feat(main.py): add async image generation support

This commit is contained in:
Krrish Dholakia 2023-12-20 16:58:40 +05:30
parent f59b9436be
commit f355e03515
3 changed files with 123 additions and 6 deletions

View file

@ -464,6 +464,42 @@ class AzureChatCompletion(BaseLLM):
import traceback import traceback
raise AzureOpenAIError(status_code=500, message=traceback.format_exc()) raise AzureOpenAIError(status_code=500, message=traceback.format_exc())
async def aimage_generation(
self,
data: dict,
model_response: ModelResponse,
azure_client_params: dict,
api_key: str,
input: list,
client=None,
logging_obj=None
):
response = None
try:
if client is None:
openai_aclient = AsyncAzureOpenAI(**azure_client_params)
else:
openai_aclient = client
response = await openai_aclient.images.generate(**data)
stringified_response = response.model_dump_json()
## LOGGING
logging_obj.post_call(
input=input,
api_key=api_key,
additional_args={"complete_input_dict": data},
original_response=stringified_response,
)
return convert_to_model_response_object(response_object=json.loads(stringified_response), model_response_object=model_response, response_type="embedding")
except Exception as e:
## LOGGING
logging_obj.post_call(
input=input,
api_key=api_key,
additional_args={"complete_input_dict": data},
original_response=str(e),
)
raise e
def image_generation(self, def image_generation(self,
prompt: str, prompt: str,
timeout: float, timeout: float,
@ -492,9 +528,9 @@ class AzureChatCompletion(BaseLLM):
if not isinstance(max_retries, int): if not isinstance(max_retries, int):
raise AzureOpenAIError(status_code=422, message="max retries must be an int") raise AzureOpenAIError(status_code=422, message="max retries must be an int")
# if aembedding == True: if aimg_generation == True:
# response = self.aembedding(data=data, input=input, logging_obj=logging_obj, model_response=model_response, api_base=api_base, api_key=api_key, timeout=timeout, client=client, max_retries=max_retries) # type: ignore response = self.aimage_generation(data=data, input=input, logging_obj=logging_obj, model_response=model_response, api_base=api_base, api_key=api_key, timeout=timeout, client=client, max_retries=max_retries) # type: ignore
# return response return response
if client is None: if client is None:
client_session = litellm.client_session or httpx.Client(transport=CustomHTTPTransport(),) client_session = litellm.client_session or httpx.Client(transport=CustomHTTPTransport(),)

View file

@ -445,6 +445,43 @@ class OpenAIChatCompletion(BaseLLM):
import traceback import traceback
raise OpenAIError(status_code=500, message=traceback.format_exc()) raise OpenAIError(status_code=500, message=traceback.format_exc())
async def aimage_generation(
self,
prompt: str,
data: dict,
model_response: ModelResponse,
timeout: float,
api_key: Optional[str]=None,
api_base: Optional[str]=None,
client=None,
max_retries=None,
logging_obj=None
):
response = None
try:
if client is None:
openai_aclient = AsyncOpenAI(api_key=api_key, base_url=api_base, http_client=litellm.aclient_session, timeout=timeout, max_retries=max_retries)
else:
openai_aclient = client
response = await openai_aclient.images.generate(**data) # type: ignore
stringified_response = response.model_dump_json()
## LOGGING
logging_obj.post_call(
input=prompt,
api_key=api_key,
additional_args={"complete_input_dict": data},
original_response=stringified_response,
)
return convert_to_model_response_object(response_object=json.loads(stringified_response), model_response_object=model_response, response_type="embedding") # type: ignore
except Exception as e:
## LOGGING
logging_obj.post_call(
input=input,
api_key=api_key,
original_response=str(e),
)
raise e
def image_generation(self, def image_generation(self,
model: Optional[str], model: Optional[str],
prompt: str, prompt: str,

View file

@ -2230,6 +2230,49 @@ def moderation(input: str, api_key: Optional[str]=None):
return response return response
##### Image Generation ####################### ##### Image Generation #######################
@client
async def aimage_generation(*args, **kwargs):
"""
Asynchronously calls the `image_generation` function with the given arguments and keyword arguments.
Parameters:
- `args` (tuple): Positional arguments to be passed to the `embedding` function.
- `kwargs` (dict): Keyword arguments to be passed to the `embedding` function.
Returns:
- `response` (Any): The response returned by the `embedding` function.
"""
loop = asyncio.get_event_loop()
model = args[0] if len(args) > 0 else kwargs["model"]
### PASS ARGS TO Image Generation ###
kwargs["aimg_generation"] = True
custom_llm_provider = None
try:
# Use a partial function to pass your keyword arguments
func = partial(image_generation, *args, **kwargs)
# Add the context to the function
ctx = contextvars.copy_context()
func_with_context = partial(ctx.run, func)
_, custom_llm_provider, _, _ = get_llm_provider(model=model, api_base=kwargs.get("api_base", None))
# Await normally
init_response = await loop.run_in_executor(None, func_with_context)
if isinstance(init_response, dict) or isinstance(init_response, ModelResponse): ## CACHING SCENARIO
response = init_response
elif asyncio.iscoroutine(init_response):
response = await init_response
else:
# Call the synchronous function using run_in_executor
response = await loop.run_in_executor(None, func_with_context)
return response
except Exception as e:
custom_llm_provider = custom_llm_provider or "openai"
raise exception_type(
model=model, custom_llm_provider=custom_llm_provider, original_exception=e, completion_kwargs=args,
)
@client @client
def image_generation(prompt: str, def image_generation(prompt: str,
model: Optional[str]=None, model: Optional[str]=None,
@ -2251,6 +2294,7 @@ def image_generation(prompt: str,
Currently supports just Azure + OpenAI. Currently supports just Azure + OpenAI.
""" """
aimg_generation = kwargs.get("aimg_generation", False)
litellm_call_id = kwargs.get("litellm_call_id", None) litellm_call_id = kwargs.get("litellm_call_id", None)
logger_fn = kwargs.get("logger_fn", None) logger_fn = kwargs.get("logger_fn", None)
proxy_server_request = kwargs.get('proxy_server_request', None) proxy_server_request = kwargs.get('proxy_server_request', None)
@ -2264,7 +2308,7 @@ def image_generation(prompt: str,
model = "dall-e-2" model = "dall-e-2"
custom_llm_provider = "openai" # default to dall-e-2 on openai custom_llm_provider = "openai" # default to dall-e-2 on openai
openai_params = ["user", "request_timeout", "api_base", "api_version", "api_key", "deployment_id", "organization", "base_url", "default_headers", "timeout", "max_retries", "n", "quality", "size", "style"] openai_params = ["user", "request_timeout", "api_base", "api_version", "api_key", "deployment_id", "organization", "base_url", "default_headers", "timeout", "max_retries", "n", "quality", "size", "style"]
litellm_params = ["metadata", "aembedding", "caching", "mock_response", "api_key", "api_version", "api_base", "force_timeout", "logger_fn", "verbose", "custom_llm_provider", "litellm_logging_obj", "litellm_call_id", "use_client", "id", "fallbacks", "azure", "headers", "model_list", "num_retries", "context_window_fallback_dict", "roles", "final_prompt_value", "bos_token", "eos_token", "request_timeout", "complete_response", "self", "client", "rpm", "tpm", "input_cost_per_token", "output_cost_per_token", "hf_model_name", "proxy_server_request", "model_info", "preset_cache_key", "caching_groups"] litellm_params = ["metadata", "aimg_generation", "caching", "mock_response", "api_key", "api_version", "api_base", "force_timeout", "logger_fn", "verbose", "custom_llm_provider", "litellm_logging_obj", "litellm_call_id", "use_client", "id", "fallbacks", "azure", "headers", "model_list", "num_retries", "context_window_fallback_dict", "roles", "final_prompt_value", "bos_token", "eos_token", "request_timeout", "complete_response", "self", "client", "rpm", "tpm", "input_cost_per_token", "output_cost_per_token", "hf_model_name", "proxy_server_request", "model_info", "preset_cache_key", "caching_groups"]
default_params = openai_params + litellm_params default_params = openai_params + litellm_params
non_default_params = {k: v for k,v in kwargs.items() if k not in default_params} # model-specific params - pass them straight to the model/provider non_default_params = {k: v for k,v in kwargs.items() if k not in default_params} # model-specific params - pass them straight to the model/provider
optional_params = get_optional_params_image_gen(n=n, optional_params = get_optional_params_image_gen(n=n,
@ -2307,9 +2351,9 @@ def image_generation(prompt: str,
get_secret("AZURE_AD_TOKEN") get_secret("AZURE_AD_TOKEN")
) )
model_response = azure_chat_completions.image_generation(model=model, prompt=prompt, timeout=timeout, api_key=api_key, api_base=api_base, logging_obj=litellm_logging_obj, optional_params=optional_params, model_response = model_response, api_version = api_version) model_response = azure_chat_completions.image_generation(model=model, prompt=prompt, timeout=timeout, api_key=api_key, api_base=api_base, logging_obj=litellm_logging_obj, optional_params=optional_params, model_response = model_response, api_version = api_version, aimg_generation=aimage_generation)
elif custom_llm_provider == "openai": elif custom_llm_provider == "openai":
model_response = openai_chat_completions.image_generation(model=model, prompt=prompt, timeout=timeout, api_key=api_key, api_base=api_base, logging_obj=litellm_logging_obj, optional_params=optional_params, model_response = model_response) model_response = openai_chat_completions.image_generation(model=model, prompt=prompt, timeout=timeout, api_key=api_key, api_base=api_base, logging_obj=litellm_logging_obj, optional_params=optional_params, model_response = model_response, aimg_generation=aimage_generation)
return model_response return model_response