forked from phoenix/litellm-mirror
fix(utils.py): allow text completion input to be either model or engine
This commit is contained in:
parent
ed615e7df4
commit
e516cfe9f5
3 changed files with 113 additions and 3 deletions
|
@ -136,10 +136,13 @@ suppress_debug_info = False
|
|||
dynamodb_table_name: Optional[str] = None
|
||||
#### RELIABILITY ####
|
||||
request_timeout: Optional[float] = 6000
|
||||
num_retries: Optional[int] = None
|
||||
num_retries: Optional[int] = None # per model endpoint
|
||||
fallbacks: Optional[List] = None
|
||||
context_window_fallbacks: Optional[List] = None
|
||||
allowed_fails: int = 0
|
||||
num_retries_per_request: Optional[
|
||||
int
|
||||
] = None # for the request overall (incl. fallbacks + model retries)
|
||||
####### SECRET MANAGERS #####################
|
||||
secret_manager_client: Optional[
|
||||
Any
|
||||
|
|
|
@ -554,3 +554,93 @@ def test_sync_fallbacks_streaming():
|
|||
router.reset()
|
||||
except Exception as e:
|
||||
print(e)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_async_fallbacks_max_retries_per_request():
|
||||
litellm.set_verbose = False
|
||||
litellm.num_retries_per_request = 0
|
||||
model_list = [
|
||||
{ # list of model deployments
|
||||
"model_name": "azure/gpt-3.5-turbo", # openai model name
|
||||
"litellm_params": { # params for litellm completion/embedding call
|
||||
"model": "azure/chatgpt-v-2",
|
||||
"api_key": "bad-key",
|
||||
"api_version": os.getenv("AZURE_API_VERSION"),
|
||||
"api_base": os.getenv("AZURE_API_BASE"),
|
||||
},
|
||||
"tpm": 240000,
|
||||
"rpm": 1800,
|
||||
},
|
||||
{ # list of model deployments
|
||||
"model_name": "azure/gpt-3.5-turbo-context-fallback", # openai model name
|
||||
"litellm_params": { # params for litellm completion/embedding call
|
||||
"model": "azure/chatgpt-v-2",
|
||||
"api_key": os.getenv("AZURE_API_KEY"),
|
||||
"api_version": os.getenv("AZURE_API_VERSION"),
|
||||
"api_base": os.getenv("AZURE_API_BASE"),
|
||||
},
|
||||
"tpm": 240000,
|
||||
"rpm": 1800,
|
||||
},
|
||||
{
|
||||
"model_name": "azure/gpt-3.5-turbo", # openai model name
|
||||
"litellm_params": { # params for litellm completion/embedding call
|
||||
"model": "azure/chatgpt-functioncalling",
|
||||
"api_key": "bad-key",
|
||||
"api_version": os.getenv("AZURE_API_VERSION"),
|
||||
"api_base": os.getenv("AZURE_API_BASE"),
|
||||
},
|
||||
"tpm": 240000,
|
||||
"rpm": 1800,
|
||||
},
|
||||
{
|
||||
"model_name": "gpt-3.5-turbo", # openai model name
|
||||
"litellm_params": { # params for litellm completion/embedding call
|
||||
"model": "gpt-3.5-turbo",
|
||||
"api_key": os.getenv("OPENAI_API_KEY"),
|
||||
},
|
||||
"tpm": 1000000,
|
||||
"rpm": 9000,
|
||||
},
|
||||
{
|
||||
"model_name": "gpt-3.5-turbo-16k", # openai model name
|
||||
"litellm_params": { # params for litellm completion/embedding call
|
||||
"model": "gpt-3.5-turbo-16k",
|
||||
"api_key": os.getenv("OPENAI_API_KEY"),
|
||||
},
|
||||
"tpm": 1000000,
|
||||
"rpm": 9000,
|
||||
},
|
||||
]
|
||||
|
||||
router = Router(
|
||||
model_list=model_list,
|
||||
fallbacks=[{"azure/gpt-3.5-turbo": ["gpt-3.5-turbo"]}],
|
||||
context_window_fallbacks=[
|
||||
{"azure/gpt-3.5-turbo-context-fallback": ["gpt-3.5-turbo-16k"]},
|
||||
{"gpt-3.5-turbo": ["gpt-3.5-turbo-16k"]},
|
||||
],
|
||||
set_verbose=False,
|
||||
)
|
||||
customHandler = MyCustomHandler()
|
||||
litellm.callbacks = [customHandler]
|
||||
user_message = "Hello, how are you?"
|
||||
messages = [{"content": user_message, "role": "user"}]
|
||||
try:
|
||||
try:
|
||||
response = await router.acompletion(**kwargs, stream=True)
|
||||
except:
|
||||
pass
|
||||
print(f"customHandler.previous_models: {customHandler.previous_models}")
|
||||
await asyncio.sleep(
|
||||
0.05
|
||||
) # allow a delay as success_callbacks are on a separate thread
|
||||
assert customHandler.previous_models == 0 # 0 retries, 0 fallback
|
||||
router.reset()
|
||||
except litellm.Timeout as e:
|
||||
pass
|
||||
except Exception as e:
|
||||
pytest.fail(f"An exception occurred: {e}")
|
||||
finally:
|
||||
router.reset()
|
||||
|
|
|
@ -1925,7 +1925,10 @@ def client(original_function):
|
|||
except:
|
||||
model = None
|
||||
call_type = original_function.__name__
|
||||
if call_type != CallTypes.image_generation.value:
|
||||
if (
|
||||
call_type != CallTypes.image_generation.value
|
||||
and call_type != CallTypes.text_completion.value
|
||||
):
|
||||
raise ValueError("model param not passed in.")
|
||||
|
||||
try:
|
||||
|
@ -1945,6 +1948,16 @@ def client(original_function):
|
|||
max_budget=litellm.max_budget,
|
||||
)
|
||||
|
||||
# [OPTIONAL] CHECK MAX RETRIES / REQUEST
|
||||
if litellm.num_retries_per_request is not None:
|
||||
# check if previous_models passed in as ['litellm_params']['metadata]['previous_models']
|
||||
previous_models = kwargs.get("metadata", {}).get(
|
||||
"previous_models", None
|
||||
)
|
||||
if previous_models is not None:
|
||||
if litellm.num_retries_per_request <= len(previous_models):
|
||||
raise Exception(f"Max retries per request hit!")
|
||||
|
||||
# [OPTIONAL] CHECK CACHE
|
||||
print_verbose(
|
||||
f"kwargs[caching]: {kwargs.get('caching', False)}; litellm.cache: {litellm.cache}"
|
||||
|
@ -2096,7 +2109,11 @@ def client(original_function):
|
|||
try:
|
||||
model = args[0] if len(args) > 0 else kwargs["model"]
|
||||
except:
|
||||
raise ValueError("model param not passed in.")
|
||||
if (
|
||||
call_type != CallTypes.aimage_generation.value # model optional
|
||||
and call_type != CallTypes.atext_completion.value # can also be engine
|
||||
):
|
||||
raise ValueError("model param not passed in.")
|
||||
|
||||
try:
|
||||
if logging_obj is None:
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue