feat(vertex_ai.py): adds support for gemini-pro on vertex ai

This commit is contained in:
Krrish Dholakia 2023-12-13 10:24:54 -08:00
parent 7e1a355b77
commit ef7a6e3ae1
6 changed files with 67 additions and 20 deletions

View file

@ -107,6 +107,7 @@ open_ai_text_completion_models: List = []
cohere_models: List = []
anthropic_models: List = []
openrouter_models: List = []
vertex_language_models: List = []
vertex_chat_models: List = []
vertex_code_chat_models: List = []
vertex_text_models: List = []
@ -133,6 +134,8 @@ for key, value in model_cost.items():
vertex_text_models.append(key)
elif value.get('litellm_provider') == 'vertex_ai-code-text-models':
vertex_code_text_models.append(key)
elif value.get('litellm_provider') == 'vertex_ai-language-models':
vertex_language_models.append(key)
elif value.get('litellm_provider') == 'vertex_ai-chat-models':
vertex_chat_models.append(key)
elif value.get('litellm_provider') == 'vertex_ai-code-chat-models':

View file

@ -77,6 +77,8 @@ def completion(
try:
from vertexai.preview.language_models import ChatModel, CodeChatModel, InputOutputTextPair
from vertexai.language_models import TextGenerationModel, CodeGenerationModel
from vertexai.preview.generative_models import GenerativeModel, Part
vertexai.init(
project=vertex_project, location=vertex_location
@ -95,7 +97,12 @@ def completion(
mode = ""
request_str = ""
if model in litellm.vertex_chat_models or ("chat" in model): # to catch chat-bison@003 or chat-bison@004 when google will release it
response_obj = None
if model in litellm.vertex_language_models:
chat_model = GenerativeModel(model)
mode = ""
request_str += f"chat_model = GenerativeModel({model})\n"
elif model in litellm.vertex_chat_models:
chat_model = ChatModel.from_pretrained(model)
mode = "chat"
request_str += f"chat_model = ChatModel.from_pretrained({model})\n"
@ -112,7 +119,24 @@ def completion(
mode = "chat"
request_str += f"chat_model = CodeChatModel.from_pretrained({model})\n"
if mode == "chat":
if mode == "":
chat = chat_model.start_chat()
request_str+= f"chat = chat_model.start_chat()\n"
if "stream" in optional_params and optional_params["stream"] == True:
request_str += f"chat.send_message_streaming({prompt}, **{optional_params})\n"
## LOGGING
logging_obj.pre_call(input=prompt, api_key=None, additional_args={"complete_input_dict": optional_params, "request_str": request_str})
model_response = chat.send_message(prompt, **optional_params)
optional_params["stream"] = True
return model_response
request_str += f"chat.send_message({prompt}, **{optional_params}).text\n"
logging_obj.pre_call(input=prompt, api_key=None, additional_args={"complete_input_dict": optional_params, "request_str": request_str})
response_obj = chat.send_message(prompt, **optional_params)
completion_response = response_obj.text
response_obj = response_obj._raw_response
elif mode == "chat":
chat = chat_model.start_chat()
request_str+= f"chat = chat_model.start_chat()\n"
@ -161,17 +185,23 @@ def completion(
model_response["created"] = int(time.time())
model_response["model"] = model
## CALCULATING USAGE
prompt_tokens = len(
encoding.encode(prompt)
)
completion_tokens = len(
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
)
usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens
if model in litellm.vertex_language_models and response_obj is not None:
model_response["choices"][0].finish_reason = response_obj.candidates[0].finish_reason.name
usage = Usage(prompt_tokens=response_obj.usage_metadata.prompt_token_count,
completion_tokens=response_obj.usage_metadata.candidates_token_count,
total_tokens=response_obj.usage_metadata.total_token_count)
else:
prompt_tokens = len(
encoding.encode(prompt)
)
completion_tokens = len(
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
)
usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens
)
model_response.usage = usage
return model_response
except Exception as e:

View file

@ -390,7 +390,6 @@ def completion(
model=deployment_id
custom_llm_provider="azure"
model, custom_llm_provider, dynamic_api_key, api_base = get_llm_provider(model=model, custom_llm_provider=custom_llm_provider, api_base=api_base, api_key=api_key)
### REGISTER CUSTOM MODEL PRICING -- IF GIVEN ###
if input_cost_per_token is not None and output_cost_per_token is not None:
litellm.register_model({
@ -1136,7 +1135,7 @@ def completion(
)
return response
response = model_response
elif model in litellm.vertex_chat_models or model in litellm.vertex_code_chat_models or model in litellm.vertex_text_models or model in litellm.vertex_code_text_models or custom_llm_provider == "vertex_ai":
elif custom_llm_provider == "vertex_ai":
vertex_ai_project = (litellm.vertex_project
or get_secret("VERTEXAI_PROJECT"))
vertex_ai_location = (litellm.vertex_location

View file

@ -17,7 +17,7 @@ import json
import os
import tempfile
litellm.num_retries = 3
# litellm.num_retries = 3
litellm.cache = None
user_message = "Write a short poem about the sky"
messages = [{"content": user_message, "role": "user"}]
@ -73,6 +73,7 @@ def test_vertex_ai():
litellm.vertex_project = "hardy-device-386718"
test_models = random.sample(test_models, 4)
test_models += litellm.vertex_language_models # always test gemini-pro
for model in test_models:
try:
if model in ["code-gecko@001", "code-gecko@latest", "code-bison@001", "text-bison@001"]:
@ -86,7 +87,7 @@ def test_vertex_ai():
assert len(response.choices[0].message.content) > 1
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# test_vertex_ai()
test_vertex_ai()
def test_vertex_ai_stream():
load_vertex_ai_credentials()
@ -94,8 +95,9 @@ def test_vertex_ai_stream():
litellm.vertex_project = "hardy-device-386718"
import random
test_models = litellm.vertex_chat_models + litellm.vertex_code_chat_models + litellm.vertex_text_models + litellm.vertex_code_text_models
test_models = litellm.vertex_chat_models + litellm.vertex_code_chat_models + litellm.vertex_text_models + litellm.vertex_code_text_models
test_models = random.sample(test_models, 4)
test_models += litellm.vertex_language_models # always test gemini-pro
for model in test_models:
try:
if model in ["code-gecko@001", "code-gecko@latest", "code-bison@001", "text-bison@001"]:

View file

@ -126,7 +126,7 @@ def map_finish_reason(finish_reason: str): # openai supports 5 stop sequences -
# cohere mapping - https://docs.cohere.com/reference/generate
elif finish_reason == "COMPLETE":
return "stop"
elif finish_reason == "MAX_TOKENS":
elif finish_reason == "MAX_TOKENS": # cohere + vertex ai
return "length"
elif finish_reason == "ERROR_TOXIC":
return "content_filter"
@ -135,6 +135,10 @@ def map_finish_reason(finish_reason: str): # openai supports 5 stop sequences -
# huggingface mapping https://huggingface.github.io/text-generation-inference/#/Text%20Generation%20Inference/generate_stream
elif finish_reason == "eos_token" or finish_reason == "stop_sequence":
return "stop"
elif finish_reason == "FINISH_REASON_UNSPECIFIED" or finish_reason == "STOP": # vertex ai - got from running `print(dir(response_obj.candidates[0].finish_reason))`: ['FINISH_REASON_UNSPECIFIED', 'MAX_TOKENS', 'OTHER', 'RECITATION', 'SAFETY', 'STOP',]
return "stop"
elif finish_reason == "SAFETY": # vertex ai
return "content_filter"
return finish_reason
class FunctionCall(OpenAIObject):
@ -2761,12 +2765,13 @@ def get_llm_provider(model: str, custom_llm_provider: Optional[str] = None, api_
## openrouter
elif model in litellm.maritalk_models:
custom_llm_provider = "maritalk"
## vertex - text + chat models
## vertex - text + chat + language (gemini) models
elif(
model in litellm.vertex_chat_models or
model in litellm.vertex_code_chat_models or
model in litellm.vertex_text_models or
model in litellm.vertex_code_text_models
model in litellm.vertex_code_text_models or
model in litellm.vertex_language_models
):
custom_llm_provider = "vertex_ai"
## ai21

View file

@ -325,6 +325,14 @@
"litellm_provider": "vertex_ai-code-chat-models",
"mode": "chat"
},
"gemini-pro": {
"max_tokens": 30720,
"max_output_tokens": 2048,
"input_cost_per_token": 0.0000000625,
"output_cost_per_token": 0.000000125,
"litellm_provider": "vertex_ai-language-models",
"mode": "chat"
},
"palm/chat-bison": {
"max_tokens": 4096,
"input_cost_per_token": 0.000000125,