params:
|
||||
model: groq/llama3-groq-70b-8192-tool-use-preview
|
||||
api_key: os.environ/GROQ_API_KEY
|
||||
model: claude-3-haiku-20240307
|
||||
|
||||
litellm_settings:
|
||||
callbacks: ["logfire"]
|
||||
|
|
|
@ -39,6 +39,9 @@ def _get_metadata_variable_name(request: Request) -> str:
|
|||
"""
|
||||
if "thread" in request.url.path or "assistant" in request.url.path:
|
||||
return "litellm_metadata"
|
||||
if "/v1/messages" in request.url.path:
|
||||
# anthropic API has a field called metadata
|
||||
return "litellm_metadata"
|
||||
else:
|
||||
return "metadata"
|
||||
|
||||
|
|
|
@ -657,7 +657,11 @@ async def _PROXY_track_cost_callback(
|
|||
global prisma_client, custom_db_client
|
||||
try:
|
||||
# check if it has collected an entire stream response
|
||||
verbose_proxy_logger.debug("Proxy: In track_cost_callback for: %s", kwargs)
|
||||
verbose_proxy_logger.debug(
|
||||
"Proxy: In track_cost_callback for: kwargs=%s and completion_response: %s",
|
||||
kwargs,
|
||||
completion_response,
|
||||
)
|
||||
verbose_proxy_logger.debug(
|
||||
f"kwargs stream: {kwargs.get('stream', None)} + complete streaming response: {kwargs.get('complete_streaming_response', None)}"
|
||||
)
|
||||
|
|
|
@ -183,12 +183,12 @@ model LiteLLM_SpendLogs {
|
|||
model String @default("")
|
||||
model_id String? @default("") // the model id stored in proxy model db
|
||||
model_group String? @default("") // public model_name / model_group
|
||||
api_base String @default("")
|
||||
user String @default("")
|
||||
metadata Json @default("{}")
|
||||
cache_hit String @default("")
|
||||
cache_key String @default("")
|
||||
request_tags Json @default("[]")
|
||||
api_base String? @default("")
|
||||
user String? @default("")
|
||||
metadata Json? @default("{}")
|
||||
cache_hit String? @default("")
|
||||
cache_key String? @default("")
|
||||
request_tags Json? @default("[]")
|
||||
team_id String?
|
||||
end_user String?
|
||||
requester_ip_address String?
|
||||
|
@ -257,4 +257,4 @@ model LiteLLM_AuditLog {
|
|||
object_id String // id of the object being audited. This can be the key id, team id, user id, model id
|
||||
before_value Json? // value of the row
|
||||
updated_values Json? // value of the row after change
|
||||
}
|
||||
}
|
||||
|
|
|
@ -895,6 +895,52 @@ async def test_gemini_pro_function_calling_httpx(model, sync_mode):
|
|||
pytest.fail("An unexpected exception occurred - {}".format(str(e)))
|
||||
|
||||
|
||||
from litellm.tests.test_completion import response_format_tests
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"model", ["vertex_ai/meta/llama3-405b-instruct-maas"]
|
||||
) # "vertex_ai",
|
||||
@pytest.mark.parametrize("sync_mode", [True, False]) # "vertex_ai",
|
||||
@pytest.mark.asyncio
|
||||
async def test_llama_3_httpx(model, sync_mode):
|
||||
try:
|
||||
load_vertex_ai_credentials()
|
||||
litellm.set_verbose = True
|
||||
|
||||
messages = [
|
||||
{
|
||||
"role": "system",
|
||||
"content": "Your name is Litellm Bot, you are a helpful assistant",
|
||||
},
|
||||
# User asks for their name and weather in San Francisco
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Hello, what is your name and can you tell me the weather?",
|
||||
},
|
||||
]
|
||||
|
||||
data = {
|
||||
"model": model,
|
||||
"messages": messages,
|
||||
}
|
||||
if sync_mode:
|
||||
response = litellm.completion(**data)
|
||||
else:
|
||||
response = await litellm.acompletion(**data)
|
||||
|
||||
response_format_tests(response=response)
|
||||
|
||||
print(f"response: {response}")
|
||||
except litellm.RateLimitError as e:
|
||||
pass
|
||||
except Exception as e:
|
||||
if "429 Quota exceeded" in str(e):
|
||||
pass
|
||||
else:
|
||||
pytest.fail("An unexpected exception occurred - {}".format(str(e)))
|
||||
|
||||
|
||||
def vertex_httpx_mock_reject_prompt_post(*args, **kwargs):
|
||||
mock_response = MagicMock()
|
||||
mock_response.status_code = 200
|
||||
|
|
|
@ -48,6 +48,42 @@ def test_anthropic_completion_input_translation():
|
|||
]
|
||||
|
||||
|
||||
def test_anthropic_completion_input_translation_with_metadata():
|
||||
"""
|
||||
Tests that cost tracking works as expected with LiteLLM Proxy
|
||||
|
||||
LiteLLM Proxy will insert litellm_metadata for anthropic endpoints to track user_api_key and user_api_key_team_id
|
||||
|
||||
This test ensures that the `litellm_metadata` is not present in the translated input
|
||||
It ensures that `litellm.acompletion()` will receieve metadata which is a litellm specific param
|
||||
"""
|
||||
data = {
|
||||
"model": "gpt-3.5-turbo",
|
||||
"messages": [{"role": "user", "content": "Hey, how's it going?"}],
|
||||
"litellm_metadata": {
|
||||
"user_api_key": "88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",
|
||||
"user_api_key_alias": None,
|
||||
"user_api_end_user_max_budget": None,
|
||||
"litellm_api_version": "1.40.19",
|
||||
"global_max_parallel_requests": None,
|
||||
"user_api_key_user_id": "default_user_id",
|
||||
"user_api_key_org_id": None,
|
||||
"user_api_key_team_id": None,
|
||||
"user_api_key_team_alias": None,
|
||||
"user_api_key_team_max_budget": None,
|
||||
"user_api_key_team_spend": None,
|
||||
"user_api_key_spend": 0.0,
|
||||
"user_api_key_max_budget": None,
|
||||
"user_api_key_metadata": {},
|
||||
},
|
||||
}
|
||||
translated_input = anthropic_adapter.translate_completion_input_params(kwargs=data)
|
||||
|
||||
assert "litellm_metadata" not in translated_input
|
||||
assert "metadata" in translated_input
|
||||
assert translated_input["metadata"] == data["litellm_metadata"]
|
||||
|
||||
|
||||
def test_anthropic_completion_e2e():
|
||||
litellm.set_verbose = True
|
||||
|
||||
|
|
|
@ -346,7 +346,7 @@ def test_completion_claude_3_empty_response():
|
|||
messages = [
|
||||
{
|
||||
"role": "system",
|
||||
"content": "You are 2twNLGfqk4GMOn3ffp4p.",
|
||||
"content": [{"type": "text", "text": "You are 2twNLGfqk4GMOn3ffp4p."}],
|
||||
},
|
||||
{"role": "user", "content": "Hi gm!", "name": "ishaan"},
|
||||
{"role": "assistant", "content": "Good morning! How are you doing today?"},
|
||||
|
|
|
@ -196,6 +196,28 @@ def test_openai_azure_embedding():
|
|||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
@pytest.mark.skipif(
|
||||
os.environ.get("CIRCLE_OIDC_TOKEN") is None,
|
||||
reason="Cannot run without being in CircleCI Runner",
|
||||
)
|
||||
def test_openai_azure_embedding_with_oidc_and_cf():
|
||||
# TODO: Switch to our own Azure account, currently using ai.moda's account
|
||||
os.environ["AZURE_TENANT_ID"] = "17c0a27a-1246-4aa1-a3b6-d294e80e783c"
|
||||
os.environ["AZURE_CLIENT_ID"] = "4faf5422-b2bd-45e8-a6d7-46543a38acd0"
|
||||
|
||||
try:
|
||||
response = embedding(
|
||||
model="azure/text-embedding-ada-002",
|
||||
input=["Hello"],
|
||||
azure_ad_token="oidc/circleci/",
|
||||
api_base="https://gateway.ai.cloudflare.com/v1/0399b10e77ac6668c80404a5ff49eb37/litellm-test/azure-openai/eastus2-litellm",
|
||||
api_version="2024-06-01",
|
||||
)
|
||||
print(response)
|
||||
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
||||
def test_openai_azure_embedding_optional_arg(mocker):
|
||||
mocked_create_embeddings = mocker.patch.object(
|
||||
|
|
|
@ -128,6 +128,19 @@ def test_azure_ai_mistral_optional_params():
|
|||
assert "user" not in optional_params
|
||||
|
||||
|
||||
def test_vertex_ai_llama_3_optional_params():
|
||||
litellm.vertex_llama3_models = ["meta/llama3-405b-instruct-maas"]
|
||||
litellm.drop_params = True
|
||||
optional_params = get_optional_params(
|
||||
model="meta/llama3-405b-instruct-maas",
|
||||
user="John",
|
||||
custom_llm_provider="vertex_ai",
|
||||
max_tokens=10,
|
||||
temperature=0.2,
|
||||
)
|
||||
assert "user" not in optional_params
|
||||
|
||||
|
||||
def test_azure_gpt_optional_params_gpt_vision():
|
||||
# for OpenAI, Azure all extra params need to get passed as extra_body to OpenAI python. We assert we actually set extra_body here
|
||||
optional_params = litellm.utils.get_optional_params(
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
from typing import Iterable, List, Optional, Union
|
||||
from typing import Any, Dict, Iterable, List, Optional, Union
|
||||
|
||||
from pydantic import BaseModel, validator
|
||||
from typing_extensions import Literal, Required, TypedDict
|
||||
|
@ -113,6 +113,9 @@ class AnthropicMessagesRequest(TypedDict, total=False):
|
|||
top_k: int
|
||||
top_p: float
|
||||
|
||||
# litellm param - used for tracking litellm proxy metadata in the request
|
||||
litellm_metadata: dict
|
||||
|
||||
|
||||
class ContentTextBlockDelta(TypedDict):
|
||||
"""
|
||||
|
|
|
@ -436,6 +436,7 @@ class ChatCompletionRequest(TypedDict, total=False):
|
|||
function_call: Union[str, dict]
|
||||
functions: List
|
||||
user: str
|
||||
metadata: dict # litellm specific param
|
||||
|
||||
|
||||
class ChatCompletionDeltaChunk(TypedDict, total=False):
|
||||
|
|
|
@ -3088,6 +3088,15 @@ def get_optional_params(
|
|||
non_default_params=non_default_params,
|
||||
optional_params=optional_params,
|
||||
)
|
||||
elif custom_llm_provider == "vertex_ai" and model in litellm.vertex_llama3_models:
|
||||
supported_params = get_supported_openai_params(
|
||||
model=model, custom_llm_provider=custom_llm_provider
|
||||
)
|
||||
_check_valid_arg(supported_params=supported_params)
|
||||
optional_params = litellm.VertexAILlama3Config().map_openai_params(
|
||||
non_default_params=non_default_params,
|
||||
optional_params=optional_params,
|
||||
)
|
||||
elif custom_llm_provider == "sagemaker":
|
||||
## check if unsupported param passed in
|
||||
supported_params = get_supported_openai_params(
|
||||
|
@ -4189,6 +4198,9 @@ def get_supported_openai_params(
|
|||
return litellm.GoogleAIStudioGeminiConfig().get_supported_openai_params()
|
||||
elif custom_llm_provider == "vertex_ai":
|
||||
if request_type == "chat_completion":
|
||||
if model.startswith("meta/"):
|
||||
return litellm.VertexAILlama3Config().get_supported_openai_params()
|
||||
|
||||
return litellm.VertexAIConfig().get_supported_openai_params()
|
||||
elif request_type == "embeddings":
|
||||
return litellm.VertexAITextEmbeddingConfig().get_supported_openai_params()
|
||||
|
@ -5752,10 +5764,12 @@ def convert_to_model_response_object(
|
|||
model_response_object.usage.total_tokens = response_object["usage"].get("total_tokens", 0) # type: ignore
|
||||
|
||||
if "created" in response_object:
|
||||
model_response_object.created = response_object["created"]
|
||||
model_response_object.created = response_object["created"] or int(
|
||||
time.time()
|
||||
)
|
||||
|
||||
if "id" in response_object:
|
||||
model_response_object.id = response_object["id"]
|
||||
model_response_object.id = response_object["id"] or str(uuid.uuid4())
|
||||
|
||||
if "system_fingerprint" in response_object:
|
||||
model_response_object.system_fingerprint = response_object[
|
||||
|
|
|
@ -1975,6 +1975,16 @@
|
|||
"supports_function_calling": true,
|
||||
"supports_vision": true
|
||||
},
|
||||
"vertex_ai/meta/llama3-405b-instruct-maas": {
|
||||
"max_tokens": 32000,
|
||||
"max_input_tokens": 32000,
|
||||
"max_output_tokens": 32000,
|
||||
"input_cost_per_token": 0.0,
|
||||
"output_cost_per_token": 0.0,
|
||||
"litellm_provider": "vertex_ai-llama_models",
|
||||
"mode": "chat",
|
||||
"source": "https://cloud.google.com/vertex-ai/generative-ai/pricing#partner-models"
|
||||
},
|
||||
"vertex_ai/imagegeneration@006": {
|
||||
"cost_per_image": 0.020,
|
||||
"litellm_provider": "vertex_ai-image-models",
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
[tool.poetry]
|
||||
name = "litellm"
|
||||
version = "1.41.27"
|
||||
version = "1.42.0"
|
||||
description = "Library to easily interface with LLM API providers"
|
||||
authors = ["BerriAI"]
|
||||
license = "MIT"
|
||||
|
@ -91,7 +91,7 @@ requires = ["poetry-core", "wheel"]
|
|||
build-backend = "poetry.core.masonry.api"
|
||||
|
||||
[tool.commitizen]
|
||||
version = "1.41.27"
|
||||
version = "1.42.0"
|
||||
version_files = [
|
||||
"pyproject.toml:^version"
|
||||
]
|
||||
|
|
|
@ -172,7 +172,7 @@ model LiteLLM_Config {
|
|||
model LiteLLM_SpendLogs {
|
||||
request_id String @id
|
||||
call_type String
|
||||
api_key String @default ("")
|
||||
api_key String @default ("") // Hashed API Token. Not the actual Virtual Key. Equivalent to 'token' column in LiteLLM_VerificationToken
|
||||
spend Float @default(0.0)
|
||||
total_tokens Int @default(0)
|
||||
prompt_tokens Int @default(0)
|
||||
|
@ -183,12 +183,12 @@ model LiteLLM_SpendLogs {
|
|||
model String @default("")
|
||||
model_id String? @default("") // the model id stored in proxy model db
|
||||
model_group String? @default("") // public model_name / model_group
|
||||
api_base String @default("")
|
||||
user String @default("")
|
||||
metadata Json @default("{}")
|
||||
cache_hit String @default("")
|
||||
cache_key String @default("")
|
||||
request_tags Json @default("[]")
|
||||
api_base String? @default("")
|
||||
user String? @default("")
|
||||
metadata Json? @default("{}")
|
||||
cache_hit String? @default("")
|
||||
cache_key String? @default("")
|
||||
request_tags Json? @default("[]")
|
||||
team_id String?
|
||||
end_user String?
|
||||
requester_ip_address String?
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue