forked from phoenix/litellm-mirror
docs: add languages to code blocks
This commit is contained in:
parent
e6d48d91ce
commit
ee618444c9
21 changed files with 47 additions and 49 deletions
BIN
docs/.DS_Store
vendored
BIN
docs/.DS_Store
vendored
Binary file not shown.
|
@ -31,7 +31,7 @@ BudgetManager creates a dictionary to manage the user budgets, where the key is
|
|||
|
||||
### get model-breakdown per user
|
||||
|
||||
```
|
||||
```python
|
||||
user = "1234"
|
||||
# ...
|
||||
budget_manager.get_model_cost(user=user) # {"gpt-3.5-turbo-0613": 7.3e-05}
|
||||
|
|
|
@ -89,7 +89,7 @@ response3 = completion(model="gpt-3.5-turbo", messages=messages, temperature=0.1
|
|||
For resposes that were returned as cache hit, the response includes a param `cache` = True
|
||||
|
||||
Example response with cache hit
|
||||
```
|
||||
```python
|
||||
{
|
||||
'cache': True,
|
||||
'id': 'chatcmpl-7wggdzd6OXhgE2YhcLJHJNZsEWzZ2',
|
||||
|
|
|
@ -39,7 +39,7 @@ for chunk in response:
|
|||
|
||||
## (Non-streaming) Mock Response Object
|
||||
|
||||
```
|
||||
```json
|
||||
{
|
||||
"choices": [
|
||||
{
|
||||
|
|
|
@ -6,7 +6,7 @@ LiteLLM simplifies this by letting you pass in a model alias mapping.
|
|||
|
||||
# expected format
|
||||
|
||||
```
|
||||
```python
|
||||
litellm.model_alias_map = {
|
||||
# a dictionary containing a mapping of the alias string to the actual litellm model name string
|
||||
"model_alias": "litellm_model_name"
|
||||
|
@ -16,7 +16,7 @@ litellm.model_alias_map = {
|
|||
# usage
|
||||
|
||||
### Relevant Code
|
||||
```
|
||||
```python
|
||||
model_alias_map = {
|
||||
"GPT-3.5": "gpt-3.5-turbo-16k",
|
||||
"llama2": "replicate/llama-2-70b-chat:2796ee9483c3fd7aa2e171d38f4ca12251a30609463dcfd4cd76703f22e96cdf"
|
||||
|
@ -26,7 +26,7 @@ litellm.model_alias_map = model_alias_map
|
|||
```
|
||||
|
||||
### Complete Code
|
||||
```
|
||||
```python
|
||||
import litellm
|
||||
from litellm import completion
|
||||
|
||||
|
|
|
@ -14,10 +14,9 @@ for chunk in response:
|
|||
```
|
||||
|
||||
## Async Completion
|
||||
Asynchronous Completion with LiteLLM
|
||||
LiteLLM provides an asynchronous version of the completion function called `acompletion`
|
||||
Asynchronous Completion with LiteLLM. LiteLLM provides an asynchronous version of the completion function called `acompletion`
|
||||
### Usage
|
||||
```
|
||||
```python
|
||||
from litellm import acompletion
|
||||
import asyncio
|
||||
|
||||
|
@ -37,7 +36,7 @@ We've implemented an `__anext__()` function in the streaming object returned. Th
|
|||
|
||||
### Usage
|
||||
Here's an example of using it with openai. But this
|
||||
```
|
||||
```python
|
||||
from litellm import completion
|
||||
import asyncio
|
||||
|
||||
|
|
|
@ -32,7 +32,7 @@ Go to [admin.litellm.ai](https://admin.litellm.ai/) and copy the code snippet wi
|
|||
|
||||
**Add it to your .env**
|
||||
|
||||
```
|
||||
```python
|
||||
import os
|
||||
|
||||
os.env["LITELLM_TOKEN"] = "e24c4c06-d027-4c30-9e78-18bc3a50aebb" # replace with your unique token
|
||||
|
@ -40,13 +40,13 @@ os.env["LITELLM_TOKEN"] = "e24c4c06-d027-4c30-9e78-18bc3a50aebb" # replace with
|
|||
```
|
||||
|
||||
**Turn on LiteLLM Client**
|
||||
```
|
||||
```python
|
||||
import litellm
|
||||
litellm.client = True
|
||||
```
|
||||
|
||||
### 3. Make a normal `completion()` call
|
||||
```
|
||||
```python
|
||||
import litellm
|
||||
from litellm import completion
|
||||
import os
|
||||
|
|
|
@ -4,7 +4,7 @@ There's 2 ways to do local debugging - `litellm.set_verbose=True` and by passing
|
|||
## Set Verbose
|
||||
|
||||
This is good for getting print statements for everything litellm is doing.
|
||||
```
|
||||
```python
|
||||
from litellm import completion
|
||||
|
||||
litellm.set_verbose=True # 👈 this is the 1-line change you need to make
|
||||
|
@ -31,13 +31,13 @@ In that case, LiteLLM allows you to pass in a custom logging function to see / m
|
|||
|
||||
Your custom function
|
||||
|
||||
```
|
||||
```python
|
||||
def my_custom_logging_fn(model_call_dict):
|
||||
print(f"model call details: {model_call_dict}")
|
||||
```
|
||||
|
||||
### Complete Example
|
||||
```
|
||||
```python
|
||||
from litellm import completion
|
||||
|
||||
def my_custom_logging_fn(model_call_dict):
|
||||
|
|
|
@ -12,7 +12,7 @@ Integrates with [Infisical's Secret Manager](https://infisical.com/) for secure
|
|||
### Usage
|
||||
liteLLM manages reading in your LLM API secrets/env variables from Infisical for you
|
||||
|
||||
```
|
||||
```python
|
||||
import litellm
|
||||
from infisical import InfisicalClient
|
||||
|
||||
|
|
|
@ -8,7 +8,7 @@ In this case, we want to log requests to Helicone when a request succeeds.
|
|||
|
||||
### Approach 1: Use Callbacks
|
||||
Use just 1 line of code, to instantly log your responses **across all providers** with helicone:
|
||||
```
|
||||
```python
|
||||
litellm.success_callback=["helicone"]
|
||||
```
|
||||
|
||||
|
@ -39,7 +39,7 @@ If you want to use Helicone to proxy your OpenAI/Azure requests, then you can -
|
|||
- Pass in helicone request headers via: `litellm.headers`
|
||||
|
||||
Complete Code
|
||||
```
|
||||
```python
|
||||
import litellm
|
||||
from litellm import completion
|
||||
|
||||
|
|
|
@ -16,10 +16,9 @@ First, sign up to get an app ID on the [LLMonitor dashboard](https://llmonitor.c
|
|||
|
||||
Use just 2 lines of code, to instantly log your responses **across all providers** with llmonitor:
|
||||
|
||||
```
|
||||
```python
|
||||
litellm.success_callback = ["llmonitor"]
|
||||
litellm.failure_callback = ["llmonitor"]
|
||||
|
||||
```
|
||||
|
||||
Complete code
|
||||
|
|
|
@ -35,7 +35,7 @@ create table
|
|||
### Use Callbacks
|
||||
Use just 2 lines of code, to instantly see costs and log your responses **across all providers** with Supabase:
|
||||
|
||||
```
|
||||
```python
|
||||
litellm.success_callback=["supabase"]
|
||||
litellm.failure_callback=["supabase"]
|
||||
```
|
||||
|
|
|
@ -13,7 +13,7 @@ While Traceloop is still in beta, [ping them](nir@traceloop.com) and mention you
|
|||
|
||||
Then, install the Traceloop SDK:
|
||||
|
||||
```bash
|
||||
```
|
||||
pip install traceloop
|
||||
```
|
||||
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
LiteLLM supports Claude-1, 1.2 and Claude-2.
|
||||
|
||||
### API KEYS
|
||||
```
|
||||
```python
|
||||
import os
|
||||
|
||||
os.environ["ANTHROPIC_API_KEY"] = ""
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
LiteLLM supports Azure Chat + Embedding calls.
|
||||
|
||||
### API KEYS
|
||||
```
|
||||
```python
|
||||
import os
|
||||
|
||||
os.environ["AZURE_API_KEY"] = ""
|
||||
|
|
|
@ -49,7 +49,7 @@ resp = requests.post(
|
|||
```
|
||||
|
||||
Outputs from your custom LLM api bases should follow this format:
|
||||
```
|
||||
```python
|
||||
{
|
||||
'data': [
|
||||
{
|
||||
|
|
|
@ -96,7 +96,7 @@ Model name - `WizardLM/WizardCoder-Python-34B-V1.0`
|
|||
|
||||
Model id - `https://ji16r2iys9a8rjk2.us-east-1.aws.endpoints.huggingface.cloud`
|
||||
|
||||
```
|
||||
```python
|
||||
import os
|
||||
from litellm import completion
|
||||
|
||||
|
@ -115,7 +115,7 @@ print(response)
|
|||
|
||||
Same as the OpenAI format, but also includes logprobs. [See the code](https://github.com/BerriAI/litellm/blob/b4b2dbf005142e0a483d46a07a88a19814899403/litellm/llms/huggingface_restapi.py#L115)
|
||||
|
||||
```
|
||||
```json
|
||||
{
|
||||
"choices": [
|
||||
{
|
||||
|
|
|
@ -71,7 +71,7 @@ The accepted template format is: [Reference](https://huggingface.co/OpenAssistan
|
|||
```
|
||||
|
||||
Let's register our custom prompt template: [Implementation Code](https://github.com/BerriAI/litellm/blob/64f3d3c56ef02ac5544983efc78293de31c1c201/litellm/llms/prompt_templates/factory.py#L77)
|
||||
```
|
||||
```python
|
||||
import litellm
|
||||
|
||||
litellm.register_prompt_template(
|
||||
|
@ -84,7 +84,7 @@ litellm.register_prompt_template(
|
|||
|
||||
Let's use it!
|
||||
|
||||
```
|
||||
```python
|
||||
from litellm import completion
|
||||
|
||||
# set env variable
|
||||
|
@ -97,7 +97,7 @@ completion(model="together_ai/OpenAssistant/llama2-70b-oasst-sft-v10", messages=
|
|||
|
||||
**Complete Code**
|
||||
|
||||
```
|
||||
```python
|
||||
import litellm
|
||||
from litellm import completion
|
||||
|
||||
|
@ -119,7 +119,7 @@ print(response)
|
|||
```
|
||||
|
||||
**Output**
|
||||
```
|
||||
```json
|
||||
{
|
||||
"choices": [
|
||||
{
|
||||
|
|
|
@ -43,7 +43,7 @@ print(response)
|
|||
|
||||
### Batch Completion
|
||||
|
||||
```
|
||||
```python
|
||||
from litellm import batch_completion
|
||||
|
||||
model_name = "facebook/opt-125m"
|
||||
|
|
|
@ -64,7 +64,7 @@ The accepted template format is: [Reference](https://huggingface.co/OpenAssistan
|
|||
```
|
||||
|
||||
Let's register our custom prompt template: [Implementation Code](https://github.com/BerriAI/litellm/blob/64f3d3c56ef02ac5544983efc78293de31c1c201/litellm/llms/prompt_templates/factory.py#L77)
|
||||
```
|
||||
```python
|
||||
import litellm
|
||||
|
||||
litellm.register_prompt_template(
|
||||
|
@ -77,7 +77,7 @@ litellm.register_prompt_template(
|
|||
|
||||
Let's use it!
|
||||
|
||||
```
|
||||
```python
|
||||
from litellm import completion
|
||||
|
||||
# set env variable
|
||||
|
@ -90,7 +90,7 @@ completion(model="together_ai/OpenAssistant/llama2-70b-oasst-sft-v10", messages=
|
|||
|
||||
**Complete Code**
|
||||
|
||||
```
|
||||
```python
|
||||
import litellm
|
||||
from litellm import completion
|
||||
|
||||
|
@ -112,7 +112,7 @@ print(response)
|
|||
```
|
||||
|
||||
**Output**
|
||||
```
|
||||
```json
|
||||
{
|
||||
"choices": [
|
||||
{
|
||||
|
|
|
@ -16,7 +16,7 @@ In this case, let's try and call 3 models:
|
|||
|
||||
Here's the complete example:
|
||||
|
||||
```
|
||||
```python
|
||||
from litellm import completion
|
||||
|
||||
model = "deepset/deberta-v3-large-squad2"
|
||||
|
@ -36,7 +36,7 @@ What's happening?
|
|||
We've deployed `meta-llama/Llama-2-7b-hf` behind a public endpoint - `https://ag3dkq4zui5nu8g3.us-east-1.aws.endpoints.huggingface.cloud`.
|
||||
|
||||
Let's try it out:
|
||||
```
|
||||
```python
|
||||
from litellm import completion
|
||||
|
||||
model = "meta-llama/Llama-2-7b-hf"
|
||||
|
@ -60,15 +60,15 @@ Either via environment variables, by setting it as a package variable or when ca
|
|||
|
||||
**Setting via environment variables**
|
||||
Here's the 1 line of code you need to add
|
||||
```
|
||||
os.environ["HF_TOKEN] = "..."
|
||||
```python
|
||||
os.environ["HF_TOKEN"] = "..."
|
||||
```
|
||||
|
||||
Here's the full code:
|
||||
```
|
||||
```python
|
||||
from litellm import completion
|
||||
|
||||
os.environ["HF_TOKEN] = "..."
|
||||
os.environ["HF_TOKEN"] = "..."
|
||||
|
||||
model = "meta-llama/Llama-2-7b-hf"
|
||||
messages = [{"role": "user", "content": "Hey, how's it going?"}] # LiteLLM follows the OpenAI format
|
||||
|
@ -80,12 +80,12 @@ completion(model=model, messages=messages, custom_llm_provider="huggingface", ap
|
|||
|
||||
**Setting it as package variable**
|
||||
Here's the 1 line of code you need to add
|
||||
```
|
||||
```python
|
||||
litellm.huggingface_key = "..."
|
||||
```
|
||||
|
||||
Here's the full code:
|
||||
```
|
||||
```python
|
||||
import litellm
|
||||
from litellm import completion
|
||||
|
||||
|
@ -100,13 +100,13 @@ completion(model=model, messages=messages, custom_llm_provider="huggingface", ap
|
|||
```
|
||||
|
||||
**Passed in during completion call**
|
||||
```
|
||||
```python
|
||||
completion(..., api_key="...")
|
||||
```
|
||||
|
||||
Here's the full code:
|
||||
|
||||
```
|
||||
```python
|
||||
from litellm import completion
|
||||
|
||||
model = "meta-llama/Llama-2-7b-hf"
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue