forked from phoenix/litellm-mirror
(fix) counting response tokens+streaming
This commit is contained in:
parent
5055aeb254
commit
f3b8d9c3ef
2 changed files with 16 additions and 3 deletions
|
@ -3268,7 +3268,9 @@ def stream_chunk_builder(chunks: list, messages: Optional[list] = None):
|
|||
print_verbose(f"token_counter failed, assuming prompt tokens is 0")
|
||||
response["usage"]["prompt_tokens"] = 0
|
||||
response["usage"]["completion_tokens"] = token_counter(
|
||||
model=model, text=completion_output
|
||||
model=model,
|
||||
text=combined_content,
|
||||
count_response_tokens=True, # count_response_tokens is a Flag to tell token counter this is a response, No need to add extra tokens we do for input messages
|
||||
)
|
||||
response["usage"]["total_tokens"] = (
|
||||
response["usage"]["prompt_tokens"] + response["usage"]["completion_tokens"]
|
||||
|
|
|
@ -2460,12 +2460,16 @@ def openai_token_counter(
|
|||
model="gpt-3.5-turbo-0613",
|
||||
text: Optional[str] = None,
|
||||
is_tool_call: Optional[bool] = False,
|
||||
count_response_tokens: Optional[
|
||||
bool
|
||||
] = False, # Flag passed from litellm.stream_chunk_builder, to indicate counting tokens for LLM Response. We need this because for LLM input we add +3 tokens per message - based on OpenAI's token counter
|
||||
):
|
||||
"""
|
||||
Return the number of tokens used by a list of messages.
|
||||
|
||||
Borrowed from https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb.
|
||||
"""
|
||||
print_verbose(f"LiteLLM: Utils - Counting tokens for OpenAI model={model}")
|
||||
try:
|
||||
encoding = tiktoken.encoding_for_model(model)
|
||||
except KeyError:
|
||||
|
@ -2516,8 +2520,10 @@ def openai_token_counter(
|
|||
num_tokens += calculage_img_tokens(
|
||||
data=image_url_str, mode="auto"
|
||||
)
|
||||
elif text is not None:
|
||||
elif text is not None and count_response_tokens == True:
|
||||
# This is the case where we need to count tokens for a streamed response. We should NOT add +3 tokens per message in this branch
|
||||
num_tokens = len(encoding.encode(text, disallowed_special=()))
|
||||
return num_tokens
|
||||
num_tokens += 3 # every reply is primed with <|start|>assistant<|message|>
|
||||
return num_tokens
|
||||
|
||||
|
@ -2620,6 +2626,7 @@ def token_counter(
|
|||
model="",
|
||||
text: Optional[Union[str, List[str]]] = None,
|
||||
messages: Optional[List] = None,
|
||||
count_response_tokens: Optional[bool] = False,
|
||||
):
|
||||
"""
|
||||
Count the number of tokens in a given text using a specified model.
|
||||
|
@ -2683,7 +2690,11 @@ def token_counter(
|
|||
or model in litellm.azure_llms
|
||||
):
|
||||
num_tokens = openai_token_counter(
|
||||
text=text, model=model, messages=messages, is_tool_call=is_tool_call # type: ignore
|
||||
text=text, # type: ignore
|
||||
model=model,
|
||||
messages=messages,
|
||||
is_tool_call=is_tool_call,
|
||||
count_response_tokens=count_response_tokens,
|
||||
)
|
||||
else:
|
||||
enc = tokenizer_json["tokenizer"].encode(text)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue