forked from phoenix/litellm-mirror
Merge pull request #2665 from BerriAI/litellm_claude_vertex_ai
[WIP] feat(vertex_ai_anthropic.py): Add support for claude 3 on vertex ai
This commit is contained in:
commit
eb34306099
8 changed files with 434 additions and 19 deletions
|
@ -603,6 +603,7 @@ from .llms.nlp_cloud import NLPCloudConfig
|
||||||
from .llms.aleph_alpha import AlephAlphaConfig
|
from .llms.aleph_alpha import AlephAlphaConfig
|
||||||
from .llms.petals import PetalsConfig
|
from .llms.petals import PetalsConfig
|
||||||
from .llms.vertex_ai import VertexAIConfig
|
from .llms.vertex_ai import VertexAIConfig
|
||||||
|
from .llms.vertex_ai_anthropic import VertexAIAnthropicConfig
|
||||||
from .llms.sagemaker import SagemakerConfig
|
from .llms.sagemaker import SagemakerConfig
|
||||||
from .llms.ollama import OllamaConfig
|
from .llms.ollama import OllamaConfig
|
||||||
from .llms.ollama_chat import OllamaChatConfig
|
from .llms.ollama_chat import OllamaChatConfig
|
||||||
|
|
78
litellm/llms/custom_httpx/http_handler.py
Normal file
78
litellm/llms/custom_httpx/http_handler.py
Normal file
|
@ -0,0 +1,78 @@
|
||||||
|
import httpx, asyncio
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
|
||||||
|
class AsyncHTTPHandler:
|
||||||
|
def __init__(self, concurrent_limit=1000):
|
||||||
|
# Create a client with a connection pool
|
||||||
|
self.client = httpx.AsyncClient(
|
||||||
|
limits=httpx.Limits(
|
||||||
|
max_connections=concurrent_limit,
|
||||||
|
max_keepalive_connections=concurrent_limit,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
async def close(self):
|
||||||
|
# Close the client when you're done with it
|
||||||
|
await self.client.aclose()
|
||||||
|
|
||||||
|
async def get(
|
||||||
|
self, url: str, params: Optional[dict] = None, headers: Optional[dict] = None
|
||||||
|
):
|
||||||
|
response = await self.client.get(url, params=params, headers=headers)
|
||||||
|
return response
|
||||||
|
|
||||||
|
async def post(
|
||||||
|
self,
|
||||||
|
url: str,
|
||||||
|
data: Optional[dict] = None,
|
||||||
|
params: Optional[dict] = None,
|
||||||
|
headers: Optional[dict] = None,
|
||||||
|
):
|
||||||
|
response = await self.client.post(
|
||||||
|
url, data=data, params=params, headers=headers
|
||||||
|
)
|
||||||
|
return response
|
||||||
|
|
||||||
|
def __del__(self) -> None:
|
||||||
|
try:
|
||||||
|
asyncio.get_running_loop().create_task(self.close())
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
class HTTPHandler:
|
||||||
|
def __init__(self, concurrent_limit=1000):
|
||||||
|
# Create a client with a connection pool
|
||||||
|
self.client = httpx.Client(
|
||||||
|
limits=httpx.Limits(
|
||||||
|
max_connections=concurrent_limit,
|
||||||
|
max_keepalive_connections=concurrent_limit,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
def close(self):
|
||||||
|
# Close the client when you're done with it
|
||||||
|
self.client.close()
|
||||||
|
|
||||||
|
def get(
|
||||||
|
self, url: str, params: Optional[dict] = None, headers: Optional[dict] = None
|
||||||
|
):
|
||||||
|
response = self.client.get(url, params=params, headers=headers)
|
||||||
|
return response
|
||||||
|
|
||||||
|
def post(
|
||||||
|
self,
|
||||||
|
url: str,
|
||||||
|
data: Optional[dict] = None,
|
||||||
|
params: Optional[dict] = None,
|
||||||
|
headers: Optional[dict] = None,
|
||||||
|
):
|
||||||
|
response = self.client.post(url, data=data, params=params, headers=headers)
|
||||||
|
return response
|
||||||
|
|
||||||
|
def __del__(self) -> None:
|
||||||
|
try:
|
||||||
|
self.close()
|
||||||
|
except Exception:
|
||||||
|
pass
|
269
litellm/llms/vertex_ai_anthropic.py
Normal file
269
litellm/llms/vertex_ai_anthropic.py
Normal file
|
@ -0,0 +1,269 @@
|
||||||
|
# What is this?
|
||||||
|
## Handler file for calling claude-3 on vertex ai
|
||||||
|
import os, types
|
||||||
|
import json
|
||||||
|
from enum import Enum
|
||||||
|
import requests, copy
|
||||||
|
import time, uuid
|
||||||
|
from typing import Callable, Optional, List
|
||||||
|
from litellm.utils import ModelResponse, Usage, map_finish_reason, CustomStreamWrapper
|
||||||
|
import litellm
|
||||||
|
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
|
||||||
|
from .prompt_templates.factory import (
|
||||||
|
contains_tag,
|
||||||
|
prompt_factory,
|
||||||
|
custom_prompt,
|
||||||
|
construct_tool_use_system_prompt,
|
||||||
|
extract_between_tags,
|
||||||
|
parse_xml_params,
|
||||||
|
)
|
||||||
|
import httpx
|
||||||
|
|
||||||
|
|
||||||
|
class VertexAIError(Exception):
|
||||||
|
def __init__(self, status_code, message):
|
||||||
|
self.status_code = status_code
|
||||||
|
self.message = message
|
||||||
|
self.request = httpx.Request(
|
||||||
|
method="POST", url=" https://cloud.google.com/vertex-ai/"
|
||||||
|
)
|
||||||
|
self.response = httpx.Response(status_code=status_code, request=self.request)
|
||||||
|
super().__init__(
|
||||||
|
self.message
|
||||||
|
) # Call the base class constructor with the parameters it needs
|
||||||
|
|
||||||
|
|
||||||
|
class VertexAIAnthropicConfig:
|
||||||
|
"""
|
||||||
|
Reference: https://docs.anthropic.com/claude/reference/messages_post
|
||||||
|
|
||||||
|
Note that the API for Claude on Vertex differs from the Anthropic API documentation in the following ways:
|
||||||
|
|
||||||
|
- `model` is not a valid parameter. The model is instead specified in the Google Cloud endpoint URL.
|
||||||
|
- `anthropic_version` is a required parameter and must be set to "vertex-2023-10-16".
|
||||||
|
|
||||||
|
The class `VertexAIAnthropicConfig` provides configuration for the VertexAI's Anthropic API interface. Below are the parameters:
|
||||||
|
|
||||||
|
- `max_tokens` Required (integer) max tokens,
|
||||||
|
- `anthropic_version` Required (string) version of anthropic for bedrock - e.g. "bedrock-2023-05-31"
|
||||||
|
- `system` Optional (string) the system prompt, conversion from openai format to this is handled in factory.py
|
||||||
|
- `temperature` Optional (float) The amount of randomness injected into the response
|
||||||
|
- `top_p` Optional (float) Use nucleus sampling.
|
||||||
|
- `top_k` Optional (int) Only sample from the top K options for each subsequent token
|
||||||
|
- `stop_sequences` Optional (List[str]) Custom text sequences that cause the model to stop generating
|
||||||
|
|
||||||
|
Note: Please make sure to modify the default parameters as required for your use case.
|
||||||
|
"""
|
||||||
|
|
||||||
|
max_tokens: Optional[int] = litellm.max_tokens
|
||||||
|
system: Optional[str] = None
|
||||||
|
temperature: Optional[float] = None
|
||||||
|
top_p: Optional[float] = None
|
||||||
|
top_k: Optional[int] = None
|
||||||
|
stop_sequences: Optional[List[str]] = None
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
max_tokens: Optional[int] = None,
|
||||||
|
anthropic_version: Optional[str] = None,
|
||||||
|
) -> None:
|
||||||
|
locals_ = locals()
|
||||||
|
for key, value in locals_.items():
|
||||||
|
if key != "self" and value is not None:
|
||||||
|
setattr(self.__class__, key, value)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def get_config(cls):
|
||||||
|
return {
|
||||||
|
k: v
|
||||||
|
for k, v in cls.__dict__.items()
|
||||||
|
if not k.startswith("__")
|
||||||
|
and not isinstance(
|
||||||
|
v,
|
||||||
|
(
|
||||||
|
types.FunctionType,
|
||||||
|
types.BuiltinFunctionType,
|
||||||
|
classmethod,
|
||||||
|
staticmethod,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
and v is not None
|
||||||
|
}
|
||||||
|
|
||||||
|
def get_supported_openai_params(self):
|
||||||
|
return [
|
||||||
|
"max_tokens",
|
||||||
|
"tools",
|
||||||
|
"tool_choice",
|
||||||
|
"stream",
|
||||||
|
"stop",
|
||||||
|
"temperature",
|
||||||
|
"top_p",
|
||||||
|
]
|
||||||
|
|
||||||
|
def map_openai_params(self, non_default_params: dict, optional_params: dict):
|
||||||
|
for param, value in non_default_params.items():
|
||||||
|
if param == "max_tokens":
|
||||||
|
optional_params["max_tokens"] = value
|
||||||
|
if param == "tools":
|
||||||
|
optional_params["tools"] = value
|
||||||
|
if param == "stream":
|
||||||
|
optional_params["stream"] = value
|
||||||
|
if param == "stop":
|
||||||
|
optional_params["stop_sequences"] = value
|
||||||
|
if param == "temperature":
|
||||||
|
optional_params["temperature"] = value
|
||||||
|
if param == "top_p":
|
||||||
|
optional_params["top_p"] = value
|
||||||
|
return optional_params
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
- Run client init
|
||||||
|
- Support async completion, streaming
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
# makes headers for API call
|
||||||
|
|
||||||
|
|
||||||
|
def completion(
|
||||||
|
model: str,
|
||||||
|
messages: list,
|
||||||
|
model_response: ModelResponse,
|
||||||
|
print_verbose: Callable,
|
||||||
|
encoding,
|
||||||
|
logging_obj,
|
||||||
|
vertex_project=None,
|
||||||
|
vertex_location=None,
|
||||||
|
optional_params=None,
|
||||||
|
litellm_params=None,
|
||||||
|
logger_fn=None,
|
||||||
|
acompletion: bool = False,
|
||||||
|
client=None,
|
||||||
|
):
|
||||||
|
try:
|
||||||
|
import vertexai
|
||||||
|
except:
|
||||||
|
raise VertexAIError(
|
||||||
|
status_code=400,
|
||||||
|
message="""vertexai import failed please run `pip install -U google-cloud-aiplatform "anthropic[vertex]"`""",
|
||||||
|
)
|
||||||
|
|
||||||
|
if not (
|
||||||
|
hasattr(vertexai, "preview") or hasattr(vertexai.preview, "language_models")
|
||||||
|
):
|
||||||
|
raise VertexAIError(
|
||||||
|
status_code=400,
|
||||||
|
message="""Upgrade vertex ai. Run `pip install "google-cloud-aiplatform>=1.38"`""",
|
||||||
|
)
|
||||||
|
try:
|
||||||
|
import google.auth # type: ignore
|
||||||
|
from google.auth.transport.requests import Request
|
||||||
|
from anthropic import AnthropicVertex
|
||||||
|
|
||||||
|
## Load Config
|
||||||
|
config = litellm.VertexAIAnthropicConfig.get_config()
|
||||||
|
for k, v in config.items():
|
||||||
|
if k not in optional_params:
|
||||||
|
optional_params[k] = v
|
||||||
|
|
||||||
|
## Format Prompt
|
||||||
|
_is_function_call = False
|
||||||
|
messages = copy.deepcopy(messages)
|
||||||
|
optional_params = copy.deepcopy(optional_params)
|
||||||
|
# Separate system prompt from rest of message
|
||||||
|
system_prompt_indices = []
|
||||||
|
system_prompt = ""
|
||||||
|
for idx, message in enumerate(messages):
|
||||||
|
if message["role"] == "system":
|
||||||
|
system_prompt += message["content"]
|
||||||
|
system_prompt_indices.append(idx)
|
||||||
|
if len(system_prompt_indices) > 0:
|
||||||
|
for idx in reversed(system_prompt_indices):
|
||||||
|
messages.pop(idx)
|
||||||
|
if len(system_prompt) > 0:
|
||||||
|
optional_params["system"] = system_prompt
|
||||||
|
# Format rest of message according to anthropic guidelines
|
||||||
|
try:
|
||||||
|
messages = prompt_factory(
|
||||||
|
model=model, messages=messages, custom_llm_provider="anthropic"
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
raise VertexAIError(status_code=400, message=str(e))
|
||||||
|
|
||||||
|
## Handle Tool Calling
|
||||||
|
if "tools" in optional_params:
|
||||||
|
_is_function_call = True
|
||||||
|
tool_calling_system_prompt = construct_tool_use_system_prompt(
|
||||||
|
tools=optional_params["tools"]
|
||||||
|
)
|
||||||
|
optional_params["system"] = (
|
||||||
|
optional_params.get("system", "\n") + tool_calling_system_prompt
|
||||||
|
) # add the anthropic tool calling prompt to the system prompt
|
||||||
|
optional_params.pop("tools")
|
||||||
|
|
||||||
|
stream = optional_params.pop("stream", None)
|
||||||
|
|
||||||
|
data = {
|
||||||
|
"model": model,
|
||||||
|
"messages": messages,
|
||||||
|
**optional_params,
|
||||||
|
}
|
||||||
|
print_verbose(f"_is_function_call: {_is_function_call}")
|
||||||
|
|
||||||
|
## Completion Call
|
||||||
|
|
||||||
|
print_verbose(
|
||||||
|
f"VERTEX AI: vertex_project={vertex_project}; vertex_location={vertex_location}"
|
||||||
|
)
|
||||||
|
if client is None:
|
||||||
|
vertex_ai_client = AnthropicVertex(
|
||||||
|
project_id=vertex_project, region=vertex_location
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
vertex_ai_client = client
|
||||||
|
|
||||||
|
message = vertex_ai_client.messages.create(**data) # type: ignore
|
||||||
|
text_content = message.content[0].text
|
||||||
|
## TOOL CALLING - OUTPUT PARSE
|
||||||
|
if text_content is not None and contains_tag("invoke", text_content):
|
||||||
|
function_name = extract_between_tags("tool_name", text_content)[0]
|
||||||
|
function_arguments_str = extract_between_tags("invoke", text_content)[
|
||||||
|
0
|
||||||
|
].strip()
|
||||||
|
function_arguments_str = f"<invoke>{function_arguments_str}</invoke>"
|
||||||
|
function_arguments = parse_xml_params(function_arguments_str)
|
||||||
|
_message = litellm.Message(
|
||||||
|
tool_calls=[
|
||||||
|
{
|
||||||
|
"id": f"call_{uuid.uuid4()}",
|
||||||
|
"type": "function",
|
||||||
|
"function": {
|
||||||
|
"name": function_name,
|
||||||
|
"arguments": json.dumps(function_arguments),
|
||||||
|
},
|
||||||
|
}
|
||||||
|
],
|
||||||
|
content=None,
|
||||||
|
)
|
||||||
|
model_response.choices[0].message = _message # type: ignore
|
||||||
|
else:
|
||||||
|
model_response.choices[0].message.content = text_content # type: ignore
|
||||||
|
model_response.choices[0].finish_reason = map_finish_reason(message.stop_reason)
|
||||||
|
|
||||||
|
## CALCULATING USAGE
|
||||||
|
prompt_tokens = message.usage.input_tokens
|
||||||
|
completion_tokens = message.usage.output_tokens
|
||||||
|
|
||||||
|
model_response["created"] = int(time.time())
|
||||||
|
model_response["model"] = model
|
||||||
|
usage = Usage(
|
||||||
|
prompt_tokens=prompt_tokens,
|
||||||
|
completion_tokens=completion_tokens,
|
||||||
|
total_tokens=prompt_tokens + completion_tokens,
|
||||||
|
)
|
||||||
|
model_response.usage = usage
|
||||||
|
return model_response
|
||||||
|
except Exception as e:
|
||||||
|
raise VertexAIError(status_code=500, message=str(e))
|
|
@ -62,6 +62,7 @@ from .llms import (
|
||||||
palm,
|
palm,
|
||||||
gemini,
|
gemini,
|
||||||
vertex_ai,
|
vertex_ai,
|
||||||
|
vertex_ai_anthropic,
|
||||||
maritalk,
|
maritalk,
|
||||||
)
|
)
|
||||||
from .llms.openai import OpenAIChatCompletion, OpenAITextCompletion
|
from .llms.openai import OpenAIChatCompletion, OpenAITextCompletion
|
||||||
|
@ -1674,20 +1675,36 @@ def completion(
|
||||||
or get_secret("VERTEXAI_LOCATION")
|
or get_secret("VERTEXAI_LOCATION")
|
||||||
)
|
)
|
||||||
|
|
||||||
model_response = vertex_ai.completion(
|
if "claude-3" in model:
|
||||||
model=model,
|
model_response = vertex_ai_anthropic.completion(
|
||||||
messages=messages,
|
model=model,
|
||||||
model_response=model_response,
|
messages=messages,
|
||||||
print_verbose=print_verbose,
|
model_response=model_response,
|
||||||
optional_params=optional_params,
|
print_verbose=print_verbose,
|
||||||
litellm_params=litellm_params,
|
optional_params=optional_params,
|
||||||
logger_fn=logger_fn,
|
litellm_params=litellm_params,
|
||||||
encoding=encoding,
|
logger_fn=logger_fn,
|
||||||
vertex_location=vertex_ai_location,
|
encoding=encoding,
|
||||||
vertex_project=vertex_ai_project,
|
vertex_location=vertex_ai_location,
|
||||||
logging_obj=logging,
|
vertex_project=vertex_ai_project,
|
||||||
acompletion=acompletion,
|
logging_obj=logging,
|
||||||
)
|
acompletion=acompletion,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
model_response = vertex_ai.completion(
|
||||||
|
model=model,
|
||||||
|
messages=messages,
|
||||||
|
model_response=model_response,
|
||||||
|
print_verbose=print_verbose,
|
||||||
|
optional_params=optional_params,
|
||||||
|
litellm_params=litellm_params,
|
||||||
|
logger_fn=logger_fn,
|
||||||
|
encoding=encoding,
|
||||||
|
vertex_location=vertex_ai_location,
|
||||||
|
vertex_project=vertex_ai_project,
|
||||||
|
logging_obj=logging,
|
||||||
|
acompletion=acompletion,
|
||||||
|
)
|
||||||
|
|
||||||
if (
|
if (
|
||||||
"stream" in optional_params
|
"stream" in optional_params
|
||||||
|
|
|
@ -1002,6 +1002,22 @@
|
||||||
"supports_function_calling": true,
|
"supports_function_calling": true,
|
||||||
"source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#foundation_models"
|
"source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#foundation_models"
|
||||||
},
|
},
|
||||||
|
"vertex_ai/claude-3-sonnet@20240229": {
|
||||||
|
"max_tokens": 200000,
|
||||||
|
"max_output_tokens": 4096,
|
||||||
|
"input_cost_per_token": 0.000003,
|
||||||
|
"output_cost_per_token": 0.000015,
|
||||||
|
"litellm_provider": "vertex_ai",
|
||||||
|
"mode": "chat"
|
||||||
|
},
|
||||||
|
"vertex_ai/claude-3-haiku@20240307": {
|
||||||
|
"max_tokens": 200000,
|
||||||
|
"max_output_tokens": 4096,
|
||||||
|
"input_cost_per_token": 0.00000025,
|
||||||
|
"output_cost_per_token": 0.00000125,
|
||||||
|
"litellm_provider": "vertex_ai",
|
||||||
|
"mode": "chat"
|
||||||
|
},
|
||||||
"textembedding-gecko": {
|
"textembedding-gecko": {
|
||||||
"max_tokens": 3072,
|
"max_tokens": 3072,
|
||||||
"max_input_tokens": 3072,
|
"max_input_tokens": 3072,
|
||||||
|
|
|
@ -84,6 +84,24 @@ async def get_response():
|
||||||
pytest.fail(f"An error occurred - {str(e)}")
|
pytest.fail(f"An error occurred - {str(e)}")
|
||||||
|
|
||||||
|
|
||||||
|
def test_vertex_ai_anthropic():
|
||||||
|
load_vertex_ai_credentials()
|
||||||
|
|
||||||
|
model = "claude-3-sonnet@20240229"
|
||||||
|
|
||||||
|
vertex_ai_project = "adroit-crow-413218"
|
||||||
|
vertex_ai_location = "asia-southeast1"
|
||||||
|
|
||||||
|
response = completion(
|
||||||
|
model="vertex_ai/" + model,
|
||||||
|
messages=[{"role": "user", "content": "hi"}],
|
||||||
|
temperature=0.7,
|
||||||
|
vertex_ai_project=vertex_ai_project,
|
||||||
|
vertex_ai_location=vertex_ai_location,
|
||||||
|
)
|
||||||
|
print("\nModel Response", response)
|
||||||
|
|
||||||
|
|
||||||
def test_vertex_ai():
|
def test_vertex_ai():
|
||||||
import random
|
import random
|
||||||
|
|
||||||
|
|
|
@ -1,13 +1,13 @@
|
||||||
{
|
{
|
||||||
"type": "service_account",
|
"type": "service_account",
|
||||||
"project_id": "reliablekeys",
|
"project_id": "adroit-crow-413218",
|
||||||
"private_key_id": "",
|
"private_key_id": "",
|
||||||
"private_key": "",
|
"private_key": "",
|
||||||
"client_email": "73470430121-compute@developer.gserviceaccount.com",
|
"client_email": "test-adroit-crow@adroit-crow-413218.iam.gserviceaccount.com",
|
||||||
"client_id": "108560959659377334173",
|
"client_id": "104886546564708740969",
|
||||||
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
|
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
|
||||||
"token_uri": "https://oauth2.googleapis.com/token",
|
"token_uri": "https://oauth2.googleapis.com/token",
|
||||||
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
|
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
|
||||||
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/73470430121-compute%40developer.gserviceaccount.com",
|
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/test-adroit-crow%40adroit-crow-413218.iam.gserviceaccount.com",
|
||||||
"universe_domain": "googleapis.com"
|
"universe_domain": "googleapis.com"
|
||||||
}
|
}
|
||||||
|
|
|
@ -1002,6 +1002,22 @@
|
||||||
"supports_function_calling": true,
|
"supports_function_calling": true,
|
||||||
"source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#foundation_models"
|
"source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#foundation_models"
|
||||||
},
|
},
|
||||||
|
"vertex_ai/claude-3-sonnet@20240229": {
|
||||||
|
"max_tokens": 200000,
|
||||||
|
"max_output_tokens": 4096,
|
||||||
|
"input_cost_per_token": 0.000003,
|
||||||
|
"output_cost_per_token": 0.000015,
|
||||||
|
"litellm_provider": "vertex_ai",
|
||||||
|
"mode": "chat"
|
||||||
|
},
|
||||||
|
"vertex_ai/claude-3-haiku@20240307": {
|
||||||
|
"max_tokens": 200000,
|
||||||
|
"max_output_tokens": 4096,
|
||||||
|
"input_cost_per_token": 0.00000025,
|
||||||
|
"output_cost_per_token": 0.00000125,
|
||||||
|
"litellm_provider": "vertex_ai",
|
||||||
|
"mode": "chat"
|
||||||
|
},
|
||||||
"textembedding-gecko": {
|
"textembedding-gecko": {
|
||||||
"max_tokens": 3072,
|
"max_tokens": 3072,
|
||||||
"max_input_tokens": 3072,
|
"max_input_tokens": 3072,
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue