forked from phoenix/litellm-mirror
feat(utils.py): support cost tracking for openai/azure image gen models
This commit is contained in:
parent
1661526d97
commit
ef0171e063
5 changed files with 125 additions and 8 deletions
|
@ -150,6 +150,7 @@ jobs:
|
|||
-e AWS_ACCESS_KEY_ID=$AWS_ACCESS_KEY_ID \
|
||||
-e AWS_SECRET_ACCESS_KEY=$AWS_SECRET_ACCESS_KEY \
|
||||
-e AWS_REGION_NAME=$AWS_REGION_NAME \
|
||||
-e OPENAI_API_KEY=$OPENAI_API_KEY \
|
||||
--name my-app \
|
||||
-v $(pwd)/proxy_server_config.yaml:/app/config.yaml \
|
||||
my-app:latest \
|
||||
|
|
|
@ -1079,7 +1079,7 @@ def get_logging_payload(kwargs, response_obj, start_time, end_time):
|
|||
metadata = (
|
||||
litellm_params.get("metadata", {}) or {}
|
||||
) # if litellm_params['metadata'] == None
|
||||
call_type = kwargs.get("call_type", "litellm.completion")
|
||||
call_type = kwargs.get("call_type")
|
||||
cache_hit = kwargs.get("cache_hit", False)
|
||||
usage = response_obj["usage"]
|
||||
if type(usage) == litellm.Usage:
|
||||
|
@ -1118,6 +1118,7 @@ def get_logging_payload(kwargs, response_obj, start_time, end_time):
|
|||
"completion_tokens": usage.get("completion_tokens", 0),
|
||||
}
|
||||
|
||||
verbose_proxy_logger.debug(f"SpendTable: created payload - payload: {payload}\n\n")
|
||||
json_fields = [
|
||||
field
|
||||
for field, field_type in LiteLLM_SpendLogs.__annotations__.items()
|
||||
|
|
|
@ -804,6 +804,7 @@ class Logging:
|
|||
"stream": self.stream,
|
||||
"user": user,
|
||||
"call_type": str(self.call_type),
|
||||
"litellm_call_id": self.litellm_call_id,
|
||||
**self.optional_params,
|
||||
**additional_params,
|
||||
}
|
||||
|
@ -1056,6 +1057,7 @@ class Logging:
|
|||
and (
|
||||
isinstance(result, ModelResponse)
|
||||
or isinstance(result, EmbeddingResponse)
|
||||
or isinstance(result, ImageResponse)
|
||||
)
|
||||
and self.stream != True
|
||||
): # handle streaming separately
|
||||
|
@ -1063,11 +1065,24 @@ class Logging:
|
|||
if self.model_call_details.get("cache_hit", False) == True:
|
||||
self.model_call_details["response_cost"] = 0.0
|
||||
else:
|
||||
self.model_call_details[
|
||||
"response_cost"
|
||||
] = litellm.completion_cost(
|
||||
completion_response=result,
|
||||
)
|
||||
result._hidden_params["optional_params"] = self.optional_params
|
||||
if (
|
||||
self.call_type == CallTypes.aimage_generation.value
|
||||
or self.call_type == CallTypes.image_generation.value
|
||||
):
|
||||
self.model_call_details[
|
||||
"response_cost"
|
||||
] = litellm.completion_cost(
|
||||
completion_response=result,
|
||||
model=self.model,
|
||||
call_type=self.call_type,
|
||||
)
|
||||
else:
|
||||
self.model_call_details[
|
||||
"response_cost"
|
||||
] = litellm.completion_cost(
|
||||
completion_response=result, call_type=self.call_type
|
||||
)
|
||||
verbose_logger.debug(
|
||||
f"Model={self.model}; cost={self.model_call_details['response_cost']}"
|
||||
)
|
||||
|
@ -3174,6 +3189,16 @@ def completion_cost(
|
|||
messages: List = [],
|
||||
completion="",
|
||||
total_time=0.0, # used for replicate, sagemaker
|
||||
call_type: Literal[
|
||||
"completion",
|
||||
"acompletion",
|
||||
"embedding",
|
||||
"aembedding",
|
||||
"atext_completion",
|
||||
"text_completion",
|
||||
"image_generation",
|
||||
"aimage_generation",
|
||||
] = "completion",
|
||||
### REGION ###
|
||||
custom_llm_provider=None,
|
||||
region_name=None, # used for bedrock pricing
|
||||
|
@ -3232,6 +3257,19 @@ def completion_cost(
|
|||
region_name = completion_response._hidden_params.get(
|
||||
"region_name", region_name
|
||||
)
|
||||
size = completion_response._hidden_params.get(
|
||||
"optional_params", {}
|
||||
).get(
|
||||
"size", "1024-x-1024"
|
||||
) # openai default
|
||||
quality = completion_response._hidden_params.get(
|
||||
"optional_params", {}
|
||||
).get(
|
||||
"quality", "standard"
|
||||
) # openai default
|
||||
n = completion_response._hidden_params.get("optional_params", {}).get(
|
||||
"n", 1
|
||||
) # openai default
|
||||
else:
|
||||
if len(messages) > 0:
|
||||
prompt_tokens = token_counter(model=model, messages=messages)
|
||||
|
@ -3243,7 +3281,10 @@ def completion_cost(
|
|||
f"Model is None and does not exist in passed completion_response. Passed completion_response={completion_response}, model={model}"
|
||||
)
|
||||
|
||||
if size is not None and n is not None:
|
||||
if (
|
||||
call_type == CallTypes.image_generation.value
|
||||
or call_type == CallTypes.aimage_generation.value
|
||||
):
|
||||
### IMAGE GENERATION COST CALCULATION ###
|
||||
image_gen_model_name = f"{size}/{model}"
|
||||
image_gen_model_name_with_quality = image_gen_model_name
|
||||
|
|
|
@ -42,6 +42,9 @@ model_list:
|
|||
api_version: 2023-06-01-preview
|
||||
api_base: https://openai-gpt-4-test-v-1.openai.azure.com/
|
||||
api_key: os.environ/AZURE_API_KEY
|
||||
- model_name: openai-dall-e-3
|
||||
litellm_params:
|
||||
model: dall-e-3
|
||||
|
||||
litellm_settings:
|
||||
drop_params: True
|
||||
|
|
|
@ -14,7 +14,11 @@ import litellm
|
|||
|
||||
|
||||
async def generate_key(
|
||||
session, i, budget=None, budget_duration=None, models=["azure-models", "gpt-4"]
|
||||
session,
|
||||
i,
|
||||
budget=None,
|
||||
budget_duration=None,
|
||||
models=["azure-models", "gpt-4", "dall-e-3"],
|
||||
):
|
||||
url = "http://0.0.0.0:4000/key/generate"
|
||||
headers = {"Authorization": "Bearer sk-1234", "Content-Type": "application/json"}
|
||||
|
@ -129,6 +133,39 @@ async def chat_completion(session, key, model="gpt-4"):
|
|||
pass
|
||||
|
||||
|
||||
async def image_generation(session, key, model="dall-e-3"):
|
||||
url = "http://0.0.0.0:4000/v1/images/generations"
|
||||
headers = {
|
||||
"Authorization": f"Bearer {key}",
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
data = {
|
||||
"model": model,
|
||||
"prompt": "A cute baby sea otter",
|
||||
}
|
||||
|
||||
for i in range(3):
|
||||
try:
|
||||
async with session.post(url, headers=headers, json=data) as response:
|
||||
status = response.status
|
||||
response_text = await response.text()
|
||||
|
||||
print(response_text)
|
||||
print()
|
||||
|
||||
if status != 200:
|
||||
raise Exception(
|
||||
f"Request did not return a 200 status code: {status}. Response: {response_text}"
|
||||
)
|
||||
|
||||
return await response.json()
|
||||
except Exception as e:
|
||||
if "Request did not return a 200 status code" in str(e):
|
||||
raise e
|
||||
else:
|
||||
pass
|
||||
|
||||
|
||||
async def chat_completion_streaming(session, key, model="gpt-4"):
|
||||
client = AsyncOpenAI(api_key=key, base_url="http://0.0.0.0:4000")
|
||||
messages = [
|
||||
|
@ -357,6 +394,40 @@ async def test_key_info_spend_values_streaming():
|
|||
assert rounded_response_cost == rounded_key_info_spend
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_key_info_spend_values_image_generation():
|
||||
"""
|
||||
Test to ensure spend is correctly calculated
|
||||
- create key
|
||||
- make image gen call
|
||||
- assert cost is expected value
|
||||
"""
|
||||
|
||||
async def retry_request(func, *args, _max_attempts=5, **kwargs):
|
||||
for attempt in range(_max_attempts):
|
||||
try:
|
||||
return await func(*args, **kwargs)
|
||||
except aiohttp.client_exceptions.ClientOSError as e:
|
||||
if attempt + 1 == _max_attempts:
|
||||
raise # re-raise the last ClientOSError if all attempts failed
|
||||
print(f"Attempt {attempt+1} failed, retrying...")
|
||||
|
||||
async with aiohttp.ClientSession(
|
||||
timeout=aiohttp.ClientTimeout(total=600)
|
||||
) as session:
|
||||
## Test Spend Update ##
|
||||
# completion
|
||||
key_gen = await generate_key(session=session, i=0)
|
||||
key = key_gen["key"]
|
||||
response = await image_generation(session=session, key=key)
|
||||
await asyncio.sleep(5)
|
||||
key_info = await retry_request(
|
||||
get_key_info, session=session, get_key=key, call_key=key
|
||||
)
|
||||
spend = key_info["info"]["spend"]
|
||||
assert spend > 0
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_key_with_budgets():
|
||||
"""
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue