diff --git a/.circleci/config.yml b/.circleci/config.yml
index b0a369a35..db7c4ef5b 100644
--- a/.circleci/config.yml
+++ b/.circleci/config.yml
@@ -771,6 +771,7 @@ jobs:
- run: python ./tests/code_coverage_tests/litellm_logging_code_coverage.py
- run: python ./tests/documentation_tests/test_env_keys.py
- run: python ./tests/documentation_tests/test_api_docs.py
+ - run: python ./tests/code_coverage_tests/ensure_async_clients_test.py
- run: helm lint ./deploy/charts/litellm-helm
db_migration_disable_update_check:
diff --git a/docs/my-website/docs/completion/json_mode.md b/docs/my-website/docs/completion/json_mode.md
index 51f76b7a6..379775bf2 100644
--- a/docs/my-website/docs/completion/json_mode.md
+++ b/docs/my-website/docs/completion/json_mode.md
@@ -76,6 +76,8 @@ Works for:
- Vertex AI models (Gemini + Anthropic)
- Bedrock Models
- Anthropic API Models
+- Groq Models
+- Ollama Models
diff --git a/docs/my-website/docs/embedding/supported_embedding.md b/docs/my-website/docs/embedding/supported_embedding.md
index 5250ea403..603e04dd9 100644
--- a/docs/my-website/docs/embedding/supported_embedding.md
+++ b/docs/my-website/docs/embedding/supported_embedding.md
@@ -1,7 +1,7 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
-# Embedding Models
+# Embeddings
## Quick Start
```python
diff --git a/docs/my-website/docs/image_generation.md b/docs/my-website/docs/image_generation.md
index 5a7ef6f4f..958ff4c02 100644
--- a/docs/my-website/docs/image_generation.md
+++ b/docs/my-website/docs/image_generation.md
@@ -1,4 +1,4 @@
-# Image Generation
+# Images
## Quick Start
diff --git a/docs/my-website/docs/providers/anthropic.md b/docs/my-website/docs/providers/anthropic.md
index d4660b807..b3bfe333c 100644
--- a/docs/my-website/docs/providers/anthropic.md
+++ b/docs/my-website/docs/providers/anthropic.md
@@ -10,6 +10,35 @@ LiteLLM supports all anthropic models.
- `claude-2.1`
- `claude-instant-1.2`
+
+| Property | Details |
+|-------|-------|
+| Description | Claude is a highly performant, trustworthy, and intelligent AI platform built by Anthropic. Claude excels at tasks involving language, reasoning, analysis, coding, and more. |
+| Provider Route on LiteLLM | `anthropic/` (add this prefix to the model name, to route any requests to Anthropic - e.g. `anthropic/claude-3-5-sonnet-20240620`) |
+| Provider Doc | [Anthropic ↗](https://docs.anthropic.com/en/docs/build-with-claude/overview) |
+| API Endpoint for Provider | https://api.anthropic.com |
+| Supported Endpoints | `/chat/completions` |
+
+
+## Supported OpenAI Parameters
+
+Check this in code, [here](../completion/input.md#translated-openai-params)
+
+```
+"stream",
+"stop",
+"temperature",
+"top_p",
+"max_tokens",
+"max_completion_tokens",
+"tools",
+"tool_choice",
+"extra_headers",
+"parallel_tool_calls",
+"response_format",
+"user"
+```
+
:::info
Anthropic API fails requests when `max_tokens` are not passed. Due to this litellm passes `max_tokens=4096` when no `max_tokens` are passed.
@@ -1006,20 +1035,3 @@ curl http://0.0.0.0:4000/v1/chat/completions \
-
-## All Supported OpenAI Params
-
-```
-"stream",
-"stop",
-"temperature",
-"top_p",
-"max_tokens",
-"max_completion_tokens",
-"tools",
-"tool_choice",
-"extra_headers",
-"parallel_tool_calls",
-"response_format",
-"user"
-```
\ No newline at end of file
diff --git a/docs/my-website/sidebars.js b/docs/my-website/sidebars.js
index 50cc83c08..f01402299 100644
--- a/docs/my-website/sidebars.js
+++ b/docs/my-website/sidebars.js
@@ -199,46 +199,52 @@ const sidebars = {
],
},
- {
- type: "category",
- label: "Guides",
- link: {
- type: "generated-index",
- title: "Chat Completions",
- description: "Details on the completion() function",
- slug: "/completion",
- },
- items: [
- "completion/input",
- "completion/provider_specific_params",
- "completion/json_mode",
- "completion/prompt_caching",
- "completion/audio",
- "completion/vision",
- "completion/predict_outputs",
- "completion/prefix",
- "completion/drop_params",
- "completion/prompt_formatting",
- "completion/output",
- "completion/usage",
- "exception_mapping",
- "completion/stream",
- "completion/message_trimming",
- "completion/function_call",
- "completion/model_alias",
- "completion/batching",
- "completion/mock_requests",
- "completion/reliable_completions",
- ],
- },
{
type: "category",
label: "Supported Endpoints",
items: [
+ {
+ type: "category",
+ label: "Chat",
+ link: {
+ type: "generated-index",
+ title: "Chat Completions",
+ description: "Details on the completion() function",
+ slug: "/completion",
+ },
+ items: [
+ "completion/input",
+ "completion/provider_specific_params",
+ "completion/json_mode",
+ "completion/prompt_caching",
+ "completion/audio",
+ "completion/vision",
+ "completion/predict_outputs",
+ "completion/prefix",
+ "completion/drop_params",
+ "completion/prompt_formatting",
+ "completion/output",
+ "completion/usage",
+ "exception_mapping",
+ "completion/stream",
+ "completion/message_trimming",
+ "completion/function_call",
+ "completion/model_alias",
+ "completion/batching",
+ "completion/mock_requests",
+ "completion/reliable_completions",
+ ],
+ },
"embedding/supported_embedding",
"image_generation",
- "audio_transcription",
- "text_to_speech",
+ {
+ type: "category",
+ label: "Audio",
+ "items": [
+ "audio_transcription",
+ "text_to_speech",
+ ]
+ },
"rerank",
"assistants",
"batches",
diff --git a/litellm/__init__.py b/litellm/__init__.py
index 9a8c56a56..c978b24ee 100644
--- a/litellm/__init__.py
+++ b/litellm/__init__.py
@@ -133,7 +133,7 @@ use_client: bool = False
ssl_verify: Union[str, bool] = True
ssl_certificate: Optional[str] = None
disable_streaming_logging: bool = False
-in_memory_llm_clients_cache: dict = {}
+in_memory_llm_clients_cache: InMemoryCache = InMemoryCache()
safe_memory_mode: bool = False
enable_azure_ad_token_refresh: Optional[bool] = False
### DEFAULT AZURE API VERSION ###
diff --git a/litellm/litellm_core_utils/streaming_handler.py b/litellm/litellm_core_utils/streaming_handler.py
index 5c18ff512..483121c38 100644
--- a/litellm/litellm_core_utils/streaming_handler.py
+++ b/litellm/litellm_core_utils/streaming_handler.py
@@ -1793,7 +1793,7 @@ class CustomStreamWrapper:
or self.custom_llm_provider == "bedrock"
or self.custom_llm_provider == "triton"
or self.custom_llm_provider == "watsonx"
- or self.custom_llm_provider in litellm.openai_compatible_endpoints
+ or self.custom_llm_provider in litellm.openai_compatible_providers
or self.custom_llm_provider in litellm._custom_providers
):
async for chunk in self.completion_stream:
diff --git a/litellm/llms/AzureOpenAI/azure.py b/litellm/llms/AzureOpenAI/azure.py
index 39dea14e2..f6a1790b6 100644
--- a/litellm/llms/AzureOpenAI/azure.py
+++ b/litellm/llms/AzureOpenAI/azure.py
@@ -12,7 +12,11 @@ from typing_extensions import overload
import litellm
from litellm.caching.caching import DualCache
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
-from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
+from litellm.llms.custom_httpx.http_handler import (
+ AsyncHTTPHandler,
+ HTTPHandler,
+ get_async_httpx_client,
+)
from litellm.types.utils import EmbeddingResponse
from litellm.utils import (
CustomStreamWrapper,
@@ -977,7 +981,10 @@ class AzureChatCompletion(BaseLLM):
else:
_params["timeout"] = httpx.Timeout(timeout=600.0, connect=5.0)
- async_handler = AsyncHTTPHandler(**_params) # type: ignore
+ async_handler = get_async_httpx_client(
+ llm_provider=litellm.LlmProviders.AZURE,
+ params=_params,
+ )
else:
async_handler = client # type: ignore
diff --git a/litellm/llms/OpenAI/chat/o1_handler.py b/litellm/llms/OpenAI/chat/o1_handler.py
index 55dfe3715..5ff53a896 100644
--- a/litellm/llms/OpenAI/chat/o1_handler.py
+++ b/litellm/llms/OpenAI/chat/o1_handler.py
@@ -17,22 +17,6 @@ from litellm.utils import CustomStreamWrapper
class OpenAIO1ChatCompletion(OpenAIChatCompletion):
- async def mock_async_streaming(
- self,
- response: Any,
- model: Optional[str],
- logging_obj: Any,
- ):
- model_response = await response
- completion_stream = MockResponseIterator(model_response=model_response)
- streaming_response = CustomStreamWrapper(
- completion_stream=completion_stream,
- model=model,
- custom_llm_provider="openai",
- logging_obj=logging_obj,
- )
- return streaming_response
-
def completion(
self,
model_response: ModelResponse,
@@ -54,7 +38,7 @@ class OpenAIO1ChatCompletion(OpenAIChatCompletion):
custom_llm_provider: Optional[str] = None,
drop_params: Optional[bool] = None,
):
- stream: Optional[bool] = optional_params.pop("stream", False)
+ # stream: Optional[bool] = optional_params.pop("stream", False)
response = super().completion(
model_response,
timeout,
@@ -76,20 +60,4 @@ class OpenAIO1ChatCompletion(OpenAIChatCompletion):
drop_params,
)
- if stream is True:
- if asyncio.iscoroutine(response):
- return self.mock_async_streaming(
- response=response, model=model, logging_obj=logging_obj # type: ignore
- )
-
- completion_stream = MockResponseIterator(model_response=response)
- streaming_response = CustomStreamWrapper(
- completion_stream=completion_stream,
- model=model,
- custom_llm_provider="openai",
- logging_obj=logging_obj,
- )
-
- return streaming_response
- else:
- return response
+ return response
diff --git a/litellm/llms/OpenAI/openai.py b/litellm/llms/OpenAI/openai.py
index 7d701d26c..057340b51 100644
--- a/litellm/llms/OpenAI/openai.py
+++ b/litellm/llms/OpenAI/openai.py
@@ -18,6 +18,7 @@ import litellm
from litellm import LlmProviders
from litellm._logging import verbose_logger
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
+from litellm.llms.custom_httpx.http_handler import _DEFAULT_TTL_FOR_HTTPX_CLIENTS
from litellm.secret_managers.main import get_secret_str
from litellm.types.utils import ProviderField
from litellm.utils import (
@@ -562,8 +563,9 @@ class OpenAIChatCompletion(BaseLLM):
_cache_key = f"hashed_api_key={hashed_api_key},api_base={api_base},timeout={timeout},max_retries={max_retries},organization={organization},is_async={is_async}"
- if _cache_key in litellm.in_memory_llm_clients_cache:
- return litellm.in_memory_llm_clients_cache[_cache_key]
+ _cached_client = litellm.in_memory_llm_clients_cache.get_cache(_cache_key)
+ if _cached_client:
+ return _cached_client
if is_async:
_new_client: Union[OpenAI, AsyncOpenAI] = AsyncOpenAI(
api_key=api_key,
@@ -584,7 +586,11 @@ class OpenAIChatCompletion(BaseLLM):
)
## SAVE CACHE KEY
- litellm.in_memory_llm_clients_cache[_cache_key] = _new_client
+ litellm.in_memory_llm_clients_cache.set_cache(
+ key=_cache_key,
+ value=_new_client,
+ ttl=_DEFAULT_TTL_FOR_HTTPX_CLIENTS,
+ )
return _new_client
else:
diff --git a/litellm/llms/anthropic/completion.py b/litellm/llms/anthropic/completion.py
index 89a50db6a..dc06401d6 100644
--- a/litellm/llms/anthropic/completion.py
+++ b/litellm/llms/anthropic/completion.py
@@ -13,7 +13,11 @@ import httpx
import requests
import litellm
-from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
+from litellm.llms.custom_httpx.http_handler import (
+ AsyncHTTPHandler,
+ HTTPHandler,
+ get_async_httpx_client,
+)
from litellm.utils import CustomStreamWrapper, ModelResponse, Usage
from ..base import BaseLLM
@@ -162,7 +166,10 @@ class AnthropicTextCompletion(BaseLLM):
client=None,
):
if client is None:
- client = AsyncHTTPHandler(timeout=httpx.Timeout(timeout=600.0, connect=5.0))
+ client = get_async_httpx_client(
+ llm_provider=litellm.LlmProviders.ANTHROPIC,
+ params={"timeout": httpx.Timeout(timeout=600.0, connect=5.0)},
+ )
response = await client.post(api_base, headers=headers, data=json.dumps(data))
@@ -198,7 +205,10 @@ class AnthropicTextCompletion(BaseLLM):
client=None,
):
if client is None:
- client = AsyncHTTPHandler(timeout=httpx.Timeout(timeout=600.0, connect=5.0))
+ client = get_async_httpx_client(
+ llm_provider=litellm.LlmProviders.ANTHROPIC,
+ params={"timeout": httpx.Timeout(timeout=600.0, connect=5.0)},
+ )
response = await client.post(api_base, headers=headers, data=json.dumps(data))
diff --git a/litellm/llms/azure_ai/embed/handler.py b/litellm/llms/azure_ai/embed/handler.py
index 638a77479..2946a84dd 100644
--- a/litellm/llms/azure_ai/embed/handler.py
+++ b/litellm/llms/azure_ai/embed/handler.py
@@ -74,7 +74,10 @@ class AzureAIEmbedding(OpenAIChatCompletion):
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
) -> EmbeddingResponse:
if client is None or not isinstance(client, AsyncHTTPHandler):
- client = AsyncHTTPHandler(timeout=timeout, concurrent_limit=1)
+ client = get_async_httpx_client(
+ llm_provider=litellm.LlmProviders.AZURE_AI,
+ params={"timeout": timeout},
+ )
url = "{}/images/embeddings".format(api_base)
diff --git a/litellm/llms/clarifai.py b/litellm/llms/clarifai.py
index 2011c0bee..61d445423 100644
--- a/litellm/llms/clarifai.py
+++ b/litellm/llms/clarifai.py
@@ -9,7 +9,10 @@ import httpx
import requests
import litellm
-from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler
+from litellm.llms.custom_httpx.http_handler import (
+ AsyncHTTPHandler,
+ get_async_httpx_client,
+)
from litellm.utils import Choices, CustomStreamWrapper, Message, ModelResponse, Usage
from .prompt_templates.factory import custom_prompt, prompt_factory
@@ -185,7 +188,10 @@ async def async_completion(
headers={},
):
- async_handler = AsyncHTTPHandler(timeout=httpx.Timeout(timeout=600.0, connect=5.0))
+ async_handler = get_async_httpx_client(
+ llm_provider=litellm.LlmProviders.CLARIFAI,
+ params={"timeout": 600.0},
+ )
response = await async_handler.post(
url=model, headers=headers, data=json.dumps(data)
)
diff --git a/litellm/llms/cohere/embed/handler.py b/litellm/llms/cohere/embed/handler.py
index 95cbec225..5b224c375 100644
--- a/litellm/llms/cohere/embed/handler.py
+++ b/litellm/llms/cohere/embed/handler.py
@@ -11,7 +11,11 @@ import requests # type: ignore
import litellm
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
-from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
+from litellm.llms.custom_httpx.http_handler import (
+ AsyncHTTPHandler,
+ HTTPHandler,
+ get_async_httpx_client,
+)
from litellm.types.llms.bedrock import CohereEmbeddingRequest
from litellm.utils import Choices, Message, ModelResponse, Usage
@@ -71,7 +75,10 @@ async def async_embedding(
)
## COMPLETION CALL
if client is None:
- client = AsyncHTTPHandler(concurrent_limit=1, timeout=timeout)
+ client = get_async_httpx_client(
+ llm_provider=litellm.LlmProviders.COHERE,
+ params={"timeout": timeout},
+ )
try:
response = await client.post(api_base, headers=headers, data=json.dumps(data))
diff --git a/litellm/llms/custom_httpx/http_handler.py b/litellm/llms/custom_httpx/http_handler.py
index 020af7e90..f1b78ea63 100644
--- a/litellm/llms/custom_httpx/http_handler.py
+++ b/litellm/llms/custom_httpx/http_handler.py
@@ -7,6 +7,7 @@ import httpx
from httpx import USE_CLIENT_DEFAULT, AsyncHTTPTransport, HTTPTransport
import litellm
+from litellm.caching import InMemoryCache
from .types import httpxSpecialProvider
@@ -26,6 +27,7 @@ headers = {
# https://www.python-httpx.org/advanced/timeouts
_DEFAULT_TIMEOUT = httpx.Timeout(timeout=5.0, connect=5.0)
+_DEFAULT_TTL_FOR_HTTPX_CLIENTS = 3600 # 1 hour, re-use the same httpx client for 1 hour
class AsyncHTTPHandler:
@@ -476,8 +478,9 @@ def get_async_httpx_client(
pass
_cache_key_name = "async_httpx_client" + _params_key_name + llm_provider
- if _cache_key_name in litellm.in_memory_llm_clients_cache:
- return litellm.in_memory_llm_clients_cache[_cache_key_name]
+ _cached_client = litellm.in_memory_llm_clients_cache.get_cache(_cache_key_name)
+ if _cached_client:
+ return _cached_client
if params is not None:
_new_client = AsyncHTTPHandler(**params)
@@ -485,7 +488,11 @@ def get_async_httpx_client(
_new_client = AsyncHTTPHandler(
timeout=httpx.Timeout(timeout=600.0, connect=5.0)
)
- litellm.in_memory_llm_clients_cache[_cache_key_name] = _new_client
+ litellm.in_memory_llm_clients_cache.set_cache(
+ key=_cache_key_name,
+ value=_new_client,
+ ttl=_DEFAULT_TTL_FOR_HTTPX_CLIENTS,
+ )
return _new_client
@@ -505,13 +512,18 @@ def _get_httpx_client(params: Optional[dict] = None) -> HTTPHandler:
pass
_cache_key_name = "httpx_client" + _params_key_name
- if _cache_key_name in litellm.in_memory_llm_clients_cache:
- return litellm.in_memory_llm_clients_cache[_cache_key_name]
+ _cached_client = litellm.in_memory_llm_clients_cache.get_cache(_cache_key_name)
+ if _cached_client:
+ return _cached_client
if params is not None:
_new_client = HTTPHandler(**params)
else:
_new_client = HTTPHandler(timeout=httpx.Timeout(timeout=600.0, connect=5.0))
- litellm.in_memory_llm_clients_cache[_cache_key_name] = _new_client
+ litellm.in_memory_llm_clients_cache.set_cache(
+ key=_cache_key_name,
+ value=_new_client,
+ ttl=_DEFAULT_TTL_FOR_HTTPX_CLIENTS,
+ )
return _new_client
diff --git a/litellm/llms/databricks/chat.py b/litellm/llms/databricks/chat.py
index 79e885646..e752f4d98 100644
--- a/litellm/llms/databricks/chat.py
+++ b/litellm/llms/databricks/chat.py
@@ -393,7 +393,10 @@ class DatabricksChatCompletion(BaseLLM):
if timeout is None:
timeout = httpx.Timeout(timeout=600.0, connect=5.0)
- self.async_handler = AsyncHTTPHandler(timeout=timeout)
+ self.async_handler = get_async_httpx_client(
+ llm_provider=litellm.LlmProviders.DATABRICKS,
+ params={"timeout": timeout},
+ )
try:
response = await self.async_handler.post(
@@ -610,7 +613,10 @@ class DatabricksChatCompletion(BaseLLM):
response = None
try:
if client is None or isinstance(client, AsyncHTTPHandler):
- self.async_client = AsyncHTTPHandler(timeout=timeout) # type: ignore
+ self.async_client = get_async_httpx_client(
+ llm_provider=litellm.LlmProviders.DATABRICKS,
+ params={"timeout": timeout},
+ )
else:
self.async_client = client
diff --git a/litellm/llms/fine_tuning_apis/vertex_ai.py b/litellm/llms/fine_tuning_apis/vertex_ai.py
index 11d052191..fd418103e 100644
--- a/litellm/llms/fine_tuning_apis/vertex_ai.py
+++ b/litellm/llms/fine_tuning_apis/vertex_ai.py
@@ -5,9 +5,14 @@ from typing import Any, Coroutine, Literal, Optional, Union
import httpx
from openai.types.fine_tuning.fine_tuning_job import FineTuningJob, Hyperparameters
+import litellm
from litellm._logging import verbose_logger
from litellm.llms.base import BaseLLM
-from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
+from litellm.llms.custom_httpx.http_handler import (
+ AsyncHTTPHandler,
+ HTTPHandler,
+ get_async_httpx_client,
+)
from litellm.llms.vertex_ai_and_google_ai_studio.gemini.vertex_and_google_ai_studio_gemini import (
VertexLLM,
)
@@ -26,8 +31,9 @@ class VertexFineTuningAPI(VertexLLM):
def __init__(self) -> None:
super().__init__()
- self.async_handler = AsyncHTTPHandler(
- timeout=httpx.Timeout(timeout=600.0, connect=5.0)
+ self.async_handler = get_async_httpx_client(
+ llm_provider=litellm.LlmProviders.VERTEX_AI,
+ params={"timeout": 600.0},
)
def convert_response_created_at(self, response: ResponseTuningJob):
diff --git a/litellm/llms/groq/chat/handler.py b/litellm/llms/groq/chat/handler.py
index f4a16abc8..1fe87844c 100644
--- a/litellm/llms/groq/chat/handler.py
+++ b/litellm/llms/groq/chat/handler.py
@@ -6,55 +6,68 @@ from typing import Any, Callable, Optional, Union
from httpx._config import Timeout
+from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
+from litellm.types.utils import CustomStreamingDecoder
from litellm.utils import ModelResponse
from ...groq.chat.transformation import GroqChatConfig
-from ...OpenAI.openai import OpenAIChatCompletion
+from ...openai_like.chat.handler import OpenAILikeChatHandler
-class GroqChatCompletion(OpenAIChatCompletion):
+class GroqChatCompletion(OpenAILikeChatHandler):
def __init__(self, **kwargs):
super().__init__(**kwargs)
def completion(
self,
+ *,
+ model: str,
+ messages: list,
+ api_base: str,
+ custom_llm_provider: str,
+ custom_prompt_dict: dict,
model_response: ModelResponse,
- timeout: Union[float, Timeout],
+ print_verbose: Callable,
+ encoding,
+ api_key: Optional[str],
+ logging_obj,
optional_params: dict,
- logging_obj: Any,
- model: Optional[str] = None,
- messages: Optional[list] = None,
- print_verbose: Optional[Callable[..., Any]] = None,
- api_key: Optional[str] = None,
- api_base: Optional[str] = None,
- acompletion: bool = False,
+ acompletion=None,
litellm_params=None,
logger_fn=None,
headers: Optional[dict] = None,
- custom_prompt_dict: dict = {},
- client=None,
- organization: Optional[str] = None,
- custom_llm_provider: Optional[str] = None,
- drop_params: Optional[bool] = None,
+ timeout: Optional[Union[float, Timeout]] = None,
+ client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
+ custom_endpoint: Optional[bool] = None,
+ streaming_decoder: Optional[CustomStreamingDecoder] = None,
+ fake_stream: bool = False
):
messages = GroqChatConfig()._transform_messages(messages) # type: ignore
+
+ if optional_params.get("stream") is True:
+ fake_stream = GroqChatConfig()._should_fake_stream(optional_params)
+ else:
+ fake_stream = False
+
return super().completion(
- model_response,
- timeout,
- optional_params,
- logging_obj,
- model,
- messages,
- print_verbose,
- api_key,
- api_base,
- acompletion,
- litellm_params,
- logger_fn,
- headers,
- custom_prompt_dict,
- client,
- organization,
- custom_llm_provider,
- drop_params,
+ model=model,
+ messages=messages,
+ api_base=api_base,
+ custom_llm_provider=custom_llm_provider,
+ custom_prompt_dict=custom_prompt_dict,
+ model_response=model_response,
+ print_verbose=print_verbose,
+ encoding=encoding,
+ api_key=api_key,
+ logging_obj=logging_obj,
+ optional_params=optional_params,
+ acompletion=acompletion,
+ litellm_params=litellm_params,
+ logger_fn=logger_fn,
+ headers=headers,
+ timeout=timeout,
+ client=client,
+ custom_endpoint=custom_endpoint,
+ streaming_decoder=streaming_decoder,
+ fake_stream=fake_stream,
)
diff --git a/litellm/llms/groq/chat/transformation.py b/litellm/llms/groq/chat/transformation.py
index 4baba7657..dddc56a2c 100644
--- a/litellm/llms/groq/chat/transformation.py
+++ b/litellm/llms/groq/chat/transformation.py
@@ -2,6 +2,7 @@
Translate from OpenAI's `/v1/chat/completions` to Groq's `/v1/chat/completions`
"""
+import json
import types
from typing import List, Optional, Tuple, Union
@@ -9,7 +10,12 @@ from pydantic import BaseModel
import litellm
from litellm.secret_managers.main import get_secret_str
-from litellm.types.llms.openai import AllMessageValues, ChatCompletionAssistantMessage
+from litellm.types.llms.openai import (
+ AllMessageValues,
+ ChatCompletionAssistantMessage,
+ ChatCompletionToolParam,
+ ChatCompletionToolParamFunctionChunk,
+)
from ...OpenAI.chat.gpt_transformation import OpenAIGPTConfig
@@ -99,3 +105,69 @@ class GroqChatConfig(OpenAIGPTConfig):
) # type: ignore
dynamic_api_key = api_key or get_secret_str("GROQ_API_KEY")
return api_base, dynamic_api_key
+
+ def _should_fake_stream(self, optional_params: dict) -> bool:
+ """
+ Groq doesn't support 'response_format' while streaming
+ """
+ if optional_params.get("response_format") is not None:
+ return True
+
+ return False
+
+ def _create_json_tool_call_for_response_format(
+ self,
+ json_schema: dict,
+ ):
+ """
+ Handles creating a tool call for getting responses in JSON format.
+
+ Args:
+ json_schema (Optional[dict]): The JSON schema the response should be in
+
+ Returns:
+ AnthropicMessagesTool: The tool call to send to Anthropic API to get responses in JSON format
+ """
+ return ChatCompletionToolParam(
+ type="function",
+ function=ChatCompletionToolParamFunctionChunk(
+ name="json_tool_call",
+ parameters=json_schema,
+ ),
+ )
+
+ def map_openai_params(
+ self,
+ non_default_params: dict,
+ optional_params: dict,
+ model: str,
+ drop_params: bool = False,
+ ) -> dict:
+ _response_format = non_default_params.get("response_format")
+ if _response_format is not None and isinstance(_response_format, dict):
+ json_schema: Optional[dict] = None
+ if "response_schema" in _response_format:
+ json_schema = _response_format["response_schema"]
+ elif "json_schema" in _response_format:
+ json_schema = _response_format["json_schema"]["schema"]
+ """
+ When using tools in this way: - https://docs.anthropic.com/en/docs/build-with-claude/tool-use#json-mode
+ - You usually want to provide a single tool
+ - You should set tool_choice (see Forcing tool use) to instruct the model to explicitly use that tool
+ - Remember that the model will pass the input to the tool, so the name of the tool and description should be from the model’s perspective.
+ """
+ if json_schema is not None:
+ _tool_choice = {
+ "type": "function",
+ "function": {"name": "json_tool_call"},
+ }
+ _tool = self._create_json_tool_call_for_response_format(
+ json_schema=json_schema,
+ )
+ optional_params["tools"] = [_tool]
+ optional_params["tool_choice"] = _tool_choice
+ optional_params["json_mode"] = True
+ non_default_params.pop("response_format", None)
+ return super().map_openai_params(
+ non_default_params, optional_params, model, drop_params
+ )
diff --git a/litellm/llms/huggingface_restapi.py b/litellm/llms/huggingface_restapi.py
index 907d72a60..8b45f1ae7 100644
--- a/litellm/llms/huggingface_restapi.py
+++ b/litellm/llms/huggingface_restapi.py
@@ -263,7 +263,11 @@ def get_hf_task_for_model(model: str) -> Tuple[hf_tasks, str]:
return "text-generation-inference", model # default to tgi
-from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
+from litellm.llms.custom_httpx.http_handler import (
+ AsyncHTTPHandler,
+ HTTPHandler,
+ get_async_httpx_client,
+)
def get_hf_task_embedding_for_model(
@@ -301,7 +305,9 @@ async def async_get_hf_task_embedding_for_model(
task_type, hf_tasks_embeddings
)
)
- http_client = AsyncHTTPHandler(concurrent_limit=1)
+ http_client = get_async_httpx_client(
+ llm_provider=litellm.LlmProviders.HUGGINGFACE,
+ )
model_info = await http_client.get(url=api_base)
@@ -1067,7 +1073,9 @@ class Huggingface(BaseLLM):
)
## COMPLETION CALL
if client is None:
- client = AsyncHTTPHandler(concurrent_limit=1)
+ client = get_async_httpx_client(
+ llm_provider=litellm.LlmProviders.HUGGINGFACE,
+ )
response = await client.post(api_base, headers=headers, data=json.dumps(data))
diff --git a/litellm/llms/ollama.py b/litellm/llms/ollama.py
index 842d946c6..896b93be5 100644
--- a/litellm/llms/ollama.py
+++ b/litellm/llms/ollama.py
@@ -164,6 +164,30 @@ class OllamaConfig:
"response_format",
]
+ def map_openai_params(
+ self, optional_params: dict, non_default_params: dict
+ ) -> dict:
+ for param, value in non_default_params.items():
+ if param == "max_tokens":
+ optional_params["num_predict"] = value
+ if param == "stream":
+ optional_params["stream"] = value
+ if param == "temperature":
+ optional_params["temperature"] = value
+ if param == "seed":
+ optional_params["seed"] = value
+ if param == "top_p":
+ optional_params["top_p"] = value
+ if param == "frequency_penalty":
+ optional_params["repeat_penalty"] = value
+ if param == "stop":
+ optional_params["stop"] = value
+ if param == "response_format" and isinstance(value, dict):
+ if value["type"] == "json_object":
+ optional_params["format"] = "json"
+
+ return optional_params
+
def _supports_function_calling(self, ollama_model_info: dict) -> bool:
"""
Check if the 'template' field in the ollama_model_info contains a 'tools' or 'function' key.
diff --git a/litellm/llms/openai_like/chat/handler.py b/litellm/llms/openai_like/chat/handler.py
index 0dbc3a978..baa970304 100644
--- a/litellm/llms/openai_like/chat/handler.py
+++ b/litellm/llms/openai_like/chat/handler.py
@@ -17,7 +17,9 @@ import httpx # type: ignore
import requests # type: ignore
import litellm
+from litellm import LlmProviders
from litellm.litellm_core_utils.core_helpers import map_finish_reason
+from litellm.llms.bedrock.chat.invoke_handler import MockResponseIterator
from litellm.llms.custom_httpx.http_handler import (
AsyncHTTPHandler,
HTTPHandler,
@@ -25,9 +27,19 @@ from litellm.llms.custom_httpx.http_handler import (
)
from litellm.llms.databricks.streaming_utils import ModelResponseIterator
from litellm.types.utils import CustomStreamingDecoder, ModelResponse
-from litellm.utils import CustomStreamWrapper, EmbeddingResponse
+from litellm.utils import (
+ Choices,
+ CustomStreamWrapper,
+ EmbeddingResponse,
+ Message,
+ ProviderConfigManager,
+ TextCompletionResponse,
+ Usage,
+ convert_to_model_response_object,
+)
from ..common_utils import OpenAILikeBase, OpenAILikeError
+from .transformation import OpenAILikeChatConfig
async def make_call(
@@ -39,16 +51,22 @@ async def make_call(
messages: list,
logging_obj,
streaming_decoder: Optional[CustomStreamingDecoder] = None,
+ fake_stream: bool = False,
):
if client is None:
client = litellm.module_level_aclient
- response = await client.post(api_base, headers=headers, data=data, stream=True)
+ response = await client.post(
+ api_base, headers=headers, data=data, stream=not fake_stream
+ )
if streaming_decoder is not None:
completion_stream: Any = streaming_decoder.aiter_bytes(
response.aiter_bytes(chunk_size=1024)
)
+ elif fake_stream:
+ model_response = ModelResponse(**response.json())
+ completion_stream = MockResponseIterator(model_response=model_response)
else:
completion_stream = ModelResponseIterator(
streaming_response=response.aiter_lines(), sync_stream=False
@@ -73,11 +91,12 @@ def make_sync_call(
messages: list,
logging_obj,
streaming_decoder: Optional[CustomStreamingDecoder] = None,
+ fake_stream: bool = False,
):
if client is None:
client = litellm.module_level_client # Create a new client if none provided
- response = client.post(api_base, headers=headers, data=data, stream=True)
+ response = client.post(api_base, headers=headers, data=data, stream=not fake_stream)
if response.status_code != 200:
raise OpenAILikeError(status_code=response.status_code, message=response.read())
@@ -86,6 +105,9 @@ def make_sync_call(
completion_stream = streaming_decoder.iter_bytes(
response.iter_bytes(chunk_size=1024)
)
+ elif fake_stream:
+ model_response = ModelResponse(**response.json())
+ completion_stream = MockResponseIterator(model_response=model_response)
else:
completion_stream = ModelResponseIterator(
streaming_response=response.iter_lines(), sync_stream=True
@@ -126,8 +148,8 @@ class OpenAILikeChatHandler(OpenAILikeBase):
headers={},
client: Optional[AsyncHTTPHandler] = None,
streaming_decoder: Optional[CustomStreamingDecoder] = None,
+ fake_stream: bool = False,
) -> CustomStreamWrapper:
-
data["stream"] = True
completion_stream = await make_call(
client=client,
@@ -169,6 +191,7 @@ class OpenAILikeChatHandler(OpenAILikeBase):
logger_fn=None,
headers={},
timeout: Optional[Union[float, httpx.Timeout]] = None,
+ json_mode: bool = False,
) -> ModelResponse:
if timeout is None:
timeout = httpx.Timeout(timeout=600.0, connect=5.0)
@@ -181,8 +204,6 @@ class OpenAILikeChatHandler(OpenAILikeBase):
api_base, headers=headers, data=json.dumps(data), timeout=timeout
)
response.raise_for_status()
-
- response_json = response.json()
except httpx.HTTPStatusError as e:
raise OpenAILikeError(
status_code=e.response.status_code,
@@ -193,22 +214,26 @@ class OpenAILikeChatHandler(OpenAILikeBase):
except Exception as e:
raise OpenAILikeError(status_code=500, message=str(e))
- logging_obj.post_call(
- input=messages,
- api_key="",
- original_response=response_json,
- additional_args={"complete_input_dict": data},
+ return OpenAILikeChatConfig._transform_response(
+ model=model,
+ response=response,
+ model_response=model_response,
+ stream=stream,
+ logging_obj=logging_obj,
+ optional_params=optional_params,
+ api_key=api_key,
+ data=data,
+ messages=messages,
+ print_verbose=print_verbose,
+ encoding=encoding,
+ json_mode=json_mode,
+ custom_llm_provider=custom_llm_provider,
+ base_model=base_model,
)
- response = ModelResponse(**response_json)
-
- response.model = custom_llm_provider + "/" + (response.model or "")
-
- if base_model is not None:
- response._hidden_params["model"] = base_model
- return response
def completion(
self,
+ *,
model: str,
messages: list,
api_base: str,
@@ -230,6 +255,7 @@ class OpenAILikeChatHandler(OpenAILikeBase):
streaming_decoder: Optional[
CustomStreamingDecoder
] = None, # if openai-compatible api needs custom stream decoder - e.g. sagemaker
+ fake_stream: bool = False,
):
custom_endpoint = custom_endpoint or optional_params.pop(
"custom_endpoint", None
@@ -243,13 +269,24 @@ class OpenAILikeChatHandler(OpenAILikeBase):
headers=headers,
)
- stream: bool = optional_params.get("stream", None) or False
- optional_params["stream"] = stream
+ stream: bool = optional_params.pop("stream", None) or False
+ extra_body = optional_params.pop("extra_body", {})
+ json_mode = optional_params.pop("json_mode", None)
+ optional_params.pop("max_retries", None)
+ if not fake_stream:
+ optional_params["stream"] = stream
+
+ if messages is not None and custom_llm_provider is not None:
+ provider_config = ProviderConfigManager.get_provider_config(
+ model=model, provider=LlmProviders(custom_llm_provider)
+ )
+ messages = provider_config._transform_messages(messages)
data = {
"model": model,
"messages": messages,
**optional_params,
+ **extra_body,
}
## LOGGING
@@ -288,6 +325,7 @@ class OpenAILikeChatHandler(OpenAILikeBase):
client=client,
custom_llm_provider=custom_llm_provider,
streaming_decoder=streaming_decoder,
+ fake_stream=fake_stream,
)
else:
return self.acompletion_function(
@@ -327,6 +365,7 @@ class OpenAILikeChatHandler(OpenAILikeBase):
messages=messages,
logging_obj=logging_obj,
streaming_decoder=streaming_decoder,
+ fake_stream=fake_stream,
)
# completion_stream.__iter__()
return CustomStreamWrapper(
@@ -344,7 +383,6 @@ class OpenAILikeChatHandler(OpenAILikeBase):
)
response.raise_for_status()
- response_json = response.json()
except httpx.HTTPStatusError as e:
raise OpenAILikeError(
status_code=e.response.status_code,
@@ -356,17 +394,19 @@ class OpenAILikeChatHandler(OpenAILikeBase):
)
except Exception as e:
raise OpenAILikeError(status_code=500, message=str(e))
- logging_obj.post_call(
- input=messages,
- api_key="",
- original_response=response_json,
- additional_args={"complete_input_dict": data},
+ return OpenAILikeChatConfig._transform_response(
+ model=model,
+ response=response,
+ model_response=model_response,
+ stream=stream,
+ logging_obj=logging_obj,
+ optional_params=optional_params,
+ api_key=api_key,
+ data=data,
+ messages=messages,
+ print_verbose=print_verbose,
+ encoding=encoding,
+ json_mode=json_mode,
+ custom_llm_provider=custom_llm_provider,
+ base_model=base_model,
)
- response = ModelResponse(**response_json)
-
- response.model = custom_llm_provider + "/" + (response.model or "")
-
- if base_model is not None:
- response._hidden_params["model"] = base_model
-
- return response
diff --git a/litellm/llms/openai_like/chat/transformation.py b/litellm/llms/openai_like/chat/transformation.py
new file mode 100644
index 000000000..c355cf330
--- /dev/null
+++ b/litellm/llms/openai_like/chat/transformation.py
@@ -0,0 +1,98 @@
+"""
+OpenAI-like chat completion transformation
+"""
+
+import types
+from typing import List, Optional, Tuple, Union
+
+import httpx
+from pydantic import BaseModel
+
+import litellm
+from litellm.secret_managers.main import get_secret_str
+from litellm.types.llms.openai import AllMessageValues, ChatCompletionAssistantMessage
+from litellm.types.utils import ModelResponse
+
+from ....utils import _remove_additional_properties, _remove_strict_from_schema
+from ...OpenAI.chat.gpt_transformation import OpenAIGPTConfig
+
+
+class OpenAILikeChatConfig(OpenAIGPTConfig):
+ def _get_openai_compatible_provider_info(
+ self, api_base: Optional[str], api_key: Optional[str]
+ ) -> Tuple[Optional[str], Optional[str]]:
+ api_base = api_base or get_secret_str("OPENAI_LIKE_API_BASE") # type: ignore
+ dynamic_api_key = (
+ api_key or get_secret_str("OPENAI_LIKE_API_KEY") or ""
+ ) # vllm does not require an api key
+ return api_base, dynamic_api_key
+
+ @staticmethod
+ def _convert_tool_response_to_message(
+ message: ChatCompletionAssistantMessage, json_mode: bool
+ ) -> ChatCompletionAssistantMessage:
+ """
+ if json_mode is true, convert the returned tool call response to a content with json str
+
+ e.g. input:
+
+ {"role": "assistant", "tool_calls": [{"id": "call_5ms4", "type": "function", "function": {"name": "json_tool_call", "arguments": "{\"key\": \"question\", \"value\": \"What is the capital of France?\"}"}}]}
+
+ output:
+
+ {"role": "assistant", "content": "{\"key\": \"question\", \"value\": \"What is the capital of France?\"}"}
+ """
+ if not json_mode:
+ return message
+
+ _tool_calls = message.get("tool_calls")
+
+ if _tool_calls is None or len(_tool_calls) != 1:
+ return message
+
+ message["content"] = _tool_calls[0]["function"].get("arguments") or ""
+ message["tool_calls"] = None
+
+ return message
+
+ @staticmethod
+ def _transform_response(
+ model: str,
+ response: httpx.Response,
+ model_response: ModelResponse,
+ stream: bool,
+ logging_obj: litellm.litellm_core_utils.litellm_logging.Logging, # type: ignore
+ optional_params: dict,
+ api_key: Optional[str],
+ data: Union[dict, str],
+ messages: List,
+ print_verbose,
+ encoding,
+ json_mode: bool,
+ custom_llm_provider: str,
+ base_model: Optional[str],
+ ) -> ModelResponse:
+ response_json = response.json()
+ logging_obj.post_call(
+ input=messages,
+ api_key="",
+ original_response=response_json,
+ additional_args={"complete_input_dict": data},
+ )
+
+ if json_mode:
+ for choice in response_json["choices"]:
+ message = OpenAILikeChatConfig._convert_tool_response_to_message(
+ choice.get("message"), json_mode
+ )
+ choice["message"] = message
+
+ returned_response = ModelResponse(**response_json)
+
+ returned_response.model = (
+ custom_llm_provider + "/" + (returned_response.model or "")
+ )
+
+ if base_model is not None:
+ returned_response._hidden_params["model"] = base_model
+ return returned_response
diff --git a/litellm/llms/openai_like/embedding/handler.py b/litellm/llms/openai_like/embedding/handler.py
index ce0860724..e786b5db8 100644
--- a/litellm/llms/openai_like/embedding/handler.py
+++ b/litellm/llms/openai_like/embedding/handler.py
@@ -45,7 +45,10 @@ class OpenAILikeEmbeddingHandler(OpenAILikeBase):
response = None
try:
if client is None or isinstance(client, AsyncHTTPHandler):
- self.async_client = AsyncHTTPHandler(timeout=timeout) # type: ignore
+ self.async_client = get_async_httpx_client(
+ llm_provider=litellm.LlmProviders.OPENAI,
+ params={"timeout": timeout},
+ )
else:
self.async_client = client
@@ -62,7 +65,7 @@ class OpenAILikeEmbeddingHandler(OpenAILikeBase):
except httpx.HTTPStatusError as e:
raise OpenAILikeError(
status_code=e.response.status_code,
- message=response.text if response else str(e),
+ message=e.response.text if e.response else str(e),
)
except httpx.TimeoutException:
raise OpenAILikeError(
diff --git a/litellm/llms/predibase.py b/litellm/llms/predibase.py
index 96796f9dc..e80964551 100644
--- a/litellm/llms/predibase.py
+++ b/litellm/llms/predibase.py
@@ -19,7 +19,10 @@ import litellm.litellm_core_utils
import litellm.litellm_core_utils.litellm_logging
from litellm import verbose_logger
from litellm.litellm_core_utils.core_helpers import map_finish_reason
-from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler
+from litellm.llms.custom_httpx.http_handler import (
+ AsyncHTTPHandler,
+ get_async_httpx_client,
+)
from litellm.utils import Choices, CustomStreamWrapper, Message, ModelResponse, Usage
from .base import BaseLLM
@@ -549,7 +552,10 @@ class PredibaseChatCompletion(BaseLLM):
headers={},
) -> ModelResponse:
- async_handler = AsyncHTTPHandler(timeout=httpx.Timeout(timeout=timeout))
+ async_handler = get_async_httpx_client(
+ llm_provider=litellm.LlmProviders.PREDIBASE,
+ params={"timeout": timeout},
+ )
try:
response = await async_handler.post(
api_base, headers=headers, data=json.dumps(data)
diff --git a/litellm/llms/prompt_templates/factory.py b/litellm/llms/prompt_templates/factory.py
index 29028e053..45b7a6c5b 100644
--- a/litellm/llms/prompt_templates/factory.py
+++ b/litellm/llms/prompt_templates/factory.py
@@ -943,17 +943,10 @@ def _gemini_tool_call_invoke_helper(
name = function_call_params.get("name", "") or ""
arguments = function_call_params.get("arguments", "")
arguments_dict = json.loads(arguments)
- function_call: Optional[litellm.types.llms.vertex_ai.FunctionCall] = None
- for k, v in arguments_dict.items():
- inferred_protocol_value = infer_protocol_value(value=v)
- _field = litellm.types.llms.vertex_ai.Field(
- key=k, value={inferred_protocol_value: v}
- )
- _fields = litellm.types.llms.vertex_ai.FunctionCallArgs(fields=_field)
- function_call = litellm.types.llms.vertex_ai.FunctionCall(
- name=name,
- args=_fields,
- )
+ function_call = litellm.types.llms.vertex_ai.FunctionCall(
+ name=name,
+ args=arguments_dict,
+ )
return function_call
@@ -978,54 +971,26 @@ def convert_to_gemini_tool_call_invoke(
},
"""
"""
- Gemini tool call invokes: - https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/function-calling#submit-api-output
- content {
- role: "model"
- parts [
+ Gemini tool call invokes:
+ {
+ "role": "model",
+ "parts": [
{
- function_call {
- name: "get_current_weather"
- args {
- fields {
- key: "unit"
- value {
- string_value: "fahrenheit"
- }
- }
- fields {
- key: "predicted_temperature"
- value {
- number_value: 45
- }
- }
- fields {
- key: "location"
- value {
- string_value: "Boston, MA"
- }
- }
- }
- },
- {
- function_call {
- name: "get_current_weather"
- args {
- fields {
- key: "location"
- value {
- string_value: "San Francisco"
- }
- }
- }
+ "functionCall": {
+ "name": "get_current_weather",
+ "args": {
+ "unit": "fahrenheit",
+ "predicted_temperature": 45,
+ "location": "Boston, MA",
}
+ }
}
- ]
+ ]
}
"""
"""
- - json.load the arguments
- - iterate through arguments -> create a FunctionCallArgs for each field
+ - json.load the arguments
"""
try:
_parts_list: List[litellm.types.llms.vertex_ai.PartType] = []
@@ -1128,16 +1093,8 @@ def convert_to_gemini_tool_call_result(
# We can't determine from openai message format whether it's a successful or
# error call result so default to the successful result template
- inferred_content_value = infer_protocol_value(value=content_str)
-
- _field = litellm.types.llms.vertex_ai.Field(
- key="content", value={inferred_content_value: content_str}
- )
-
- _function_call_args = litellm.types.llms.vertex_ai.FunctionCallArgs(fields=_field)
-
_function_response = litellm.types.llms.vertex_ai.FunctionResponse(
- name=name, response=_function_call_args # type: ignore
+ name=name, response={"content": content_str} # type: ignore
)
_part = litellm.types.llms.vertex_ai.PartType(function_response=_function_response)
diff --git a/litellm/llms/replicate.py b/litellm/llms/replicate.py
index 094110234..2e9bbb333 100644
--- a/litellm/llms/replicate.py
+++ b/litellm/llms/replicate.py
@@ -9,7 +9,10 @@ import httpx # type: ignore
import requests # type: ignore
import litellm
-from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler
+from litellm.llms.custom_httpx.http_handler import (
+ AsyncHTTPHandler,
+ get_async_httpx_client,
+)
from litellm.utils import CustomStreamWrapper, ModelResponse, Usage
from .prompt_templates.factory import custom_prompt, prompt_factory
@@ -325,7 +328,7 @@ def handle_prediction_response_streaming(prediction_url, api_token, print_verbos
async def async_handle_prediction_response_streaming(
prediction_url, api_token, print_verbose
):
- http_handler = AsyncHTTPHandler(concurrent_limit=1)
+ http_handler = get_async_httpx_client(llm_provider=litellm.LlmProviders.REPLICATE)
previous_output = ""
output_string = ""
@@ -560,7 +563,9 @@ async def async_completion(
logging_obj,
print_verbose,
) -> Union[ModelResponse, CustomStreamWrapper]:
- http_handler = AsyncHTTPHandler(concurrent_limit=1)
+ http_handler = get_async_httpx_client(
+ llm_provider=litellm.LlmProviders.REPLICATE,
+ )
prediction_url = await async_start_prediction(
version_id,
input_data,
diff --git a/litellm/llms/text_completion_codestral.py b/litellm/llms/text_completion_codestral.py
index 21582d26c..d3c1ae3cb 100644
--- a/litellm/llms/text_completion_codestral.py
+++ b/litellm/llms/text_completion_codestral.py
@@ -18,7 +18,10 @@ import litellm
from litellm import verbose_logger
from litellm.litellm_core_utils.core_helpers import map_finish_reason
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLogging
-from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler
+from litellm.llms.custom_httpx.http_handler import (
+ AsyncHTTPHandler,
+ get_async_httpx_client,
+)
from litellm.types.llms.databricks import GenericStreamingChunk
from litellm.utils import (
Choices,
@@ -479,8 +482,9 @@ class CodestralTextCompletion(BaseLLM):
headers={},
) -> TextCompletionResponse:
- async_handler = AsyncHTTPHandler(
- timeout=httpx.Timeout(timeout=timeout), concurrent_limit=1
+ async_handler = get_async_httpx_client(
+ llm_provider=litellm.LlmProviders.TEXT_COMPLETION_CODESTRAL,
+ params={"timeout": timeout},
)
try:
diff --git a/litellm/llms/triton.py b/litellm/llms/triton.py
index be4179ccc..efd0d0a2d 100644
--- a/litellm/llms/triton.py
+++ b/litellm/llms/triton.py
@@ -8,7 +8,11 @@ import httpx # type: ignore
import requests # type: ignore
import litellm
-from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
+from litellm.llms.custom_httpx.http_handler import (
+ AsyncHTTPHandler,
+ HTTPHandler,
+ get_async_httpx_client,
+)
from litellm.utils import (
Choices,
CustomStreamWrapper,
@@ -50,8 +54,8 @@ class TritonChatCompletion(BaseLLM):
logging_obj: Any,
api_key: Optional[str] = None,
) -> EmbeddingResponse:
- async_handler = AsyncHTTPHandler(
- timeout=httpx.Timeout(timeout=600.0, connect=5.0)
+ async_handler = get_async_httpx_client(
+ llm_provider=litellm.LlmProviders.TRITON, params={"timeout": 600.0}
)
response = await async_handler.post(url=api_base, data=json.dumps(data))
@@ -261,7 +265,9 @@ class TritonChatCompletion(BaseLLM):
model_response,
type_of_model,
) -> ModelResponse:
- handler = AsyncHTTPHandler()
+ handler = get_async_httpx_client(
+ llm_provider=litellm.LlmProviders.TRITON, params={"timeout": 600.0}
+ )
if stream:
return self._ahandle_stream( # type: ignore
handler, api_base, data_for_triton, model, logging_obj
diff --git a/litellm/llms/vertex_ai_and_google_ai_studio/context_caching/vertex_ai_context_caching.py b/litellm/llms/vertex_ai_and_google_ai_studio/context_caching/vertex_ai_context_caching.py
index e60a17052..b9be8a3bd 100644
--- a/litellm/llms/vertex_ai_and_google_ai_studio/context_caching/vertex_ai_context_caching.py
+++ b/litellm/llms/vertex_ai_and_google_ai_studio/context_caching/vertex_ai_context_caching.py
@@ -6,7 +6,11 @@ import httpx
import litellm
from litellm.caching.caching import Cache, LiteLLMCacheType
from litellm.litellm_core_utils.litellm_logging import Logging
-from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
+from litellm.llms.custom_httpx.http_handler import (
+ AsyncHTTPHandler,
+ HTTPHandler,
+ get_async_httpx_client,
+)
from litellm.llms.OpenAI.openai import AllMessageValues
from litellm.types.llms.vertex_ai import (
CachedContentListAllResponseBody,
@@ -331,6 +335,13 @@ class ContextCachingEndpoints(VertexBase):
if cached_content is not None:
return messages, cached_content
+ cached_messages, non_cached_messages = separate_cached_messages(
+ messages=messages
+ )
+
+ if len(cached_messages) == 0:
+ return messages, None
+
## AUTHORIZATION ##
token, url = self._get_token_and_url_context_caching(
gemini_api_key=api_key,
@@ -347,22 +358,12 @@ class ContextCachingEndpoints(VertexBase):
headers.update(extra_headers)
if client is None or not isinstance(client, AsyncHTTPHandler):
- _params = {}
- if timeout is not None:
- if isinstance(timeout, float) or isinstance(timeout, int):
- timeout = httpx.Timeout(timeout)
- _params["timeout"] = timeout
- client = AsyncHTTPHandler(**_params) # type: ignore
+ client = get_async_httpx_client(
+ params={"timeout": timeout}, llm_provider=litellm.LlmProviders.VERTEX_AI
+ )
else:
client = client
- cached_messages, non_cached_messages = separate_cached_messages(
- messages=messages
- )
-
- if len(cached_messages) == 0:
- return messages, None
-
## CHECK IF CACHED ALREADY
generated_cache_key = local_cache_obj.get_cache_key(messages=cached_messages)
google_cache_name = await self.async_check_cache(
diff --git a/litellm/llms/vertex_ai_and_google_ai_studio/gemini/vertex_and_google_ai_studio_gemini.py b/litellm/llms/vertex_ai_and_google_ai_studio/gemini/vertex_and_google_ai_studio_gemini.py
index 39c63dbb3..f2fc599ed 100644
--- a/litellm/llms/vertex_ai_and_google_ai_studio/gemini/vertex_and_google_ai_studio_gemini.py
+++ b/litellm/llms/vertex_ai_and_google_ai_studio/gemini/vertex_and_google_ai_studio_gemini.py
@@ -1026,7 +1026,9 @@ async def make_call(
logging_obj,
):
if client is None:
- client = AsyncHTTPHandler() # Create a new client if none provided
+ client = get_async_httpx_client(
+ llm_provider=litellm.LlmProviders.VERTEX_AI,
+ )
try:
response = await client.post(api_base, headers=headers, data=data, stream=True)
diff --git a/litellm/llms/vertex_ai_and_google_ai_studio/gemini_embeddings/batch_embed_content_handler.py b/litellm/llms/vertex_ai_and_google_ai_studio/gemini_embeddings/batch_embed_content_handler.py
index 314e129c2..8e2d1f39a 100644
--- a/litellm/llms/vertex_ai_and_google_ai_studio/gemini_embeddings/batch_embed_content_handler.py
+++ b/litellm/llms/vertex_ai_and_google_ai_studio/gemini_embeddings/batch_embed_content_handler.py
@@ -7,8 +7,13 @@ from typing import Any, List, Literal, Optional, Union
import httpx
+import litellm
from litellm import EmbeddingResponse
-from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
+from litellm.llms.custom_httpx.http_handler import (
+ AsyncHTTPHandler,
+ HTTPHandler,
+ get_async_httpx_client,
+)
from litellm.types.llms.openai import EmbeddingInput
from litellm.types.llms.vertex_ai import (
VertexAIBatchEmbeddingsRequestBody,
@@ -150,7 +155,10 @@ class GoogleBatchEmbeddings(VertexLLM):
else:
_params["timeout"] = httpx.Timeout(timeout=600.0, connect=5.0)
- async_handler: AsyncHTTPHandler = AsyncHTTPHandler(**_params) # type: ignore
+ async_handler: AsyncHTTPHandler = get_async_httpx_client(
+ llm_provider=litellm.LlmProviders.VERTEX_AI,
+ params={"timeout": timeout},
+ )
else:
async_handler = client # type: ignore
diff --git a/litellm/llms/vertex_ai_and_google_ai_studio/image_generation/image_generation_handler.py b/litellm/llms/vertex_ai_and_google_ai_studio/image_generation/image_generation_handler.py
index 1531464c8..6cb5771e6 100644
--- a/litellm/llms/vertex_ai_and_google_ai_studio/image_generation/image_generation_handler.py
+++ b/litellm/llms/vertex_ai_and_google_ai_studio/image_generation/image_generation_handler.py
@@ -5,7 +5,11 @@ import httpx
from openai.types.image import Image
import litellm
-from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
+from litellm.llms.custom_httpx.http_handler import (
+ AsyncHTTPHandler,
+ HTTPHandler,
+ get_async_httpx_client,
+)
from litellm.llms.vertex_ai_and_google_ai_studio.gemini.vertex_and_google_ai_studio_gemini import (
VertexLLM,
)
@@ -156,7 +160,10 @@ class VertexImageGeneration(VertexLLM):
else:
_params["timeout"] = httpx.Timeout(timeout=600.0, connect=5.0)
- self.async_handler = AsyncHTTPHandler(**_params) # type: ignore
+ self.async_handler = get_async_httpx_client(
+ llm_provider=litellm.LlmProviders.VERTEX_AI,
+ params={"timeout": timeout},
+ )
else:
self.async_handler = client # type: ignore
diff --git a/litellm/llms/vertex_ai_and_google_ai_studio/multimodal_embeddings/embedding_handler.py b/litellm/llms/vertex_ai_and_google_ai_studio/multimodal_embeddings/embedding_handler.py
index d8af891b0..27b77fdd9 100644
--- a/litellm/llms/vertex_ai_and_google_ai_studio/multimodal_embeddings/embedding_handler.py
+++ b/litellm/llms/vertex_ai_and_google_ai_studio/multimodal_embeddings/embedding_handler.py
@@ -5,7 +5,11 @@ import httpx
import litellm
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
-from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
+from litellm.llms.custom_httpx.http_handler import (
+ AsyncHTTPHandler,
+ HTTPHandler,
+ get_async_httpx_client,
+)
from litellm.llms.vertex_ai_and_google_ai_studio.gemini.vertex_and_google_ai_studio_gemini import (
VertexAIError,
VertexLLM,
@@ -172,7 +176,10 @@ class VertexMultimodalEmbedding(VertexLLM):
if isinstance(timeout, float) or isinstance(timeout, int):
timeout = httpx.Timeout(timeout)
_params["timeout"] = timeout
- client = AsyncHTTPHandler(**_params) # type: ignore
+ client = get_async_httpx_client(
+ llm_provider=litellm.LlmProviders.VERTEX_AI,
+ params={"timeout": timeout},
+ )
else:
client = client # type: ignore
diff --git a/litellm/llms/vertex_ai_and_google_ai_studio/vertex_ai_non_gemini.py b/litellm/llms/vertex_ai_and_google_ai_studio/vertex_ai_non_gemini.py
index 80295ec40..829bf6528 100644
--- a/litellm/llms/vertex_ai_and_google_ai_studio/vertex_ai_non_gemini.py
+++ b/litellm/llms/vertex_ai_and_google_ai_studio/vertex_ai_non_gemini.py
@@ -14,6 +14,7 @@ from pydantic import BaseModel
import litellm
from litellm._logging import verbose_logger
from litellm.litellm_core_utils.core_helpers import map_finish_reason
+from litellm.llms.custom_httpx.http_handler import _DEFAULT_TTL_FOR_HTTPX_CLIENTS
from litellm.llms.prompt_templates.factory import (
convert_to_anthropic_image_obj,
convert_to_gemini_tool_call_invoke,
@@ -93,11 +94,15 @@ def _get_client_cache_key(
def _get_client_from_cache(client_cache_key: str):
- return litellm.in_memory_llm_clients_cache.get(client_cache_key, None)
+ return litellm.in_memory_llm_clients_cache.get_cache(client_cache_key)
def _set_client_in_cache(client_cache_key: str, vertex_llm_model: Any):
- litellm.in_memory_llm_clients_cache[client_cache_key] = vertex_llm_model
+ litellm.in_memory_llm_clients_cache.set_cache(
+ key=client_cache_key,
+ value=vertex_llm_model,
+ ttl=_DEFAULT_TTL_FOR_HTTPX_CLIENTS,
+ )
def completion( # noqa: PLR0915
diff --git a/litellm/llms/watsonx/chat/handler.py b/litellm/llms/watsonx/chat/handler.py
index b016bb0a7..932946d3c 100644
--- a/litellm/llms/watsonx/chat/handler.py
+++ b/litellm/llms/watsonx/chat/handler.py
@@ -57,6 +57,7 @@ class WatsonXChatHandler(OpenAILikeChatHandler):
def completion(
self,
+ *,
model: str,
messages: list,
api_base: str,
@@ -75,9 +76,8 @@ class WatsonXChatHandler(OpenAILikeChatHandler):
timeout: Optional[Union[float, httpx.Timeout]] = None,
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
custom_endpoint: Optional[bool] = None,
- streaming_decoder: Optional[
- CustomStreamingDecoder
- ] = None, # if openai-compatible api needs custom stream decoder - e.g. sagemaker
+ streaming_decoder: Optional[CustomStreamingDecoder] = None,
+ fake_stream: bool = False,
):
api_params = _get_api_params(optional_params, print_verbose=print_verbose)
diff --git a/litellm/llms/watsonx/completion/handler.py b/litellm/llms/watsonx/completion/handler.py
index fda25ba0f..9618f6342 100644
--- a/litellm/llms/watsonx/completion/handler.py
+++ b/litellm/llms/watsonx/completion/handler.py
@@ -24,7 +24,10 @@ import httpx # type: ignore
import requests # type: ignore
import litellm
-from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler
+from litellm.llms.custom_httpx.http_handler import (
+ AsyncHTTPHandler,
+ get_async_httpx_client,
+)
from litellm.secret_managers.main import get_secret_str
from litellm.types.llms.watsonx import WatsonXAIEndpoint
from litellm.utils import EmbeddingResponse, ModelResponse, Usage, map_finish_reason
@@ -710,10 +713,13 @@ class RequestManager:
if stream:
request_params["stream"] = stream
try:
- self.async_handler = AsyncHTTPHandler(
- timeout=httpx.Timeout(
- timeout=request_params.pop("timeout", 600.0), connect=5.0
- ),
+ self.async_handler = get_async_httpx_client(
+ llm_provider=litellm.LlmProviders.WATSONX,
+ params={
+ "timeout": httpx.Timeout(
+ timeout=request_params.pop("timeout", 600.0), connect=5.0
+ ),
+ },
)
if "json" in request_params:
request_params["data"] = json.dumps(request_params.pop("json", {}))
diff --git a/litellm/main.py b/litellm/main.py
index 32055eb9d..5d433eb36 100644
--- a/litellm/main.py
+++ b/litellm/main.py
@@ -1495,8 +1495,8 @@ def completion( # type: ignore # noqa: PLR0915
timeout=timeout, # type: ignore
custom_prompt_dict=custom_prompt_dict,
client=client, # pass AsyncOpenAI, OpenAI client
- organization=organization,
custom_llm_provider=custom_llm_provider,
+ encoding=encoding,
)
elif (
model in litellm.open_ai_chat_completion_models
@@ -3182,6 +3182,7 @@ async def aembedding(*args, **kwargs) -> EmbeddingResponse:
or custom_llm_provider == "azure_ai"
or custom_llm_provider == "together_ai"
or custom_llm_provider == "openai_like"
+ or custom_llm_provider == "jina_ai"
): # currently implemented aiohttp calls for just azure and openai, soon all.
# Await normally
init_response = await loop.run_in_executor(None, func_with_context)
diff --git a/litellm/model_prices_and_context_window_backup.json b/litellm/model_prices_and_context_window_backup.json
index 606a2756b..a56472f7f 100644
--- a/litellm/model_prices_and_context_window_backup.json
+++ b/litellm/model_prices_and_context_window_backup.json
@@ -1745,7 +1745,8 @@
"output_cost_per_token": 0.00000080,
"litellm_provider": "groq",
"mode": "chat",
- "supports_function_calling": true
+ "supports_function_calling": true,
+ "supports_response_schema": true
},
"groq/llama3-8b-8192": {
"max_tokens": 8192,
@@ -1755,7 +1756,74 @@
"output_cost_per_token": 0.00000008,
"litellm_provider": "groq",
"mode": "chat",
- "supports_function_calling": true
+ "supports_function_calling": true,
+ "supports_response_schema": true
+ },
+ "groq/llama-3.2-1b-preview": {
+ "max_tokens": 8192,
+ "max_input_tokens": 8192,
+ "max_output_tokens": 8192,
+ "input_cost_per_token": 0.00000004,
+ "output_cost_per_token": 0.00000004,
+ "litellm_provider": "groq",
+ "mode": "chat",
+ "supports_function_calling": true,
+ "supports_response_schema": true
+ },
+ "groq/llama-3.2-3b-preview": {
+ "max_tokens": 8192,
+ "max_input_tokens": 8192,
+ "max_output_tokens": 8192,
+ "input_cost_per_token": 0.00000006,
+ "output_cost_per_token": 0.00000006,
+ "litellm_provider": "groq",
+ "mode": "chat",
+ "supports_function_calling": true,
+ "supports_response_schema": true
+ },
+ "groq/llama-3.2-11b-text-preview": {
+ "max_tokens": 8192,
+ "max_input_tokens": 8192,
+ "max_output_tokens": 8192,
+ "input_cost_per_token": 0.00000018,
+ "output_cost_per_token": 0.00000018,
+ "litellm_provider": "groq",
+ "mode": "chat",
+ "supports_function_calling": true,
+ "supports_response_schema": true
+ },
+ "groq/llama-3.2-11b-vision-preview": {
+ "max_tokens": 8192,
+ "max_input_tokens": 8192,
+ "max_output_tokens": 8192,
+ "input_cost_per_token": 0.00000018,
+ "output_cost_per_token": 0.00000018,
+ "litellm_provider": "groq",
+ "mode": "chat",
+ "supports_function_calling": true,
+ "supports_response_schema": true
+ },
+ "groq/llama-3.2-90b-text-preview": {
+ "max_tokens": 8192,
+ "max_input_tokens": 8192,
+ "max_output_tokens": 8192,
+ "input_cost_per_token": 0.0000009,
+ "output_cost_per_token": 0.0000009,
+ "litellm_provider": "groq",
+ "mode": "chat",
+ "supports_function_calling": true,
+ "supports_response_schema": true
+ },
+ "groq/llama-3.2-90b-vision-preview": {
+ "max_tokens": 8192,
+ "max_input_tokens": 8192,
+ "max_output_tokens": 8192,
+ "input_cost_per_token": 0.0000009,
+ "output_cost_per_token": 0.0000009,
+ "litellm_provider": "groq",
+ "mode": "chat",
+ "supports_function_calling": true,
+ "supports_response_schema": true
},
"groq/llama3-70b-8192": {
"max_tokens": 8192,
@@ -1765,7 +1833,8 @@
"output_cost_per_token": 0.00000079,
"litellm_provider": "groq",
"mode": "chat",
- "supports_function_calling": true
+ "supports_function_calling": true,
+ "supports_response_schema": true
},
"groq/llama-3.1-8b-instant": {
"max_tokens": 8192,
@@ -1775,7 +1844,8 @@
"output_cost_per_token": 0.00000008,
"litellm_provider": "groq",
"mode": "chat",
- "supports_function_calling": true
+ "supports_function_calling": true,
+ "supports_response_schema": true
},
"groq/llama-3.1-70b-versatile": {
"max_tokens": 8192,
@@ -1785,7 +1855,8 @@
"output_cost_per_token": 0.00000079,
"litellm_provider": "groq",
"mode": "chat",
- "supports_function_calling": true
+ "supports_function_calling": true,
+ "supports_response_schema": true
},
"groq/llama-3.1-405b-reasoning": {
"max_tokens": 8192,
@@ -1795,7 +1866,8 @@
"output_cost_per_token": 0.00000079,
"litellm_provider": "groq",
"mode": "chat",
- "supports_function_calling": true
+ "supports_function_calling": true,
+ "supports_response_schema": true
},
"groq/mixtral-8x7b-32768": {
"max_tokens": 32768,
@@ -1805,7 +1877,8 @@
"output_cost_per_token": 0.00000024,
"litellm_provider": "groq",
"mode": "chat",
- "supports_function_calling": true
+ "supports_function_calling": true,
+ "supports_response_schema": true
},
"groq/gemma-7b-it": {
"max_tokens": 8192,
@@ -1815,7 +1888,8 @@
"output_cost_per_token": 0.00000007,
"litellm_provider": "groq",
"mode": "chat",
- "supports_function_calling": true
+ "supports_function_calling": true,
+ "supports_response_schema": true
},
"groq/gemma2-9b-it": {
"max_tokens": 8192,
@@ -1825,7 +1899,8 @@
"output_cost_per_token": 0.00000020,
"litellm_provider": "groq",
"mode": "chat",
- "supports_function_calling": true
+ "supports_function_calling": true,
+ "supports_response_schema": true
},
"groq/llama3-groq-70b-8192-tool-use-preview": {
"max_tokens": 8192,
@@ -1835,7 +1910,8 @@
"output_cost_per_token": 0.00000089,
"litellm_provider": "groq",
"mode": "chat",
- "supports_function_calling": true
+ "supports_function_calling": true,
+ "supports_response_schema": true
},
"groq/llama3-groq-8b-8192-tool-use-preview": {
"max_tokens": 8192,
@@ -1845,7 +1921,8 @@
"output_cost_per_token": 0.00000019,
"litellm_provider": "groq",
"mode": "chat",
- "supports_function_calling": true
+ "supports_function_calling": true,
+ "supports_response_schema": true
},
"cerebras/llama3.1-8b": {
"max_tokens": 128000,
diff --git a/litellm/proxy/_new_secret_config.yaml b/litellm/proxy/_new_secret_config.yaml
index 1155e0466..974b091cf 100644
--- a/litellm/proxy/_new_secret_config.yaml
+++ b/litellm/proxy/_new_secret_config.yaml
@@ -12,7 +12,6 @@ model_list:
vertex_ai_project: "adroit-crow-413218"
vertex_ai_location: "us-east5"
-
router_settings:
model_group_alias:
"gpt-4-turbo": # Aliased model name
diff --git a/litellm/proxy/auth/route_checks.py b/litellm/proxy/auth/route_checks.py
index c75c1e66c..9496776a8 100644
--- a/litellm/proxy/auth/route_checks.py
+++ b/litellm/proxy/auth/route_checks.py
@@ -192,6 +192,10 @@ class RouteChecks:
return True
if "/langfuse/" in route:
return True
+ if "/anthropic/" in route:
+ return True
+ if "/azure/" in route:
+ return True
return False
@staticmethod
diff --git a/litellm/proxy/vertex_ai_endpoints/google_ai_studio_endpoints.py b/litellm/proxy/pass_through_endpoints/llm_passthrough_endpoints.py
similarity index 98%
rename from litellm/proxy/vertex_ai_endpoints/google_ai_studio_endpoints.py
rename to litellm/proxy/pass_through_endpoints/llm_passthrough_endpoints.py
index 29594a858..3f4643afc 100644
--- a/litellm/proxy/vertex_ai_endpoints/google_ai_studio_endpoints.py
+++ b/litellm/proxy/pass_through_endpoints/llm_passthrough_endpoints.py
@@ -2,10 +2,8 @@
What is this?
Provider-specific Pass-Through Endpoints
-"""
-"""
-1. Create pass-through endpoints for any LITELLM_BASE_URL/gemini/ map to https://generativelanguage.googleapis.com/
+Use litellm with Anthropic SDK, Vertex AI SDK, Cohere SDK, etc.
"""
import ast
diff --git a/litellm/proxy/proxy_server.py b/litellm/proxy/proxy_server.py
index 1551330d1..9d7c120a7 100644
--- a/litellm/proxy/proxy_server.py
+++ b/litellm/proxy/proxy_server.py
@@ -203,6 +203,9 @@ from litellm.proxy.openai_files_endpoints.files_endpoints import (
router as openai_files_router,
)
from litellm.proxy.openai_files_endpoints.files_endpoints import set_files_config
+from litellm.proxy.pass_through_endpoints.llm_passthrough_endpoints import (
+ router as llm_passthrough_router,
+)
from litellm.proxy.pass_through_endpoints.pass_through_endpoints import (
initialize_pass_through_endpoints,
)
@@ -233,9 +236,6 @@ from litellm.proxy.utils import (
reset_budget,
update_spend,
)
-from litellm.proxy.vertex_ai_endpoints.google_ai_studio_endpoints import (
- router as gemini_router,
-)
from litellm.proxy.vertex_ai_endpoints.langfuse_endpoints import (
router as langfuse_router,
)
@@ -9128,7 +9128,7 @@ app.include_router(router)
app.include_router(rerank_router)
app.include_router(fine_tuning_router)
app.include_router(vertex_router)
-app.include_router(gemini_router)
+app.include_router(llm_passthrough_router)
app.include_router(langfuse_router)
app.include_router(pass_through_router)
app.include_router(health_router)
diff --git a/litellm/types/llms/vertex_ai.py b/litellm/types/llms/vertex_ai.py
index d55cf3ec6..54d4c1af2 100644
--- a/litellm/types/llms/vertex_ai.py
+++ b/litellm/types/llms/vertex_ai.py
@@ -13,23 +13,14 @@ from typing_extensions import (
)
-class Field(TypedDict):
- key: str
- value: Dict[str, Any]
-
-
-class FunctionCallArgs(TypedDict):
- fields: Field
-
-
class FunctionResponse(TypedDict):
name: str
- response: FunctionCallArgs
+ response: Optional[dict]
class FunctionCall(TypedDict):
name: str
- args: FunctionCallArgs
+ args: Optional[dict]
class FileDataType(TypedDict):
diff --git a/litellm/utils.py b/litellm/utils.py
index 2dce9db89..003971142 100644
--- a/litellm/utils.py
+++ b/litellm/utils.py
@@ -1739,15 +1739,15 @@ def supports_response_schema(model: str, custom_llm_provider: Optional[str]) ->
Does not raise error. Defaults to 'False'. Outputs logging.error.
"""
+ ## GET LLM PROVIDER ##
+ model, custom_llm_provider, _, _ = get_llm_provider(
+ model=model, custom_llm_provider=custom_llm_provider
+ )
+
+ if custom_llm_provider == "predibase": # predibase supports this globally
+ return True
+
try:
- ## GET LLM PROVIDER ##
- model, custom_llm_provider, _, _ = get_llm_provider(
- model=model, custom_llm_provider=custom_llm_provider
- )
-
- if custom_llm_provider == "predibase": # predibase supports this globally
- return True
-
## GET MODEL INFO
model_info = litellm.get_model_info(
model=model, custom_llm_provider=custom_llm_provider
@@ -1755,12 +1755,17 @@ def supports_response_schema(model: str, custom_llm_provider: Optional[str]) ->
if model_info.get("supports_response_schema", False) is True:
return True
- return False
except Exception:
- verbose_logger.error(
- f"Model not supports response_schema. You passed model={model}, custom_llm_provider={custom_llm_provider}."
+ ## check if provider supports response schema globally
+ supported_params = get_supported_openai_params(
+ model=model,
+ custom_llm_provider=custom_llm_provider,
+ request_type="chat_completion",
)
- return False
+ if supported_params is not None and "response_schema" in supported_params:
+ return True
+
+ return False
def supports_function_calling(
@@ -2710,6 +2715,7 @@ def get_optional_params( # noqa: PLR0915
non_default_params["response_format"] = type_to_response_format_param(
response_format=non_default_params["response_format"]
)
+
if "tools" in non_default_params and isinstance(
non_default_params, list
): # fixes https://github.com/BerriAI/litellm/issues/4933
@@ -3259,24 +3265,14 @@ def get_optional_params( # noqa: PLR0915
)
_check_valid_arg(supported_params=supported_params)
- if max_tokens is not None:
- optional_params["num_predict"] = max_tokens
- if stream:
- optional_params["stream"] = stream
- if temperature is not None:
- optional_params["temperature"] = temperature
- if seed is not None:
- optional_params["seed"] = seed
- if top_p is not None:
- optional_params["top_p"] = top_p
- if frequency_penalty is not None:
- optional_params["repeat_penalty"] = frequency_penalty
- if stop is not None:
- optional_params["stop"] = stop
- if response_format is not None and response_format["type"] == "json_object":
- optional_params["format"] = "json"
+ optional_params = litellm.OllamaConfig().map_openai_params(
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ )
elif custom_llm_provider == "ollama_chat":
- supported_params = litellm.OllamaChatConfig().get_supported_openai_params()
+ supported_params = get_supported_openai_params(
+ model=model, custom_llm_provider=custom_llm_provider
+ )
_check_valid_arg(supported_params=supported_params)
@@ -3494,24 +3490,16 @@ def get_optional_params( # noqa: PLR0915
)
_check_valid_arg(supported_params=supported_params)
- if temperature is not None:
- optional_params["temperature"] = temperature
- if max_tokens is not None:
- optional_params["max_tokens"] = max_tokens
- if top_p is not None:
- optional_params["top_p"] = top_p
- if stream is not None:
- optional_params["stream"] = stream
- if stop is not None:
- optional_params["stop"] = stop
- if tools is not None:
- optional_params["tools"] = tools
- if tool_choice is not None:
- optional_params["tool_choice"] = tool_choice
- if response_format is not None:
- optional_params["response_format"] = response_format
- if seed is not None:
- optional_params["seed"] = seed
+ optional_params = litellm.GroqChatConfig().map_openai_params(
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ model=model,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
elif custom_llm_provider == "deepseek":
supported_params = get_supported_openai_params(
model=model, custom_llm_provider=custom_llm_provider
@@ -6178,5 +6166,7 @@ class ProviderConfigManager:
return litellm.OpenAIO1Config()
elif litellm.LlmProviders.DEEPSEEK == provider:
return litellm.DeepSeekChatConfig()
+ elif litellm.LlmProviders.GROQ == provider:
+ return litellm.GroqChatConfig()
return OpenAIGPTConfig()
diff --git a/model_prices_and_context_window.json b/model_prices_and_context_window.json
index 606a2756b..a56472f7f 100644
--- a/model_prices_and_context_window.json
+++ b/model_prices_and_context_window.json
@@ -1745,7 +1745,8 @@
"output_cost_per_token": 0.00000080,
"litellm_provider": "groq",
"mode": "chat",
- "supports_function_calling": true
+ "supports_function_calling": true,
+ "supports_response_schema": true
},
"groq/llama3-8b-8192": {
"max_tokens": 8192,
@@ -1755,7 +1756,74 @@
"output_cost_per_token": 0.00000008,
"litellm_provider": "groq",
"mode": "chat",
- "supports_function_calling": true
+ "supports_function_calling": true,
+ "supports_response_schema": true
+ },
+ "groq/llama-3.2-1b-preview": {
+ "max_tokens": 8192,
+ "max_input_tokens": 8192,
+ "max_output_tokens": 8192,
+ "input_cost_per_token": 0.00000004,
+ "output_cost_per_token": 0.00000004,
+ "litellm_provider": "groq",
+ "mode": "chat",
+ "supports_function_calling": true,
+ "supports_response_schema": true
+ },
+ "groq/llama-3.2-3b-preview": {
+ "max_tokens": 8192,
+ "max_input_tokens": 8192,
+ "max_output_tokens": 8192,
+ "input_cost_per_token": 0.00000006,
+ "output_cost_per_token": 0.00000006,
+ "litellm_provider": "groq",
+ "mode": "chat",
+ "supports_function_calling": true,
+ "supports_response_schema": true
+ },
+ "groq/llama-3.2-11b-text-preview": {
+ "max_tokens": 8192,
+ "max_input_tokens": 8192,
+ "max_output_tokens": 8192,
+ "input_cost_per_token": 0.00000018,
+ "output_cost_per_token": 0.00000018,
+ "litellm_provider": "groq",
+ "mode": "chat",
+ "supports_function_calling": true,
+ "supports_response_schema": true
+ },
+ "groq/llama-3.2-11b-vision-preview": {
+ "max_tokens": 8192,
+ "max_input_tokens": 8192,
+ "max_output_tokens": 8192,
+ "input_cost_per_token": 0.00000018,
+ "output_cost_per_token": 0.00000018,
+ "litellm_provider": "groq",
+ "mode": "chat",
+ "supports_function_calling": true,
+ "supports_response_schema": true
+ },
+ "groq/llama-3.2-90b-text-preview": {
+ "max_tokens": 8192,
+ "max_input_tokens": 8192,
+ "max_output_tokens": 8192,
+ "input_cost_per_token": 0.0000009,
+ "output_cost_per_token": 0.0000009,
+ "litellm_provider": "groq",
+ "mode": "chat",
+ "supports_function_calling": true,
+ "supports_response_schema": true
+ },
+ "groq/llama-3.2-90b-vision-preview": {
+ "max_tokens": 8192,
+ "max_input_tokens": 8192,
+ "max_output_tokens": 8192,
+ "input_cost_per_token": 0.0000009,
+ "output_cost_per_token": 0.0000009,
+ "litellm_provider": "groq",
+ "mode": "chat",
+ "supports_function_calling": true,
+ "supports_response_schema": true
},
"groq/llama3-70b-8192": {
"max_tokens": 8192,
@@ -1765,7 +1833,8 @@
"output_cost_per_token": 0.00000079,
"litellm_provider": "groq",
"mode": "chat",
- "supports_function_calling": true
+ "supports_function_calling": true,
+ "supports_response_schema": true
},
"groq/llama-3.1-8b-instant": {
"max_tokens": 8192,
@@ -1775,7 +1844,8 @@
"output_cost_per_token": 0.00000008,
"litellm_provider": "groq",
"mode": "chat",
- "supports_function_calling": true
+ "supports_function_calling": true,
+ "supports_response_schema": true
},
"groq/llama-3.1-70b-versatile": {
"max_tokens": 8192,
@@ -1785,7 +1855,8 @@
"output_cost_per_token": 0.00000079,
"litellm_provider": "groq",
"mode": "chat",
- "supports_function_calling": true
+ "supports_function_calling": true,
+ "supports_response_schema": true
},
"groq/llama-3.1-405b-reasoning": {
"max_tokens": 8192,
@@ -1795,7 +1866,8 @@
"output_cost_per_token": 0.00000079,
"litellm_provider": "groq",
"mode": "chat",
- "supports_function_calling": true
+ "supports_function_calling": true,
+ "supports_response_schema": true
},
"groq/mixtral-8x7b-32768": {
"max_tokens": 32768,
@@ -1805,7 +1877,8 @@
"output_cost_per_token": 0.00000024,
"litellm_provider": "groq",
"mode": "chat",
- "supports_function_calling": true
+ "supports_function_calling": true,
+ "supports_response_schema": true
},
"groq/gemma-7b-it": {
"max_tokens": 8192,
@@ -1815,7 +1888,8 @@
"output_cost_per_token": 0.00000007,
"litellm_provider": "groq",
"mode": "chat",
- "supports_function_calling": true
+ "supports_function_calling": true,
+ "supports_response_schema": true
},
"groq/gemma2-9b-it": {
"max_tokens": 8192,
@@ -1825,7 +1899,8 @@
"output_cost_per_token": 0.00000020,
"litellm_provider": "groq",
"mode": "chat",
- "supports_function_calling": true
+ "supports_function_calling": true,
+ "supports_response_schema": true
},
"groq/llama3-groq-70b-8192-tool-use-preview": {
"max_tokens": 8192,
@@ -1835,7 +1910,8 @@
"output_cost_per_token": 0.00000089,
"litellm_provider": "groq",
"mode": "chat",
- "supports_function_calling": true
+ "supports_function_calling": true,
+ "supports_response_schema": true
},
"groq/llama3-groq-8b-8192-tool-use-preview": {
"max_tokens": 8192,
@@ -1845,7 +1921,8 @@
"output_cost_per_token": 0.00000019,
"litellm_provider": "groq",
"mode": "chat",
- "supports_function_calling": true
+ "supports_function_calling": true,
+ "supports_response_schema": true
},
"cerebras/llama3.1-8b": {
"max_tokens": 128000,
diff --git a/pyproject.toml b/pyproject.toml
index 3e69461ae..d5cf3fb92 100644
--- a/pyproject.toml
+++ b/pyproject.toml
@@ -1,6 +1,6 @@
[tool.poetry]
name = "litellm"
-version = "1.52.12"
+version = "1.52.13"
description = "Library to easily interface with LLM API providers"
authors = ["BerriAI"]
license = "MIT"
@@ -91,7 +91,7 @@ requires = ["poetry-core", "wheel"]
build-backend = "poetry.core.masonry.api"
[tool.commitizen]
-version = "1.52.12"
+version = "1.52.13"
version_files = [
"pyproject.toml:^version"
]
diff --git a/tests/code_coverage_tests/ensure_async_clients_test.py b/tests/code_coverage_tests/ensure_async_clients_test.py
new file mode 100644
index 000000000..a509e5509
--- /dev/null
+++ b/tests/code_coverage_tests/ensure_async_clients_test.py
@@ -0,0 +1,88 @@
+import ast
+import os
+
+ALLOWED_FILES = [
+ # local files
+ "../../litellm/__init__.py",
+ "../../litellm/llms/custom_httpx/http_handler.py",
+ # when running on ci/cd
+ "./litellm/__init__.py",
+ "./litellm/llms/custom_httpx/http_handler.py",
+]
+
+warning_msg = "this is a serious violation that can impact latency. Creating Async clients per request can add +500ms per request"
+
+
+def check_for_async_http_handler(file_path):
+ """
+ Checks if AsyncHttpHandler is instantiated in the given file.
+ Returns a list of line numbers where AsyncHttpHandler is used.
+ """
+ print("..checking file=", file_path)
+ if file_path in ALLOWED_FILES:
+ return []
+ with open(file_path, "r") as file:
+ try:
+ tree = ast.parse(file.read())
+ except SyntaxError:
+ print(f"Warning: Syntax error in file {file_path}")
+ return []
+
+ violations = []
+ target_names = [
+ "AsyncHttpHandler",
+ "AsyncHTTPHandler",
+ "AsyncClient",
+ "httpx.AsyncClient",
+ ] # Add variations here
+ for node in ast.walk(tree):
+ if isinstance(node, ast.Call):
+ if isinstance(node.func, ast.Name) and node.func.id.lower() in [
+ name.lower() for name in target_names
+ ]:
+ raise ValueError(
+ f"found violation in file {file_path} line: {node.lineno}. Please use `get_async_httpx_client` instead. {warning_msg}"
+ )
+ return violations
+
+
+def scan_directory_for_async_handler(base_dir):
+ """
+ Scans all Python files in the directory tree for AsyncHttpHandler usage.
+ Returns a dict of files and line numbers where violations were found.
+ """
+ violations = {}
+
+ for root, _, files in os.walk(base_dir):
+ for file in files:
+ if file.endswith(".py"):
+ file_path = os.path.join(root, file)
+ file_violations = check_for_async_http_handler(file_path)
+ if file_violations:
+ violations[file_path] = file_violations
+
+ return violations
+
+
+def test_no_async_http_handler_usage():
+ """
+ Test to ensure AsyncHttpHandler is not used anywhere in the codebase.
+ """
+ base_dir = "./litellm" # Adjust this path as needed
+
+ # base_dir = "../../litellm" # LOCAL TESTING
+ violations = scan_directory_for_async_handler(base_dir)
+
+ if violations:
+ violation_messages = []
+ for file_path, line_numbers in violations.items():
+ violation_messages.append(
+ f"Found AsyncHttpHandler in {file_path} at lines: {line_numbers}"
+ )
+ raise AssertionError(
+ "AsyncHttpHandler usage detected:\n" + "\n".join(violation_messages)
+ )
+
+
+if __name__ == "__main__":
+ test_no_async_http_handler_usage()
diff --git a/tests/image_gen_tests/test_image_generation.py b/tests/image_gen_tests/test_image_generation.py
index 692a0e4e9..6605b3e3d 100644
--- a/tests/image_gen_tests/test_image_generation.py
+++ b/tests/image_gen_tests/test_image_generation.py
@@ -8,6 +8,7 @@ import traceback
from dotenv import load_dotenv
from openai.types.image import Image
+from litellm.caching import InMemoryCache
logging.basicConfig(level=logging.DEBUG)
load_dotenv()
@@ -107,7 +108,7 @@ class TestVertexImageGeneration(BaseImageGenTest):
# comment this when running locally
load_vertex_ai_credentials()
- litellm.in_memory_llm_clients_cache = {}
+ litellm.in_memory_llm_clients_cache = InMemoryCache()
return {
"model": "vertex_ai/imagegeneration@006",
"vertex_ai_project": "adroit-crow-413218",
@@ -118,13 +119,13 @@ class TestVertexImageGeneration(BaseImageGenTest):
class TestBedrockSd3(BaseImageGenTest):
def get_base_image_generation_call_args(self) -> dict:
- litellm.in_memory_llm_clients_cache = {}
+ litellm.in_memory_llm_clients_cache = InMemoryCache()
return {"model": "bedrock/stability.sd3-large-v1:0"}
class TestBedrockSd1(BaseImageGenTest):
def get_base_image_generation_call_args(self) -> dict:
- litellm.in_memory_llm_clients_cache = {}
+ litellm.in_memory_llm_clients_cache = InMemoryCache()
return {"model": "bedrock/stability.sd3-large-v1:0"}
@@ -181,7 +182,7 @@ def test_image_generation_azure_dall_e_3():
@pytest.mark.asyncio
async def test_aimage_generation_bedrock_with_optional_params():
try:
- litellm.in_memory_llm_clients_cache = {}
+ litellm.in_memory_llm_clients_cache = InMemoryCache()
response = await litellm.aimage_generation(
prompt="A cute baby sea otter",
model="bedrock/stability.stable-diffusion-xl-v1",
diff --git a/tests/llm_translation/base_llm_unit_tests.py b/tests/llm_translation/base_llm_unit_tests.py
index 74fff60a4..88fce6dac 100644
--- a/tests/llm_translation/base_llm_unit_tests.py
+++ b/tests/llm_translation/base_llm_unit_tests.py
@@ -49,7 +49,7 @@ class BaseLLMChatTest(ABC):
)
assert response is not None
except litellm.InternalServerError:
- pass
+ pytest.skip("Model is overloaded")
# for OpenAI the content contains the JSON schema, so we need to assert that the content is not None
assert response.choices[0].message.content is not None
@@ -92,7 +92,9 @@ class BaseLLMChatTest(ABC):
# relevant issue: https://github.com/BerriAI/litellm/issues/6741
assert response.choices[0].message.content is not None
+ @pytest.mark.flaky(retries=6, delay=1)
def test_json_response_pydantic_obj(self):
+ litellm.set_verbose = True
from pydantic import BaseModel
from litellm.utils import supports_response_schema
@@ -119,6 +121,11 @@ class BaseLLMChatTest(ABC):
response_format=TestModel,
)
assert res is not None
+
+ print(res.choices[0].message)
+
+ assert res.choices[0].message.content is not None
+ assert res.choices[0].message.tool_calls is None
except litellm.InternalServerError:
pytest.skip("Model is overloaded")
@@ -140,12 +147,15 @@ class BaseLLMChatTest(ABC):
},
]
- response = litellm.completion(
- **base_completion_call_args,
- messages=messages,
- response_format={"type": "json_object"},
- stream=True,
- )
+ try:
+ response = litellm.completion(
+ **base_completion_call_args,
+ messages=messages,
+ response_format={"type": "json_object"},
+ stream=True,
+ )
+ except litellm.InternalServerError:
+ pytest.skip("Model is overloaded")
print(response)
@@ -161,6 +171,25 @@ class BaseLLMChatTest(ABC):
assert content is not None
assert len(content) > 0
+ @pytest.fixture
+ def tool_call_no_arguments(self):
+ return {
+ "role": "assistant",
+ "content": "",
+ "tool_calls": [
+ {
+ "id": "call_2c384bc6-de46-4f29-8adc-60dd5805d305",
+ "function": {"name": "Get-FAQ", "arguments": "{}"},
+ "type": "function",
+ }
+ ],
+ }
+
+ @abstractmethod
+ def test_tool_call_no_arguments(self, tool_call_no_arguments):
+ """Test that tool calls with no arguments is translated correctly. Relevant issue: https://github.com/BerriAI/litellm/issues/6833"""
+ pass
+
@pytest.fixture
def pdf_messages(self):
import base64
diff --git a/tests/llm_translation/test_anthropic_completion.py b/tests/llm_translation/test_anthropic_completion.py
index d6ee074b1..812291767 100644
--- a/tests/llm_translation/test_anthropic_completion.py
+++ b/tests/llm_translation/test_anthropic_completion.py
@@ -697,6 +697,15 @@ class TestAnthropicCompletion(BaseLLMChatTest):
assert _document_validation["source"]["media_type"] == "application/pdf"
assert _document_validation["source"]["type"] == "base64"
+ def test_tool_call_no_arguments(self, tool_call_no_arguments):
+ """Test that tool calls with no arguments is translated correctly. Relevant issue: https://github.com/BerriAI/litellm/issues/6833"""
+ from litellm.llms.prompt_templates.factory import (
+ convert_to_anthropic_tool_invoke,
+ )
+
+ result = convert_to_anthropic_tool_invoke([tool_call_no_arguments])
+ print(result)
+
def test_convert_tool_response_to_message_with_values():
"""Test converting a tool response with 'values' key to a message"""
diff --git a/tests/llm_translation/test_deepseek_completion.py b/tests/llm_translation/test_deepseek_completion.py
index b0f7ee663..17b0a340b 100644
--- a/tests/llm_translation/test_deepseek_completion.py
+++ b/tests/llm_translation/test_deepseek_completion.py
@@ -7,3 +7,7 @@ class TestDeepSeekChatCompletion(BaseLLMChatTest):
return {
"model": "deepseek/deepseek-chat",
}
+
+ def test_tool_call_no_arguments(self, tool_call_no_arguments):
+ """Test that tool calls with no arguments is translated correctly. Relevant issue: https://github.com/BerriAI/litellm/issues/6833"""
+ pass
diff --git a/tests/llm_translation/test_groq.py b/tests/llm_translation/test_groq.py
new file mode 100644
index 000000000..359787b2d
--- /dev/null
+++ b/tests/llm_translation/test_groq.py
@@ -0,0 +1,12 @@
+from base_llm_unit_tests import BaseLLMChatTest
+
+
+class TestGroq(BaseLLMChatTest):
+ def get_base_completion_call_args(self) -> dict:
+ return {
+ "model": "groq/llama-3.1-70b-versatile",
+ }
+
+ def test_tool_call_no_arguments(self, tool_call_no_arguments):
+ """Test that tool calls with no arguments is translated correctly. Relevant issue: https://github.com/BerriAI/litellm/issues/6833"""
+ pass
diff --git a/tests/llm_translation/test_mistral_api.py b/tests/llm_translation/test_mistral_api.py
index b2cb36541..bb8cb3c60 100644
--- a/tests/llm_translation/test_mistral_api.py
+++ b/tests/llm_translation/test_mistral_api.py
@@ -32,3 +32,7 @@ class TestMistralCompletion(BaseLLMChatTest):
def get_base_completion_call_args(self) -> dict:
litellm.set_verbose = True
return {"model": "mistral/mistral-small-latest"}
+
+ def test_tool_call_no_arguments(self, tool_call_no_arguments):
+ """Test that tool calls with no arguments is translated correctly. Relevant issue: https://github.com/BerriAI/litellm/issues/6833"""
+ pass
diff --git a/tests/llm_translation/test_optional_params.py b/tests/llm_translation/test_optional_params.py
index 7fe8baeb5..34ecdfaca 100644
--- a/tests/llm_translation/test_optional_params.py
+++ b/tests/llm_translation/test_optional_params.py
@@ -952,3 +952,17 @@ def test_lm_studio_embedding_params():
drop_params=True,
)
assert len(optional_params) == 0
+
+
+def test_ollama_pydantic_obj():
+ from pydantic import BaseModel
+
+ class ResponseFormat(BaseModel):
+ x: str
+ y: str
+
+ get_optional_params(
+ model="qwen2:0.5b",
+ custom_llm_provider="ollama",
+ response_format=ResponseFormat,
+ )
diff --git a/tests/llm_translation/test_vertex.py b/tests/llm_translation/test_vertex.py
index 73960020d..3e1087536 100644
--- a/tests/llm_translation/test_vertex.py
+++ b/tests/llm_translation/test_vertex.py
@@ -306,6 +306,8 @@ def test_multiple_function_call():
)
assert len(r.choices) > 0
+ print(mock_post.call_args.kwargs["json"])
+
assert mock_post.call_args.kwargs["json"] == {
"contents": [
{"role": "user", "parts": [{"text": "do test"}]},
@@ -313,28 +315,8 @@ def test_multiple_function_call():
"role": "model",
"parts": [
{"text": "test"},
- {
- "function_call": {
- "name": "test",
- "args": {
- "fields": {
- "key": "arg",
- "value": {"string_value": "test"},
- }
- },
- }
- },
- {
- "function_call": {
- "name": "test2",
- "args": {
- "fields": {
- "key": "arg",
- "value": {"string_value": "test2"},
- }
- },
- }
- },
+ {"function_call": {"name": "test", "args": {"arg": "test"}}},
+ {"function_call": {"name": "test2", "args": {"arg": "test2"}}},
],
},
{
@@ -342,23 +324,13 @@ def test_multiple_function_call():
{
"function_response": {
"name": "test",
- "response": {
- "fields": {
- "key": "content",
- "value": {"string_value": "42"},
- }
- },
+ "response": {"content": "42"},
}
},
{
"function_response": {
"name": "test2",
- "response": {
- "fields": {
- "key": "content",
- "value": {"string_value": "15"},
- }
- },
+ "response": {"content": "15"},
}
},
]
@@ -441,34 +413,16 @@ def test_multiple_function_call_changed_text_pos():
assert len(resp.choices) > 0
mock_post.assert_called_once()
+ print(mock_post.call_args.kwargs["json"]["contents"])
+
assert mock_post.call_args.kwargs["json"]["contents"] == [
{"role": "user", "parts": [{"text": "do test"}]},
{
"role": "model",
"parts": [
{"text": "test"},
- {
- "function_call": {
- "name": "test",
- "args": {
- "fields": {
- "key": "arg",
- "value": {"string_value": "test"},
- }
- },
- }
- },
- {
- "function_call": {
- "name": "test2",
- "args": {
- "fields": {
- "key": "arg",
- "value": {"string_value": "test2"},
- }
- },
- }
- },
+ {"function_call": {"name": "test", "args": {"arg": "test"}}},
+ {"function_call": {"name": "test2", "args": {"arg": "test2"}}},
],
},
{
@@ -476,23 +430,13 @@ def test_multiple_function_call_changed_text_pos():
{
"function_response": {
"name": "test2",
- "response": {
- "fields": {
- "key": "content",
- "value": {"string_value": "15"},
- }
- },
+ "response": {"content": "15"},
}
},
{
"function_response": {
"name": "test",
- "response": {
- "fields": {
- "key": "content",
- "value": {"string_value": "42"},
- }
- },
+ "response": {"content": "42"},
}
},
]
@@ -1354,3 +1298,20 @@ def test_vertex_embedding_url(model, expected_url):
assert url == expected_url
assert endpoint == "predict"
+
+
+from base_llm_unit_tests import BaseLLMChatTest
+
+
+class TestVertexGemini(BaseLLMChatTest):
+ def get_base_completion_call_args(self) -> dict:
+ return {"model": "gemini/gemini-1.5-flash"}
+
+ def test_tool_call_no_arguments(self, tool_call_no_arguments):
+ """Test that tool calls with no arguments is translated correctly. Relevant issue: https://github.com/BerriAI/litellm/issues/6833"""
+ from litellm.llms.prompt_templates.factory import (
+ convert_to_gemini_tool_call_invoke,
+ )
+
+ result = convert_to_gemini_tool_call_invoke(tool_call_no_arguments)
+ print(result)
diff --git a/tests/local_testing/test_alangfuse.py b/tests/local_testing/test_alangfuse.py
index 8c69f567b..ec0cb335e 100644
--- a/tests/local_testing/test_alangfuse.py
+++ b/tests/local_testing/test_alangfuse.py
@@ -12,6 +12,7 @@ sys.path.insert(0, os.path.abspath("../.."))
import litellm
from litellm import completion
+from litellm.caching import InMemoryCache
litellm.num_retries = 3
litellm.success_callback = ["langfuse"]
@@ -29,15 +30,20 @@ def langfuse_client():
f"{os.environ['LANGFUSE_PUBLIC_KEY']}-{os.environ['LANGFUSE_SECRET_KEY']}"
)
# use a in memory langfuse client for testing, RAM util on ci/cd gets too high when we init many langfuse clients
- if _langfuse_cache_key in litellm.in_memory_llm_clients_cache:
- langfuse_client = litellm.in_memory_llm_clients_cache[_langfuse_cache_key]
+
+ _cached_client = litellm.in_memory_llm_clients_cache.get_cache(_langfuse_cache_key)
+ if _cached_client:
+ langfuse_client = _cached_client
else:
langfuse_client = langfuse.Langfuse(
public_key=os.environ["LANGFUSE_PUBLIC_KEY"],
secret_key=os.environ["LANGFUSE_SECRET_KEY"],
host=None,
)
- litellm.in_memory_llm_clients_cache[_langfuse_cache_key] = langfuse_client
+ litellm.in_memory_llm_clients_cache.set_cache(
+ key=_langfuse_cache_key,
+ value=langfuse_client,
+ )
print("NEW LANGFUSE CLIENT")
diff --git a/tests/local_testing/test_amazing_vertex_completion.py b/tests/local_testing/test_amazing_vertex_completion.py
index f801a53ce..50a39b242 100644
--- a/tests/local_testing/test_amazing_vertex_completion.py
+++ b/tests/local_testing/test_amazing_vertex_completion.py
@@ -2867,6 +2867,7 @@ def test_gemini_function_call_parameter_in_messages():
print(e)
# mock_client.assert_any_call()
+
assert {
"contents": [
{
@@ -2879,12 +2880,7 @@ def test_gemini_function_call_parameter_in_messages():
{
"function_call": {
"name": "search",
- "args": {
- "fields": {
- "key": "queries",
- "value": {"list_value": ["weather in boston"]},
- }
- },
+ "args": {"queries": ["weather in boston"]},
}
}
],
@@ -2895,12 +2891,7 @@ def test_gemini_function_call_parameter_in_messages():
"function_response": {
"name": "search",
"response": {
- "fields": {
- "key": "content",
- "value": {
- "string_value": "The current weather in Boston is 22°F."
- },
- }
+ "content": "The current weather in Boston is 22°F."
},
}
}
@@ -2935,6 +2926,7 @@ def test_gemini_function_call_parameter_in_messages():
def test_gemini_function_call_parameter_in_messages_2():
+ litellm.set_verbose = True
from litellm.llms.vertex_ai_and_google_ai_studio.gemini.transformation import (
_gemini_convert_messages_with_history,
)
@@ -2958,6 +2950,7 @@ def test_gemini_function_call_parameter_in_messages_2():
returned_contents = _gemini_convert_messages_with_history(messages=messages)
+ print(f"returned_contents: {returned_contents}")
assert returned_contents == [
{
"role": "user",
@@ -2970,12 +2963,7 @@ def test_gemini_function_call_parameter_in_messages_2():
{
"function_call": {
"name": "search",
- "args": {
- "fields": {
- "key": "queries",
- "value": {"list_value": ["weather in boston"]},
- }
- },
+ "args": {"queries": ["weather in boston"]},
}
},
],
@@ -2986,12 +2974,7 @@ def test_gemini_function_call_parameter_in_messages_2():
"function_response": {
"name": "search",
"response": {
- "fields": {
- "key": "content",
- "value": {
- "string_value": "The weather in Boston is 100 degrees."
- },
- }
+ "content": "The weather in Boston is 100 degrees."
},
}
}
diff --git a/tests/local_testing/test_ollama.py b/tests/local_testing/test_ollama.py
index de41e24b8..34c0791c3 100644
--- a/tests/local_testing/test_ollama.py
+++ b/tests/local_testing/test_ollama.py
@@ -67,7 +67,8 @@ def test_ollama_json_mode():
assert converted_params == {
"temperature": 0.5,
"format": "json",
- }, f"{converted_params} != {'temperature': 0.5, 'format': 'json'}"
+ "stream": False,
+ }, f"{converted_params} != {'temperature': 0.5, 'format': 'json', 'stream': False}"
except Exception as e:
pytest.fail(f"Error occurred: {e}")
diff --git a/tests/local_testing/test_router.py b/tests/local_testing/test_router.py
index cd5e8f6b2..20867e766 100644
--- a/tests/local_testing/test_router.py
+++ b/tests/local_testing/test_router.py
@@ -1450,7 +1450,7 @@ async def test_mistral_on_router():
{
"model_name": "gpt-3.5-turbo",
"litellm_params": {
- "model": "mistral/mistral-medium",
+ "model": "mistral/mistral-small-latest",
},
},
]
diff --git a/tests/local_testing/test_router_batch_completion.py b/tests/local_testing/test_router_batch_completion.py
index 3de61c0a6..065730d48 100644
--- a/tests/local_testing/test_router_batch_completion.py
+++ b/tests/local_testing/test_router_batch_completion.py
@@ -64,6 +64,7 @@ async def test_batch_completion_multiple_models(mode):
models_in_responses = []
print(f"response: {response}")
for individual_response in response:
+ print(f"individual_response: {individual_response}")
_model = individual_response["model"]
models_in_responses.append(_model)
diff --git a/tests/local_testing/test_streaming.py b/tests/local_testing/test_streaming.py
index 0bc6953f9..757ff4d61 100644
--- a/tests/local_testing/test_streaming.py
+++ b/tests/local_testing/test_streaming.py
@@ -683,7 +683,7 @@ def test_completion_ollama_hosted_stream():
[
# "claude-3-5-haiku-20241022",
# "claude-2",
- # "mistral/mistral-medium",
+ # "mistral/mistral-small-latest",
"openrouter/openai/gpt-4o-mini",
],
)
diff --git a/tests/local_testing/test_utils.py b/tests/local_testing/test_utils.py
index 6e7b0ff05..52946ca30 100644
--- a/tests/local_testing/test_utils.py
+++ b/tests/local_testing/test_utils.py
@@ -749,6 +749,7 @@ def test_convert_model_response_object():
("gemini/gemini-1.5-pro", True),
("predibase/llama3-8b-instruct", True),
("gpt-3.5-turbo", False),
+ ("groq/llama3-70b-8192", True),
],
)
def test_supports_response_schema(model, expected_bool):
diff --git a/tests/proxy_admin_ui_tests/test_route_check_unit_tests.py b/tests/proxy_admin_ui_tests/test_route_check_unit_tests.py
index 001cc0640..a8bba211f 100644
--- a/tests/proxy_admin_ui_tests/test_route_check_unit_tests.py
+++ b/tests/proxy_admin_ui_tests/test_route_check_unit_tests.py
@@ -27,6 +27,9 @@ from fastapi import HTTPException, Request
import pytest
from litellm.proxy.auth.route_checks import RouteChecks
from litellm.proxy._types import LiteLLM_UserTable, LitellmUserRoles, UserAPIKeyAuth
+from litellm.proxy.pass_through_endpoints.llm_passthrough_endpoints import (
+ router as llm_passthrough_router,
+)
# Replace the actual hash_token function with our mock
import litellm.proxy.auth.route_checks
@@ -56,12 +59,21 @@ def test_is_llm_api_route():
assert RouteChecks.is_llm_api_route("/vertex-ai/text") is True
assert RouteChecks.is_llm_api_route("/gemini/generate") is True
assert RouteChecks.is_llm_api_route("/cohere/generate") is True
+ assert RouteChecks.is_llm_api_route("/anthropic/messages") is True
+ assert RouteChecks.is_llm_api_route("/anthropic/v1/messages") is True
+ assert RouteChecks.is_llm_api_route("/azure/endpoint") is True
# check non-matching routes
assert RouteChecks.is_llm_api_route("/some/random/route") is False
assert RouteChecks.is_llm_api_route("/key/regenerate/82akk800000000jjsk") is False
assert RouteChecks.is_llm_api_route("/key/82akk800000000jjsk/delete") is False
+ # check all routes in llm_passthrough_router, ensure they are considered llm api routes
+ for route in llm_passthrough_router.routes:
+ route_path = str(route.path)
+ print("route_path", route_path)
+ assert RouteChecks.is_llm_api_route(route_path) is True
+
# Test _route_matches_pattern
def test_route_matches_pattern():
diff --git a/tests/proxy_unit_tests/test_proxy_server.py b/tests/proxy_unit_tests/test_proxy_server.py
index b1c00ce75..d70962858 100644
--- a/tests/proxy_unit_tests/test_proxy_server.py
+++ b/tests/proxy_unit_tests/test_proxy_server.py
@@ -1794,7 +1794,7 @@ async def test_add_callback_via_key_litellm_pre_call_utils_langsmith(
async def test_gemini_pass_through_endpoint():
from starlette.datastructures import URL
- from litellm.proxy.vertex_ai_endpoints.google_ai_studio_endpoints import (
+ from litellm.proxy.pass_through_endpoints.llm_passthrough_endpoints import (
Request,
Response,
gemini_proxy_route,