forked from phoenix/litellm-mirror
feat(vertex_ai.py): support gemini (vertex ai) function calling when streaming
This commit is contained in:
parent
8619499853
commit
f49dc9a99f
2 changed files with 76 additions and 2 deletions
|
@ -416,6 +416,46 @@ def test_gemini_pro_function_calling():
|
|||
# gemini_pro_function_calling()
|
||||
|
||||
|
||||
def test_gemini_pro_function_calling_streaming():
|
||||
load_vertex_ai_credentials()
|
||||
litellm.set_verbose = True
|
||||
tools = [
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_current_weather",
|
||||
"description": "Get the current weather in a given location",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"location": {
|
||||
"type": "string",
|
||||
"description": "The city and state, e.g. San Francisco, CA",
|
||||
},
|
||||
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
|
||||
},
|
||||
"required": ["location"],
|
||||
},
|
||||
},
|
||||
}
|
||||
]
|
||||
messages = [{"role": "user", "content": "What's the weather like in Boston today?"}]
|
||||
completion = litellm.completion(
|
||||
model="gemini-pro",
|
||||
messages=messages,
|
||||
tools=tools,
|
||||
tool_choice="auto",
|
||||
stream=True,
|
||||
)
|
||||
print(f"completion: {completion}")
|
||||
# assert completion.choices[0].message.content is None
|
||||
# assert len(completion.choices[0].message.tool_calls) == 1
|
||||
for chunk in completion:
|
||||
print(f"chunk: {chunk}")
|
||||
|
||||
raise Exception("it worked!")
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_gemini_pro_async_function_calling():
|
||||
load_vertex_ai_credentials()
|
||||
|
|
|
@ -9193,7 +9193,41 @@ class CustomStreamWrapper:
|
|||
try:
|
||||
if hasattr(chunk, "candidates") == True:
|
||||
try:
|
||||
completion_obj["content"] = chunk.text
|
||||
try:
|
||||
completion_obj["content"] = chunk.text
|
||||
except Exception as e:
|
||||
if "Part has no text." in str(e):
|
||||
## check for function calling
|
||||
function_call = (
|
||||
chunk.candidates[0]
|
||||
.content.parts[0]
|
||||
.function_call
|
||||
)
|
||||
args_dict = {}
|
||||
for k, v in function_call.args.items():
|
||||
args_dict[k] = v
|
||||
args_str = json.dumps(args_dict)
|
||||
_delta_obj = litellm.utils.Delta(
|
||||
content=None,
|
||||
tool_calls=[
|
||||
{
|
||||
"id": f"call_{str(uuid.uuid4())}",
|
||||
"function": {
|
||||
"arguments": args_str,
|
||||
"name": function_call.name,
|
||||
},
|
||||
"type": "function",
|
||||
}
|
||||
],
|
||||
)
|
||||
_streaming_response = StreamingChoices(
|
||||
delta=_delta_obj
|
||||
)
|
||||
_model_response = ModelResponse(stream=True)
|
||||
_model_response.choices = [_streaming_response]
|
||||
response_obj = {"original_chunk": _model_response}
|
||||
else:
|
||||
raise e
|
||||
if (
|
||||
hasattr(chunk.candidates[0], "finish_reason")
|
||||
and chunk.candidates[0].finish_reason.name
|
||||
|
@ -9204,7 +9238,7 @@ class CustomStreamWrapper:
|
|||
chunk.candidates[0].finish_reason.name
|
||||
)
|
||||
)
|
||||
except:
|
||||
except Exception as e:
|
||||
if chunk.candidates[0].finish_reason.name == "SAFETY":
|
||||
raise Exception(
|
||||
f"The response was blocked by VertexAI. {str(chunk)}"
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue