forked from phoenix/litellm-mirror
add coverage for rate limit errors to togetherai
This commit is contained in:
parent
88bd1df3e0
commit
f11599e50c
7 changed files with 191 additions and 103 deletions
Binary file not shown.
Binary file not shown.
Binary file not shown.
131
litellm/llms/together_ai.py
Normal file
131
litellm/llms/together_ai.py
Normal file
|
@ -0,0 +1,131 @@
|
||||||
|
import os, json
|
||||||
|
from enum import Enum
|
||||||
|
import requests
|
||||||
|
import time
|
||||||
|
from typing import Callable
|
||||||
|
from litellm.utils import ModelResponse
|
||||||
|
|
||||||
|
|
||||||
|
class TogetherAIError(Exception):
|
||||||
|
def __init__(self, status_code, message):
|
||||||
|
self.status_code = status_code
|
||||||
|
self.message = message
|
||||||
|
super().__init__(
|
||||||
|
self.message
|
||||||
|
) # Call the base class constructor with the parameters it needs
|
||||||
|
|
||||||
|
|
||||||
|
class TogetherAILLM:
|
||||||
|
def __init__(self, encoding, logging_obj, api_key=None):
|
||||||
|
self.encoding = encoding
|
||||||
|
self.completion_url = "https://api.together.xyz/inference"
|
||||||
|
self.api_key = api_key
|
||||||
|
self.logging_obj = logging_obj
|
||||||
|
self.validate_environment(api_key=api_key)
|
||||||
|
|
||||||
|
def validate_environment(
|
||||||
|
self, api_key
|
||||||
|
): # set up the environment required to run the model
|
||||||
|
# set the api key
|
||||||
|
if self.api_key == None:
|
||||||
|
raise ValueError(
|
||||||
|
"Missing TogetherAI API Key - A call is being made to together_ai but no key is set either in the environment variables or via params"
|
||||||
|
)
|
||||||
|
self.api_key = api_key
|
||||||
|
self.headers = {
|
||||||
|
"accept": "application/json",
|
||||||
|
"content-type": "application/json",
|
||||||
|
"Authorization": "Bearer " + self.api_key,
|
||||||
|
}
|
||||||
|
|
||||||
|
def completion(
|
||||||
|
self,
|
||||||
|
model: str,
|
||||||
|
messages: list,
|
||||||
|
model_response: ModelResponse,
|
||||||
|
print_verbose: Callable,
|
||||||
|
optional_params=None,
|
||||||
|
litellm_params=None,
|
||||||
|
logger_fn=None,
|
||||||
|
): # logic for parsing in - calling - parsing out model completion calls
|
||||||
|
model = model
|
||||||
|
prompt = ""
|
||||||
|
for message in messages:
|
||||||
|
if "role" in message:
|
||||||
|
if message["role"] == "user":
|
||||||
|
prompt += f"{message['content']}"
|
||||||
|
else:
|
||||||
|
prompt += f"{message['content']}"
|
||||||
|
else:
|
||||||
|
prompt += f"{message['content']}"
|
||||||
|
data = {
|
||||||
|
"model": model,
|
||||||
|
"prompt": prompt,
|
||||||
|
"request_type": "language-model-inference",
|
||||||
|
**optional_params,
|
||||||
|
}
|
||||||
|
|
||||||
|
## LOGGING
|
||||||
|
self.logging_obj.pre_call(
|
||||||
|
input=prompt,
|
||||||
|
api_key=self.api_key,
|
||||||
|
additional_args={"complete_input_dict": data},
|
||||||
|
)
|
||||||
|
## COMPLETION CALL
|
||||||
|
if (
|
||||||
|
"stream_tokens" in optional_params
|
||||||
|
and optional_params["stream_tokens"] == True
|
||||||
|
):
|
||||||
|
response = requests.post(
|
||||||
|
self.completion_url,
|
||||||
|
headers=self.headers,
|
||||||
|
data=json.dumps(data),
|
||||||
|
stream=optional_params["stream_tokens"],
|
||||||
|
)
|
||||||
|
return response.iter_lines()
|
||||||
|
else:
|
||||||
|
response = requests.post(
|
||||||
|
self.completion_url,
|
||||||
|
headers=self.headers,
|
||||||
|
data=json.dumps(data)
|
||||||
|
)
|
||||||
|
## LOGGING
|
||||||
|
self.logging_obj.post_call(
|
||||||
|
input=prompt,
|
||||||
|
api_key=self.api_key,
|
||||||
|
original_response=response.text,
|
||||||
|
additional_args={"complete_input_dict": data},
|
||||||
|
)
|
||||||
|
print_verbose(f"raw model_response: {response.text}")
|
||||||
|
## RESPONSE OBJECT
|
||||||
|
completion_response = response.json()
|
||||||
|
|
||||||
|
if "error" in completion_response:
|
||||||
|
raise TogetherAIError(
|
||||||
|
message=json.dumps(completion_response),
|
||||||
|
status_code=response.status_code,
|
||||||
|
)
|
||||||
|
elif "error" in completion_response["output"]:
|
||||||
|
raise TogetherAIError(message=json.dumps(completion_response["output"]), status_code=response.status_code)
|
||||||
|
|
||||||
|
completion_response = completion_response["output"]["choices"][0]["text"]
|
||||||
|
|
||||||
|
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
|
||||||
|
prompt_tokens = len(self.encoding.encode(prompt))
|
||||||
|
completion_tokens = len(
|
||||||
|
self.encoding.encode(completion_response)
|
||||||
|
)
|
||||||
|
model_response["choices"][0]["message"]["content"] = completion_response
|
||||||
|
model_response["created"] = time.time()
|
||||||
|
model_response["model"] = model
|
||||||
|
model_response["usage"] = {
|
||||||
|
"prompt_tokens": prompt_tokens,
|
||||||
|
"completion_tokens": completion_tokens,
|
||||||
|
"total_tokens": prompt_tokens + completion_tokens,
|
||||||
|
}
|
||||||
|
return model_response
|
||||||
|
|
||||||
|
def embedding(
|
||||||
|
self,
|
||||||
|
): # logic for parsing in - calling - parsing out model embedding calls
|
||||||
|
pass
|
|
@ -23,6 +23,7 @@ from .llms.anthropic import AnthropicLLM
|
||||||
from .llms.huggingface_restapi import HuggingfaceRestAPILLM
|
from .llms.huggingface_restapi import HuggingfaceRestAPILLM
|
||||||
from .llms.baseten import BasetenLLM
|
from .llms.baseten import BasetenLLM
|
||||||
from .llms.ai21 import AI21LLM
|
from .llms.ai21 import AI21LLM
|
||||||
|
from .llms.together_ai import TogetherAILLM
|
||||||
import tiktoken
|
import tiktoken
|
||||||
from concurrent.futures import ThreadPoolExecutor
|
from concurrent.futures import ThreadPoolExecutor
|
||||||
|
|
||||||
|
@ -540,77 +541,29 @@ def completion(
|
||||||
response = model_response
|
response = model_response
|
||||||
elif custom_llm_provider == "together_ai" or ("togethercomputer" in model):
|
elif custom_llm_provider == "together_ai" or ("togethercomputer" in model):
|
||||||
custom_llm_provider = "together_ai"
|
custom_llm_provider = "together_ai"
|
||||||
import requests
|
together_ai_key = (
|
||||||
|
api_key
|
||||||
TOGETHER_AI_TOKEN = (
|
|
||||||
get_secret("TOGETHER_AI_TOKEN")
|
|
||||||
or get_secret("TOGETHERAI_API_KEY")
|
|
||||||
or get_secret("TOGETHER_AI_API_KEY")
|
|
||||||
or api_key
|
|
||||||
or litellm.togetherai_api_key
|
or litellm.togetherai_api_key
|
||||||
|
or get_secret("TOGETHER_AI_TOKEN")
|
||||||
|
or get_secret("TOGETHERAI_API_KEY")
|
||||||
)
|
)
|
||||||
headers = {"Authorization": f"Bearer {TOGETHER_AI_TOKEN}"}
|
|
||||||
endpoint = "https://api.together.xyz/inference"
|
|
||||||
prompt = " ".join(
|
|
||||||
[message["content"] for message in messages]
|
|
||||||
) # TODO: Add chat support for together AI
|
|
||||||
|
|
||||||
## LOGGING
|
together_ai_client = TogetherAILLM(encoding=encoding, api_key=together_ai_key, logging_obj=logging)
|
||||||
logging.pre_call(input=prompt, api_key=TOGETHER_AI_TOKEN)
|
model_response = together_ai_client.completion(
|
||||||
|
model=model,
|
||||||
print(f"TOGETHER_AI_TOKEN: {TOGETHER_AI_TOKEN}")
|
messages=messages,
|
||||||
if (
|
model_response=model_response,
|
||||||
"stream_tokens" in optional_params
|
print_verbose=print_verbose,
|
||||||
and optional_params["stream_tokens"] == True
|
optional_params=optional_params,
|
||||||
):
|
litellm_params=litellm_params,
|
||||||
res = requests.post(
|
logger_fn=logger_fn,
|
||||||
endpoint,
|
|
||||||
json={
|
|
||||||
"model": model,
|
|
||||||
"prompt": prompt,
|
|
||||||
"request_type": "language-model-inference",
|
|
||||||
**optional_params,
|
|
||||||
},
|
|
||||||
stream=optional_params["stream_tokens"],
|
|
||||||
headers=headers,
|
|
||||||
)
|
)
|
||||||
|
if "stream_tokens" in optional_params and optional_params["stream_tokens"] == True:
|
||||||
|
# don't try to access stream object,
|
||||||
response = CustomStreamWrapper(
|
response = CustomStreamWrapper(
|
||||||
res.iter_lines(), model, custom_llm_provider="together_ai", logging_obj=logging
|
model_response, model, custom_llm_provider="together_ai", logging_obj=logging
|
||||||
)
|
)
|
||||||
return response
|
return response
|
||||||
else:
|
|
||||||
res = requests.post(
|
|
||||||
endpoint,
|
|
||||||
json={
|
|
||||||
"model": model,
|
|
||||||
"prompt": prompt,
|
|
||||||
"request_type": "language-model-inference",
|
|
||||||
**optional_params,
|
|
||||||
},
|
|
||||||
headers=headers,
|
|
||||||
)
|
|
||||||
## LOGGING
|
|
||||||
logging.post_call(
|
|
||||||
input=prompt, api_key=TOGETHER_AI_TOKEN, original_response=res.text
|
|
||||||
)
|
|
||||||
# make this safe for reading, if output does not exist raise an error
|
|
||||||
json_response = res.json()
|
|
||||||
if "error" in json_response:
|
|
||||||
raise Exception(json.dumps(json_response))
|
|
||||||
elif "error" in json_response["output"]:
|
|
||||||
raise Exception(json.dumps(json_response["output"]))
|
|
||||||
completion_response = json_response["output"]["choices"][0]["text"]
|
|
||||||
prompt_tokens = len(encoding.encode(prompt))
|
|
||||||
completion_tokens = len(encoding.encode(completion_response))
|
|
||||||
## RESPONSE OBJECT
|
|
||||||
model_response["choices"][0]["message"]["content"] = completion_response
|
|
||||||
model_response["created"] = time.time()
|
|
||||||
model_response["model"] = model
|
|
||||||
model_response["usage"] = {
|
|
||||||
"prompt_tokens": prompt_tokens,
|
|
||||||
"completion_tokens": completion_tokens,
|
|
||||||
"total_tokens": prompt_tokens + completion_tokens,
|
|
||||||
}
|
|
||||||
response = model_response
|
response = model_response
|
||||||
elif model in litellm.vertex_chat_models:
|
elif model in litellm.vertex_chat_models:
|
||||||
import vertexai
|
import vertexai
|
||||||
|
|
|
@ -144,42 +144,40 @@ def invalid_auth(model): # set the model key to an invalid key, depending on th
|
||||||
|
|
||||||
|
|
||||||
invalid_auth(test_model)
|
invalid_auth(test_model)
|
||||||
|
|
||||||
# Test 3: Rate Limit Errors
|
# Test 3: Rate Limit Errors
|
||||||
def test_model(model):
|
# def test_model_call(model):
|
||||||
try:
|
# try:
|
||||||
sample_text = "how does a court case get to the Supreme Court?" * 50000
|
# sample_text = "how does a court case get to the Supreme Court?"
|
||||||
messages = [{ "content": sample_text,"role": "user"}]
|
# messages = [{ "content": sample_text,"role": "user"}]
|
||||||
custom_llm_provider = None
|
# print(f"model: {model}")
|
||||||
if model == "chatgpt-test":
|
# response = completion(model=model, messages=messages)
|
||||||
custom_llm_provider = "azure"
|
# except RateLimitError:
|
||||||
print(f"model: {model}")
|
# return True
|
||||||
response = completion(model=model, messages=messages, custom_llm_provider=custom_llm_provider)
|
# except OpenAIError: # is at least an openai error -> in case of random model errors - e.g. overloaded server
|
||||||
except RateLimitError:
|
# return True
|
||||||
return True
|
# except Exception as e:
|
||||||
except OpenAIError: # is at least an openai error -> in case of random model errors - e.g. overloaded server
|
# print(f"Uncaught Exception {model}: {type(e).__name__} - {e}")
|
||||||
return True
|
# traceback.print_exc()
|
||||||
except Exception as e:
|
# pass
|
||||||
print(f"Uncaught Exception {model}: {type(e).__name__} - {e}")
|
# return False
|
||||||
pass
|
# # Repeat each model 500 times
|
||||||
return False
|
# extended_models = [model for model in models for _ in range(250)]
|
||||||
|
|
||||||
# Repeat each model 500 times
|
# def worker(model):
|
||||||
extended_models = [model for model in models for _ in range(250)]
|
# return test_model_call(model)
|
||||||
|
|
||||||
def worker(model):
|
# # Create a dictionary to store the results
|
||||||
return test_model(model)
|
# counts = {True: 0, False: 0}
|
||||||
|
|
||||||
# Create a dictionary to store the results
|
# # Use Thread Pool Executor
|
||||||
counts = {True: 0, False: 0}
|
# with ThreadPoolExecutor(max_workers=500) as executor:
|
||||||
|
# # Use map to start the operation in thread pool
|
||||||
|
# results = executor.map(worker, extended_models)
|
||||||
|
|
||||||
# Use Thread Pool Executor
|
# # Iterate over results and count True/False
|
||||||
with ThreadPoolExecutor(max_workers=500) as executor:
|
# for result in results:
|
||||||
# Use map to start the operation in thread pool
|
# counts[result] += 1
|
||||||
results = executor.map(worker, extended_models)
|
|
||||||
|
|
||||||
# Iterate over results and count True/False
|
# accuracy_score = counts[True]/(counts[True] + counts[False])
|
||||||
for result in results:
|
# print(f"accuracy_score: {accuracy_score}")
|
||||||
counts[result] += 1
|
|
||||||
|
|
||||||
accuracy_score = counts[True]/(counts[True] + counts[False])
|
|
||||||
print(f"accuracy_score: {accuracy_score}")
|
|
||||||
|
|
|
@ -1451,30 +1451,36 @@ def exception_type(model, original_exception, custom_llm_provider):
|
||||||
if "error" in error_response and "`inputs` tokens + `max_new_tokens` must be <=" in error_response["error"]:
|
if "error" in error_response and "`inputs` tokens + `max_new_tokens` must be <=" in error_response["error"]:
|
||||||
exception_mapping_worked = True
|
exception_mapping_worked = True
|
||||||
raise ContextWindowExceededError(
|
raise ContextWindowExceededError(
|
||||||
message=error_response["error"],
|
message=f"TogetherAIException - {error_response['error']}",
|
||||||
model=model,
|
model=model,
|
||||||
llm_provider="together_ai"
|
llm_provider="together_ai"
|
||||||
)
|
)
|
||||||
elif "error" in error_response and "invalid private key" in error_response["error"]:
|
elif "error" in error_response and "invalid private key" in error_response["error"]:
|
||||||
exception_mapping_worked = True
|
exception_mapping_worked = True
|
||||||
raise AuthenticationError(
|
raise AuthenticationError(
|
||||||
message=error_response["error"],
|
message=f"TogetherAIException - {error_response['error']}",
|
||||||
llm_provider="together_ai"
|
llm_provider="together_ai"
|
||||||
)
|
)
|
||||||
elif "error" in error_response and "INVALID_ARGUMENT" in error_response["error"]:
|
elif "error" in error_response and "INVALID_ARGUMENT" in error_response["error"]:
|
||||||
exception_mapping_worked = True
|
exception_mapping_worked = True
|
||||||
raise InvalidRequestError(
|
raise InvalidRequestError(
|
||||||
message=error_response["error"],
|
message=f"TogetherAIException - {error_response['error']}",
|
||||||
model=model,
|
model=model,
|
||||||
llm_provider="together_ai"
|
llm_provider="together_ai"
|
||||||
)
|
)
|
||||||
elif "error_type" in error_response and error_response["error_type"] == "validation":
|
elif "error_type" in error_response and error_response["error_type"] == "validation":
|
||||||
exception_mapping_worked = True
|
exception_mapping_worked = True
|
||||||
raise InvalidRequestError(
|
raise InvalidRequestError(
|
||||||
message=error_response["error"],
|
message=f"TogetherAIException - {error_response['error']}",
|
||||||
model=model,
|
model=model,
|
||||||
llm_provider="together_ai"
|
llm_provider="together_ai"
|
||||||
)
|
)
|
||||||
|
elif original_exception.status_code == 429:
|
||||||
|
exception_mapping_worked = True
|
||||||
|
raise RateLimitError(
|
||||||
|
message=f"TogetherAIException - {original_exception.message}",
|
||||||
|
llm_provider="together_ai",
|
||||||
|
)
|
||||||
print(f"error: {error_response}")
|
print(f"error: {error_response}")
|
||||||
print(f"e: {original_exception}")
|
print(f"e: {original_exception}")
|
||||||
raise original_exception # base case - return the original exception
|
raise original_exception # base case - return the original exception
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue