forked from phoenix/litellm-mirror
Litellm dev 11 11 2024 (#6693)
* fix(__init__.py): add 'watsonx_text' as mapped llm api route Fixes https://github.com/BerriAI/litellm/issues/6663 * fix(opentelemetry.py): fix passing parallel tool calls to otel Fixes https://github.com/BerriAI/litellm/issues/6677 * refactor(test_opentelemetry_unit_tests.py): create a base set of unit tests for all logging integrations - test for parallel tool call handling reduces bugs in repo * fix(__init__.py): update provider-model mapping to include all known provider-model mappings Fixes https://github.com/BerriAI/litellm/issues/6669 * feat(anthropic): support passing document in llm api call * docs(anthropic.md): add pdf anthropic call to docs + expose new 'supports_pdf_input' function * fix(factory.py): fix linting error
This commit is contained in:
parent
b8ae08b8eb
commit
f59cb46e71
21 changed files with 533 additions and 2264 deletions
|
@ -864,3 +864,96 @@ Human: How do I boil water?
|
|||
Assistant:
|
||||
```
|
||||
|
||||
|
||||
## Usage - PDF
|
||||
|
||||
Pass base64 encoded PDF files to Anthropic models using the `image_url` field.
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="sdk" label="SDK">
|
||||
|
||||
### **using base64**
|
||||
```python
|
||||
from litellm import completion, supports_pdf_input
|
||||
import base64
|
||||
import requests
|
||||
|
||||
# URL of the file
|
||||
url = "https://storage.googleapis.com/cloud-samples-data/generative-ai/pdf/2403.05530.pdf"
|
||||
|
||||
# Download the file
|
||||
response = requests.get(url)
|
||||
file_data = response.content
|
||||
|
||||
encoded_file = base64.b64encode(file_data).decode("utf-8")
|
||||
|
||||
## check if model supports pdf input - (2024/11/11) only claude-3-5-haiku-20241022 supports it
|
||||
supports_pdf_input("anthropic/claude-3-5-haiku-20241022") # True
|
||||
|
||||
response = completion(
|
||||
model="anthropic/claude-3-5-haiku-20241022",
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": "You are a very professional document summarization specialist. Please summarize the given document."},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": f"data:application/pdf;base64,{encoded_file}", # 👈 PDF
|
||||
},
|
||||
],
|
||||
}
|
||||
],
|
||||
max_tokens=300,
|
||||
)
|
||||
|
||||
print(response.choices[0])
|
||||
```
|
||||
</TabItem>
|
||||
<TabItem value="proxy" lable="PROXY">
|
||||
|
||||
1. Add model to config
|
||||
|
||||
```yaml
|
||||
- model_name: claude-3-5-haiku-20241022
|
||||
litellm_params:
|
||||
model: anthropic/claude-3-5-haiku-20241022
|
||||
api_key: os.environ/ANTHROPIC_API_KEY
|
||||
```
|
||||
|
||||
2. Start Proxy
|
||||
|
||||
```
|
||||
litellm --config /path/to/config.yaml
|
||||
```
|
||||
|
||||
3. Test it!
|
||||
|
||||
```bash
|
||||
curl http://0.0.0.0:4000/v1/chat/completions \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "Authorization: Bearer <YOUR-LITELLM-KEY>" \
|
||||
-d '{
|
||||
"model": "claude-3-5-haiku-20241022",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "You are a very professional document summarization specialist. Please summarize the given document"
|
||||
},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": "data:application/pdf;base64,{encoded_file}" # 👈 PDF
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
],
|
||||
"max_tokens": 300
|
||||
}'
|
||||
|
||||
```
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
|
|
@ -375,6 +375,7 @@ open_ai_text_completion_models: List = []
|
|||
cohere_models: List = []
|
||||
cohere_chat_models: List = []
|
||||
mistral_chat_models: List = []
|
||||
text_completion_codestral_models: List = []
|
||||
anthropic_models: List = []
|
||||
empower_models: List = []
|
||||
openrouter_models: List = []
|
||||
|
@ -401,6 +402,19 @@ deepinfra_models: List = []
|
|||
perplexity_models: List = []
|
||||
watsonx_models: List = []
|
||||
gemini_models: List = []
|
||||
xai_models: List = []
|
||||
deepseek_models: List = []
|
||||
azure_ai_models: List = []
|
||||
voyage_models: List = []
|
||||
databricks_models: List = []
|
||||
cloudflare_models: List = []
|
||||
codestral_models: List = []
|
||||
friendliai_models: List = []
|
||||
palm_models: List = []
|
||||
groq_models: List = []
|
||||
azure_models: List = []
|
||||
anyscale_models: List = []
|
||||
cerebras_models: List = []
|
||||
|
||||
|
||||
def add_known_models():
|
||||
|
@ -477,6 +491,34 @@ def add_known_models():
|
|||
# ignore the 'up-to', '-to-' model names -> not real models. just for cost tracking based on model params.
|
||||
if "-to-" not in key:
|
||||
fireworks_ai_embedding_models.append(key)
|
||||
elif value.get("litellm_provider") == "text-completion-codestral":
|
||||
text_completion_codestral_models.append(key)
|
||||
elif value.get("litellm_provider") == "xai":
|
||||
xai_models.append(key)
|
||||
elif value.get("litellm_provider") == "deepseek":
|
||||
deepseek_models.append(key)
|
||||
elif value.get("litellm_provider") == "azure_ai":
|
||||
azure_ai_models.append(key)
|
||||
elif value.get("litellm_provider") == "voyage":
|
||||
voyage_models.append(key)
|
||||
elif value.get("litellm_provider") == "databricks":
|
||||
databricks_models.append(key)
|
||||
elif value.get("litellm_provider") == "cloudflare":
|
||||
cloudflare_models.append(key)
|
||||
elif value.get("litellm_provider") == "codestral":
|
||||
codestral_models.append(key)
|
||||
elif value.get("litellm_provider") == "friendliai":
|
||||
friendliai_models.append(key)
|
||||
elif value.get("litellm_provider") == "palm":
|
||||
palm_models.append(key)
|
||||
elif value.get("litellm_provider") == "groq":
|
||||
groq_models.append(key)
|
||||
elif value.get("litellm_provider") == "azure":
|
||||
azure_models.append(key)
|
||||
elif value.get("litellm_provider") == "anyscale":
|
||||
anyscale_models.append(key)
|
||||
elif value.get("litellm_provider") == "cerebras":
|
||||
cerebras_models.append(key)
|
||||
|
||||
|
||||
add_known_models()
|
||||
|
@ -722,6 +764,20 @@ model_list = (
|
|||
+ vertex_language_models
|
||||
+ watsonx_models
|
||||
+ gemini_models
|
||||
+ text_completion_codestral_models
|
||||
+ xai_models
|
||||
+ deepseek_models
|
||||
+ azure_ai_models
|
||||
+ voyage_models
|
||||
+ databricks_models
|
||||
+ cloudflare_models
|
||||
+ codestral_models
|
||||
+ friendliai_models
|
||||
+ palm_models
|
||||
+ groq_models
|
||||
+ azure_models
|
||||
+ anyscale_models
|
||||
+ cerebras_models
|
||||
)
|
||||
|
||||
|
||||
|
@ -778,6 +834,7 @@ class LlmProviders(str, Enum):
|
|||
FIREWORKS_AI = "fireworks_ai"
|
||||
FRIENDLIAI = "friendliai"
|
||||
WATSONX = "watsonx"
|
||||
WATSONX_TEXT = "watsonx_text"
|
||||
TRITON = "triton"
|
||||
PREDIBASE = "predibase"
|
||||
DATABRICKS = "databricks"
|
||||
|
@ -794,6 +851,7 @@ provider_list: List[Union[LlmProviders, str]] = list(LlmProviders)
|
|||
|
||||
models_by_provider: dict = {
|
||||
"openai": open_ai_chat_completion_models + open_ai_text_completion_models,
|
||||
"text-completion-openai": open_ai_text_completion_models,
|
||||
"cohere": cohere_models + cohere_chat_models,
|
||||
"cohere_chat": cohere_chat_models,
|
||||
"anthropic": anthropic_models,
|
||||
|
@ -817,6 +875,23 @@ models_by_provider: dict = {
|
|||
"watsonx": watsonx_models,
|
||||
"gemini": gemini_models,
|
||||
"fireworks_ai": fireworks_ai_models + fireworks_ai_embedding_models,
|
||||
"aleph_alpha": aleph_alpha_models,
|
||||
"text-completion-codestral": text_completion_codestral_models,
|
||||
"xai": xai_models,
|
||||
"deepseek": deepseek_models,
|
||||
"mistral": mistral_chat_models,
|
||||
"azure_ai": azure_ai_models,
|
||||
"voyage": voyage_models,
|
||||
"databricks": databricks_models,
|
||||
"cloudflare": cloudflare_models,
|
||||
"codestral": codestral_models,
|
||||
"nlp_cloud": nlp_cloud_models,
|
||||
"friendliai": friendliai_models,
|
||||
"palm": palm_models,
|
||||
"groq": groq_models,
|
||||
"azure": azure_models,
|
||||
"anyscale": anyscale_models,
|
||||
"cerebras": cerebras_models,
|
||||
}
|
||||
|
||||
# mapping for those models which have larger equivalents
|
||||
|
@ -889,7 +964,6 @@ from .utils import (
|
|||
supports_system_messages,
|
||||
get_litellm_params,
|
||||
acreate,
|
||||
get_model_list,
|
||||
get_max_tokens,
|
||||
get_model_info,
|
||||
register_prompt_template,
|
||||
|
|
|
@ -2,14 +2,16 @@ import os
|
|||
from dataclasses import dataclass
|
||||
from datetime import datetime
|
||||
from functools import wraps
|
||||
from typing import TYPE_CHECKING, Any, Dict, Optional, Union
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
|
||||
|
||||
import litellm
|
||||
from litellm._logging import verbose_logger
|
||||
from litellm.integrations.custom_logger import CustomLogger
|
||||
from litellm.types.services import ServiceLoggerPayload
|
||||
from litellm.types.utils import (
|
||||
ChatCompletionMessageToolCall,
|
||||
EmbeddingResponse,
|
||||
Function,
|
||||
ImageResponse,
|
||||
ModelResponse,
|
||||
StandardLoggingPayload,
|
||||
|
@ -403,6 +405,28 @@ class OpenTelemetry(CustomLogger):
|
|||
except Exception:
|
||||
return ""
|
||||
|
||||
@staticmethod
|
||||
def _tool_calls_kv_pair(
|
||||
tool_calls: List[ChatCompletionMessageToolCall],
|
||||
) -> Dict[str, Any]:
|
||||
from litellm.proxy._types import SpanAttributes
|
||||
|
||||
kv_pairs: Dict[str, Any] = {}
|
||||
for idx, tool_call in enumerate(tool_calls):
|
||||
_function = tool_call.get("function")
|
||||
if not _function:
|
||||
continue
|
||||
|
||||
keys = Function.__annotations__.keys()
|
||||
for key in keys:
|
||||
_value = _function.get(key)
|
||||
if _value:
|
||||
kv_pairs[
|
||||
f"{SpanAttributes.LLM_COMPLETIONS}.{idx}.function_call.{key}"
|
||||
] = _value
|
||||
|
||||
return kv_pairs
|
||||
|
||||
def set_attributes( # noqa: PLR0915
|
||||
self, span: Span, kwargs, response_obj: Optional[Any]
|
||||
):
|
||||
|
@ -597,18 +621,13 @@ class OpenTelemetry(CustomLogger):
|
|||
message = choice.get("message")
|
||||
tool_calls = message.get("tool_calls")
|
||||
if tool_calls:
|
||||
self.safe_set_attribute(
|
||||
span=span,
|
||||
key=f"{SpanAttributes.LLM_COMPLETIONS}.{idx}.function_call.name",
|
||||
value=tool_calls[0].get("function").get("name"),
|
||||
)
|
||||
self.safe_set_attribute(
|
||||
span=span,
|
||||
key=f"{SpanAttributes.LLM_COMPLETIONS}.{idx}.function_call.arguments",
|
||||
value=tool_calls[0]
|
||||
.get("function")
|
||||
.get("arguments"),
|
||||
)
|
||||
kv_pairs = OpenTelemetry._tool_calls_kv_pair(tool_calls) # type: ignore
|
||||
for key, value in kv_pairs.items():
|
||||
self.safe_set_attribute(
|
||||
span=span,
|
||||
key=key,
|
||||
value=value,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
verbose_logger.exception(
|
||||
|
|
|
@ -71,11 +71,12 @@ def validate_environment(
|
|||
|
||||
prompt_caching_set = AnthropicConfig().is_cache_control_set(messages=messages)
|
||||
computer_tool_used = AnthropicConfig().is_computer_tool_used(tools=tools)
|
||||
|
||||
pdf_used = AnthropicConfig().is_pdf_used(messages=messages)
|
||||
headers = AnthropicConfig().get_anthropic_headers(
|
||||
anthropic_version=anthropic_version,
|
||||
computer_tool_used=computer_tool_used,
|
||||
prompt_caching_set=prompt_caching_set,
|
||||
pdf_used=pdf_used,
|
||||
api_key=api_key,
|
||||
)
|
||||
|
||||
|
|
|
@ -104,6 +104,7 @@ class AnthropicConfig:
|
|||
anthropic_version: Optional[str] = None,
|
||||
computer_tool_used: bool = False,
|
||||
prompt_caching_set: bool = False,
|
||||
pdf_used: bool = False,
|
||||
) -> dict:
|
||||
import json
|
||||
|
||||
|
@ -112,6 +113,8 @@ class AnthropicConfig:
|
|||
betas.append("prompt-caching-2024-07-31")
|
||||
if computer_tool_used:
|
||||
betas.append("computer-use-2024-10-22")
|
||||
if pdf_used:
|
||||
betas.append("pdfs-2024-09-25")
|
||||
headers = {
|
||||
"anthropic-version": anthropic_version or "2023-06-01",
|
||||
"x-api-key": api_key,
|
||||
|
@ -365,6 +368,21 @@ class AnthropicConfig:
|
|||
return True
|
||||
return False
|
||||
|
||||
def is_pdf_used(self, messages: List[AllMessageValues]) -> bool:
|
||||
"""
|
||||
Set to true if media passed into messages.
|
||||
"""
|
||||
for message in messages:
|
||||
if (
|
||||
"content" in message
|
||||
and message["content"] is not None
|
||||
and isinstance(message["content"], list)
|
||||
):
|
||||
for content in message["content"]:
|
||||
if "type" in content:
|
||||
return True
|
||||
return False
|
||||
|
||||
def translate_system_message(
|
||||
self, messages: List[AllMessageValues]
|
||||
) -> List[AnthropicSystemMessageContent]:
|
||||
|
|
|
@ -1330,7 +1330,10 @@ def convert_to_anthropic_tool_invoke(
|
|||
|
||||
def add_cache_control_to_content(
|
||||
anthropic_content_element: Union[
|
||||
dict, AnthropicMessagesImageParam, AnthropicMessagesTextParam
|
||||
dict,
|
||||
AnthropicMessagesImageParam,
|
||||
AnthropicMessagesTextParam,
|
||||
AnthropicMessagesDocumentParam,
|
||||
],
|
||||
orignal_content_element: Union[dict, AllMessageValues],
|
||||
):
|
||||
|
@ -1343,6 +1346,32 @@ def add_cache_control_to_content(
|
|||
return anthropic_content_element
|
||||
|
||||
|
||||
def _anthropic_content_element_factory(
|
||||
image_chunk: GenericImageParsingChunk,
|
||||
) -> Union[AnthropicMessagesImageParam, AnthropicMessagesDocumentParam]:
|
||||
if image_chunk["media_type"] == "application/pdf":
|
||||
_anthropic_content_element: Union[
|
||||
AnthropicMessagesDocumentParam, AnthropicMessagesImageParam
|
||||
] = AnthropicMessagesDocumentParam(
|
||||
type="document",
|
||||
source=AnthropicContentParamSource(
|
||||
type="base64",
|
||||
media_type=image_chunk["media_type"],
|
||||
data=image_chunk["data"],
|
||||
),
|
||||
)
|
||||
else:
|
||||
_anthropic_content_element = AnthropicMessagesImageParam(
|
||||
type="image",
|
||||
source=AnthropicContentParamSource(
|
||||
type="base64",
|
||||
media_type=image_chunk["media_type"],
|
||||
data=image_chunk["data"],
|
||||
),
|
||||
)
|
||||
return _anthropic_content_element
|
||||
|
||||
|
||||
def anthropic_messages_pt( # noqa: PLR0915
|
||||
messages: List[AllMessageValues],
|
||||
model: str,
|
||||
|
@ -1400,15 +1429,9 @@ def anthropic_messages_pt( # noqa: PLR0915
|
|||
openai_image_url=m["image_url"]["url"]
|
||||
)
|
||||
|
||||
_anthropic_content_element = AnthropicMessagesImageParam(
|
||||
type="image",
|
||||
source=AnthropicImageParamSource(
|
||||
type="base64",
|
||||
media_type=image_chunk["media_type"],
|
||||
data=image_chunk["data"],
|
||||
),
|
||||
_anthropic_content_element = (
|
||||
_anthropic_content_element_factory(image_chunk)
|
||||
)
|
||||
|
||||
_content_element = add_cache_control_to_content(
|
||||
anthropic_content_element=_anthropic_content_element,
|
||||
orignal_content_element=dict(m),
|
||||
|
|
|
@ -1898,7 +1898,8 @@
|
|||
"supports_function_calling": true,
|
||||
"tool_use_system_prompt_tokens": 264,
|
||||
"supports_assistant_prefill": true,
|
||||
"supports_prompt_caching": true
|
||||
"supports_prompt_caching": true,
|
||||
"supports_pdf_input": true
|
||||
},
|
||||
"claude-3-opus-20240229": {
|
||||
"max_tokens": 4096,
|
||||
|
|
|
@ -1,63 +1,7 @@
|
|||
model_list:
|
||||
- model_name: claude-3-5-sonnet-20240620
|
||||
- model_name: "*"
|
||||
litellm_params:
|
||||
model: claude-3-5-sonnet-20240620
|
||||
api_key: os.environ/ANTHROPIC_API_KEY
|
||||
- model_name: claude-3-5-sonnet-aihubmix
|
||||
litellm_params:
|
||||
model: openai/claude-3-5-sonnet-20240620
|
||||
input_cost_per_token: 0.000003 # 3$/M
|
||||
output_cost_per_token: 0.000015 # 15$/M
|
||||
api_base: "https://exampleopenaiendpoint-production.up.railway.app"
|
||||
api_key: my-fake-key
|
||||
- model_name: fake-openai-endpoint-2
|
||||
litellm_params:
|
||||
model: openai/my-fake-model
|
||||
api_key: my-fake-key
|
||||
api_base: https://exampleopenaiendpoint-production.up.railway.app/
|
||||
stream_timeout: 0.001
|
||||
timeout: 1
|
||||
rpm: 1
|
||||
- model_name: fake-openai-endpoint
|
||||
litellm_params:
|
||||
model: openai/my-fake-model
|
||||
api_key: my-fake-key
|
||||
api_base: https://exampleopenaiendpoint-production.up.railway.app/
|
||||
## bedrock chat completions
|
||||
- model_name: "*anthropic.claude*"
|
||||
litellm_params:
|
||||
model: bedrock/*anthropic.claude*
|
||||
aws_access_key_id: os.environ/BEDROCK_AWS_ACCESS_KEY_ID
|
||||
aws_secret_access_key: os.environ/BEDROCK_AWS_SECRET_ACCESS_KEY
|
||||
aws_region_name: os.environ/AWS_REGION_NAME
|
||||
guardrailConfig:
|
||||
"guardrailIdentifier": "h4dsqwhp6j66"
|
||||
"guardrailVersion": "2"
|
||||
"trace": "enabled"
|
||||
|
||||
## bedrock embeddings
|
||||
- model_name: "*amazon.titan-embed-*"
|
||||
litellm_params:
|
||||
model: bedrock/amazon.titan-embed-*
|
||||
aws_access_key_id: os.environ/BEDROCK_AWS_ACCESS_KEY_ID
|
||||
aws_secret_access_key: os.environ/BEDROCK_AWS_SECRET_ACCESS_KEY
|
||||
aws_region_name: os.environ/AWS_REGION_NAME
|
||||
- model_name: "*cohere.embed-*"
|
||||
litellm_params:
|
||||
model: bedrock/cohere.embed-*
|
||||
aws_access_key_id: os.environ/BEDROCK_AWS_ACCESS_KEY_ID
|
||||
aws_secret_access_key: os.environ/BEDROCK_AWS_SECRET_ACCESS_KEY
|
||||
aws_region_name: os.environ/AWS_REGION_NAME
|
||||
|
||||
- model_name: gpt-4
|
||||
litellm_params:
|
||||
model: azure/chatgpt-v-2
|
||||
api_base: https://openai-gpt-4-test-v-1.openai.azure.com/
|
||||
api_version: "2023-05-15"
|
||||
api_key: os.environ/AZURE_API_KEY # The `os.environ/` prefix tells litellm to read this from the env. See https://docs.litellm.ai/docs/simple_proxy#load-api-keys-from-vault
|
||||
rpm: 480
|
||||
timeout: 300
|
||||
stream_timeout: 60
|
||||
model: "*"
|
||||
|
||||
litellm_settings:
|
||||
fallbacks: [{ "claude-3-5-sonnet-20240620": ["claude-3-5-sonnet-aihubmix"] }]
|
||||
|
|
|
@ -1236,7 +1236,6 @@ def _return_user_api_key_auth_obj(
|
|||
start_time: datetime,
|
||||
user_role: Optional[LitellmUserRoles] = None,
|
||||
) -> UserAPIKeyAuth:
|
||||
traceback.print_stack()
|
||||
end_time = datetime.now()
|
||||
user_api_key_service_logger_obj.service_success_hook(
|
||||
service=ServiceTypes.AUTH,
|
||||
|
|
|
@ -74,7 +74,7 @@ class AnthopicMessagesAssistantMessageParam(TypedDict, total=False):
|
|||
"""
|
||||
|
||||
|
||||
class AnthropicImageParamSource(TypedDict):
|
||||
class AnthropicContentParamSource(TypedDict):
|
||||
type: Literal["base64"]
|
||||
media_type: str
|
||||
data: str
|
||||
|
@ -82,7 +82,13 @@ class AnthropicImageParamSource(TypedDict):
|
|||
|
||||
class AnthropicMessagesImageParam(TypedDict, total=False):
|
||||
type: Required[Literal["image"]]
|
||||
source: Required[AnthropicImageParamSource]
|
||||
source: Required[AnthropicContentParamSource]
|
||||
cache_control: Optional[Union[dict, ChatCompletionCachedContent]]
|
||||
|
||||
|
||||
class AnthropicMessagesDocumentParam(TypedDict, total=False):
|
||||
type: Required[Literal["document"]]
|
||||
source: Required[AnthropicContentParamSource]
|
||||
cache_control: Optional[Union[dict, ChatCompletionCachedContent]]
|
||||
|
||||
|
||||
|
@ -108,6 +114,7 @@ AnthropicMessagesUserMessageValues = Union[
|
|||
AnthropicMessagesTextParam,
|
||||
AnthropicMessagesImageParam,
|
||||
AnthropicMessagesToolResultParam,
|
||||
AnthropicMessagesDocumentParam,
|
||||
]
|
||||
|
||||
|
||||
|
|
|
@ -1322,11 +1322,6 @@ class TranscriptionResponse(OpenAIObject):
|
|||
|
||||
|
||||
class GenericImageParsingChunk(TypedDict):
|
||||
# {
|
||||
# "type": "base64",
|
||||
# "media_type": f"image/{image_format}",
|
||||
# "data": base64_data,
|
||||
# }
|
||||
type: str
|
||||
media_type: str
|
||||
data: str
|
||||
|
|
2134
litellm/utils.py
2134
litellm/utils.py
File diff suppressed because it is too large
Load diff
|
@ -1898,7 +1898,8 @@
|
|||
"supports_function_calling": true,
|
||||
"tool_use_system_prompt_tokens": 264,
|
||||
"supports_assistant_prefill": true,
|
||||
"supports_prompt_caching": true
|
||||
"supports_prompt_caching": true,
|
||||
"supports_pdf_input": true
|
||||
},
|
||||
"claude-3-opus-20240229": {
|
||||
"max_tokens": 4096,
|
||||
|
|
|
@ -44,3 +44,30 @@ class BaseLLMChatTest(ABC):
|
|||
messages=messages,
|
||||
)
|
||||
assert response is not None
|
||||
|
||||
@pytest.fixture
|
||||
def pdf_messages(self):
|
||||
import base64
|
||||
|
||||
import requests
|
||||
|
||||
# URL of the file
|
||||
url = "https://storage.googleapis.com/cloud-samples-data/generative-ai/pdf/2403.05530.pdf"
|
||||
|
||||
response = requests.get(url)
|
||||
file_data = response.content
|
||||
|
||||
encoded_file = base64.b64encode(file_data).decode("utf-8")
|
||||
url = f"data:application/pdf;base64,{encoded_file}"
|
||||
|
||||
image_content = [
|
||||
{"type": "text", "text": "What's this file about?"},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {"url": url},
|
||||
},
|
||||
]
|
||||
|
||||
image_messages = [{"role": "user", "content": image_content}]
|
||||
|
||||
return image_messages
|
||||
|
|
|
@ -36,6 +36,7 @@ from litellm.types.llms.anthropic import AnthropicResponse
|
|||
|
||||
from litellm.llms.anthropic.common_utils import process_anthropic_headers
|
||||
from httpx import Headers
|
||||
from base_llm_unit_tests import BaseLLMChatTest
|
||||
|
||||
|
||||
def test_anthropic_completion_messages_translation():
|
||||
|
@ -624,3 +625,40 @@ def test_anthropic_tool_helper(cache_control_location):
|
|||
tool = AnthropicConfig()._map_tool_helper(tool=tool)
|
||||
|
||||
assert tool["cache_control"] == {"type": "ephemeral"}
|
||||
|
||||
|
||||
from litellm import completion
|
||||
|
||||
|
||||
class TestAnthropicCompletion(BaseLLMChatTest):
|
||||
def get_base_completion_call_args(self) -> dict:
|
||||
return {"model": "claude-3-haiku-20240307"}
|
||||
|
||||
def test_pdf_handling(self, pdf_messages):
|
||||
from litellm.llms.custom_httpx.http_handler import HTTPHandler
|
||||
from litellm.types.llms.anthropic import AnthropicMessagesDocumentParam
|
||||
import json
|
||||
|
||||
client = HTTPHandler()
|
||||
|
||||
with patch.object(client, "post", new=MagicMock()) as mock_client:
|
||||
response = completion(
|
||||
model="claude-3-5-sonnet-20241022",
|
||||
messages=pdf_messages,
|
||||
client=client,
|
||||
)
|
||||
|
||||
mock_client.assert_called_once()
|
||||
|
||||
json_data = json.loads(mock_client.call_args.kwargs["data"])
|
||||
headers = mock_client.call_args.kwargs["headers"]
|
||||
|
||||
assert headers["anthropic-beta"] == "pdfs-2024-09-25"
|
||||
|
||||
json_data["messages"][0]["role"] == "user"
|
||||
_document_validation = AnthropicMessagesDocumentParam(
|
||||
**json_data["messages"][0]["content"][1]
|
||||
)
|
||||
assert _document_validation["type"] == "document"
|
||||
assert _document_validation["source"]["media_type"] == "application/pdf"
|
||||
assert _document_validation["source"]["type"] == "base64"
|
||||
|
|
|
@ -169,3 +169,11 @@ def test_get_llm_provider_hosted_vllm():
|
|||
assert custom_llm_provider == "hosted_vllm"
|
||||
assert model == "llama-3.1-70b-instruct"
|
||||
assert dynamic_api_key == ""
|
||||
|
||||
|
||||
def test_get_llm_provider_watson_text():
|
||||
model, custom_llm_provider, dynamic_api_key, api_base = litellm.get_llm_provider(
|
||||
model="watsonx_text/watson-text-to-speech",
|
||||
)
|
||||
assert custom_llm_provider == "watsonx_text"
|
||||
assert model == "watson-text-to-speech"
|
||||
|
|
|
@ -1,11 +0,0 @@
|
|||
import os, sys, traceback
|
||||
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../..")
|
||||
) # Adds the parent directory to the system path
|
||||
import litellm
|
||||
from litellm import get_model_list
|
||||
|
||||
print(get_model_list())
|
||||
print(get_model_list())
|
||||
# print(litellm.model_list)
|
|
@ -1,41 +0,0 @@
|
|||
# What is this?
|
||||
## Unit tests for opentelemetry integration
|
||||
|
||||
# What is this?
|
||||
## Unit test for presidio pii masking
|
||||
import sys, os, asyncio, time, random
|
||||
from datetime import datetime
|
||||
import traceback
|
||||
from dotenv import load_dotenv
|
||||
|
||||
load_dotenv()
|
||||
import os
|
||||
import asyncio
|
||||
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../..")
|
||||
) # Adds the parent directory to the system path
|
||||
import pytest
|
||||
import litellm
|
||||
from unittest.mock import patch, MagicMock, AsyncMock
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_opentelemetry_integration():
|
||||
"""
|
||||
Unit test to confirm the parent otel span is ended
|
||||
"""
|
||||
|
||||
parent_otel_span = MagicMock()
|
||||
litellm.callbacks = ["otel"]
|
||||
|
||||
await litellm.acompletion(
|
||||
model="gpt-3.5-turbo",
|
||||
messages=[{"role": "user", "content": "Hello, world!"}],
|
||||
mock_response="Hey!",
|
||||
metadata={"litellm_parent_otel_span": parent_otel_span},
|
||||
)
|
||||
|
||||
await asyncio.sleep(1)
|
||||
|
||||
parent_otel_span.end.assert_called_once()
|
|
@ -943,3 +943,24 @@ def test_validate_chat_completion_user_messages(messages, expected_bool):
|
|||
## Invalid message
|
||||
with pytest.raises(Exception):
|
||||
validate_chat_completion_user_messages(messages=messages)
|
||||
|
||||
|
||||
def test_models_by_provider():
|
||||
"""
|
||||
Make sure all providers from model map are in the valid providers list
|
||||
"""
|
||||
from litellm import models_by_provider
|
||||
|
||||
providers = set()
|
||||
for k, v in litellm.model_cost.items():
|
||||
if "_" in v["litellm_provider"] and "-" in v["litellm_provider"]:
|
||||
continue
|
||||
elif k == "sample_spec":
|
||||
continue
|
||||
elif v["litellm_provider"] == "sagemaker":
|
||||
continue
|
||||
else:
|
||||
providers.add(v["litellm_provider"])
|
||||
|
||||
for provider in providers:
|
||||
assert provider in models_by_provider.keys()
|
||||
|
|
100
tests/logging_callback_tests/base_test.py
Normal file
100
tests/logging_callback_tests/base_test.py
Normal file
|
@ -0,0 +1,100 @@
|
|||
import asyncio
|
||||
import httpx
|
||||
import json
|
||||
import pytest
|
||||
import sys
|
||||
from typing import Any, Dict, List
|
||||
from unittest.mock import MagicMock, Mock, patch
|
||||
import os
|
||||
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../..")
|
||||
) # Adds the parent directory to the system path
|
||||
import litellm
|
||||
from litellm.exceptions import BadRequestError
|
||||
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
|
||||
from litellm.utils import CustomStreamWrapper
|
||||
from litellm.types.utils import ModelResponse
|
||||
|
||||
# test_example.py
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
|
||||
class BaseLoggingCallbackTest(ABC):
|
||||
"""
|
||||
Abstract base test class that enforces a common test across all test classes.
|
||||
"""
|
||||
|
||||
@pytest.fixture
|
||||
def mock_response_obj(self):
|
||||
from litellm.types.utils import (
|
||||
ModelResponse,
|
||||
Choices,
|
||||
Message,
|
||||
ChatCompletionMessageToolCall,
|
||||
Function,
|
||||
Usage,
|
||||
CompletionTokensDetailsWrapper,
|
||||
PromptTokensDetailsWrapper,
|
||||
)
|
||||
|
||||
# Create a mock response object with the structure you need
|
||||
return ModelResponse(
|
||||
id="chatcmpl-ASId3YJWagBpBskWfoNEMPFSkmrEw",
|
||||
created=1731308157,
|
||||
model="gpt-4o-mini-2024-07-18",
|
||||
object="chat.completion",
|
||||
system_fingerprint="fp_0ba0d124f1",
|
||||
choices=[
|
||||
Choices(
|
||||
finish_reason="tool_calls",
|
||||
index=0,
|
||||
message=Message(
|
||||
content=None,
|
||||
role="assistant",
|
||||
tool_calls=[
|
||||
ChatCompletionMessageToolCall(
|
||||
function=Function(
|
||||
arguments='{"city": "New York"}', name="get_weather"
|
||||
),
|
||||
id="call_PngsQS5YGmIZKnswhnUOnOVb",
|
||||
type="function",
|
||||
),
|
||||
ChatCompletionMessageToolCall(
|
||||
function=Function(
|
||||
arguments='{"city": "New York"}', name="get_news"
|
||||
),
|
||||
id="call_1zsDThBu0VSK7KuY7eCcJBnq",
|
||||
type="function",
|
||||
),
|
||||
],
|
||||
function_call=None,
|
||||
),
|
||||
)
|
||||
],
|
||||
usage=Usage(
|
||||
completion_tokens=46,
|
||||
prompt_tokens=86,
|
||||
total_tokens=132,
|
||||
completion_tokens_details=CompletionTokensDetailsWrapper(
|
||||
accepted_prediction_tokens=0,
|
||||
audio_tokens=0,
|
||||
reasoning_tokens=0,
|
||||
rejected_prediction_tokens=0,
|
||||
text_tokens=None,
|
||||
),
|
||||
prompt_tokens_details=PromptTokensDetailsWrapper(
|
||||
audio_tokens=0, cached_tokens=0, text_tokens=None, image_tokens=None
|
||||
),
|
||||
),
|
||||
service_tier=None,
|
||||
)
|
||||
|
||||
@abstractmethod
|
||||
def test_parallel_tool_calls(self, mock_response_obj: ModelResponse):
|
||||
"""
|
||||
Check if parallel tool calls are correctly logged by Logging callback
|
||||
|
||||
Relevant issue - https://github.com/BerriAI/litellm/issues/6677
|
||||
"""
|
||||
pass
|
|
@ -0,0 +1,58 @@
|
|||
# What is this?
|
||||
## Unit tests for opentelemetry integration
|
||||
|
||||
# What is this?
|
||||
## Unit test for presidio pii masking
|
||||
import sys, os, asyncio, time, random
|
||||
from datetime import datetime
|
||||
import traceback
|
||||
from dotenv import load_dotenv
|
||||
|
||||
load_dotenv()
|
||||
import os
|
||||
import asyncio
|
||||
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../..")
|
||||
) # Adds the parent directory to the system path
|
||||
import pytest
|
||||
import litellm
|
||||
from unittest.mock import patch, MagicMock, AsyncMock
|
||||
from base_test import BaseLoggingCallbackTest
|
||||
from litellm.types.utils import ModelResponse
|
||||
|
||||
|
||||
class TestOpentelemetryUnitTests(BaseLoggingCallbackTest):
|
||||
def test_parallel_tool_calls(self, mock_response_obj: ModelResponse):
|
||||
tool_calls = mock_response_obj.choices[0].message.tool_calls
|
||||
from litellm.integrations.opentelemetry import OpenTelemetry
|
||||
from litellm.proxy._types import SpanAttributes
|
||||
|
||||
kv_pair_dict = OpenTelemetry._tool_calls_kv_pair(tool_calls)
|
||||
|
||||
assert kv_pair_dict == {
|
||||
f"{SpanAttributes.LLM_COMPLETIONS}.0.function_call.arguments": '{"city": "New York"}',
|
||||
f"{SpanAttributes.LLM_COMPLETIONS}.0.function_call.name": "get_weather",
|
||||
f"{SpanAttributes.LLM_COMPLETIONS}.1.function_call.arguments": '{"city": "New York"}',
|
||||
f"{SpanAttributes.LLM_COMPLETIONS}.1.function_call.name": "get_news",
|
||||
}
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_opentelemetry_integration(self):
|
||||
"""
|
||||
Unit test to confirm the parent otel span is ended
|
||||
"""
|
||||
|
||||
parent_otel_span = MagicMock()
|
||||
litellm.callbacks = ["otel"]
|
||||
|
||||
await litellm.acompletion(
|
||||
model="gpt-3.5-turbo",
|
||||
messages=[{"role": "user", "content": "Hello, world!"}],
|
||||
mock_response="Hey!",
|
||||
metadata={"litellm_parent_otel_span": parent_otel_span},
|
||||
)
|
||||
|
||||
await asyncio.sleep(1)
|
||||
|
||||
parent_otel_span.end.assert_called_once()
|
Loading…
Add table
Add a link
Reference in a new issue