diff --git a/docs/my-website/docs/completion/json_mode.md b/docs/my-website/docs/completion/json_mode.md
index 51f76b7a6..379775bf2 100644
--- a/docs/my-website/docs/completion/json_mode.md
+++ b/docs/my-website/docs/completion/json_mode.md
@@ -76,6 +76,8 @@ Works for:
- Vertex AI models (Gemini + Anthropic)
- Bedrock Models
- Anthropic API Models
+- Groq Models
+- Ollama Models
diff --git a/docs/my-website/docs/embedding/supported_embedding.md b/docs/my-website/docs/embedding/supported_embedding.md
index 5250ea403..603e04dd9 100644
--- a/docs/my-website/docs/embedding/supported_embedding.md
+++ b/docs/my-website/docs/embedding/supported_embedding.md
@@ -1,7 +1,7 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
-# Embedding Models
+# Embeddings
## Quick Start
```python
diff --git a/docs/my-website/docs/image_generation.md b/docs/my-website/docs/image_generation.md
index 5a7ef6f4f..958ff4c02 100644
--- a/docs/my-website/docs/image_generation.md
+++ b/docs/my-website/docs/image_generation.md
@@ -1,4 +1,4 @@
-# Image Generation
+# Images
## Quick Start
diff --git a/docs/my-website/docs/providers/anthropic.md b/docs/my-website/docs/providers/anthropic.md
index d4660b807..b3bfe333c 100644
--- a/docs/my-website/docs/providers/anthropic.md
+++ b/docs/my-website/docs/providers/anthropic.md
@@ -10,6 +10,35 @@ LiteLLM supports all anthropic models.
- `claude-2.1`
- `claude-instant-1.2`
+
+| Property | Details |
+|-------|-------|
+| Description | Claude is a highly performant, trustworthy, and intelligent AI platform built by Anthropic. Claude excels at tasks involving language, reasoning, analysis, coding, and more. |
+| Provider Route on LiteLLM | `anthropic/` (add this prefix to the model name, to route any requests to Anthropic - e.g. `anthropic/claude-3-5-sonnet-20240620`) |
+| Provider Doc | [Anthropic ↗](https://docs.anthropic.com/en/docs/build-with-claude/overview) |
+| API Endpoint for Provider | https://api.anthropic.com |
+| Supported Endpoints | `/chat/completions` |
+
+
+## Supported OpenAI Parameters
+
+Check this in code, [here](../completion/input.md#translated-openai-params)
+
+```
+"stream",
+"stop",
+"temperature",
+"top_p",
+"max_tokens",
+"max_completion_tokens",
+"tools",
+"tool_choice",
+"extra_headers",
+"parallel_tool_calls",
+"response_format",
+"user"
+```
+
:::info
Anthropic API fails requests when `max_tokens` are not passed. Due to this litellm passes `max_tokens=4096` when no `max_tokens` are passed.
@@ -1006,20 +1035,3 @@ curl http://0.0.0.0:4000/v1/chat/completions \
-
-## All Supported OpenAI Params
-
-```
-"stream",
-"stop",
-"temperature",
-"top_p",
-"max_tokens",
-"max_completion_tokens",
-"tools",
-"tool_choice",
-"extra_headers",
-"parallel_tool_calls",
-"response_format",
-"user"
-```
\ No newline at end of file
diff --git a/docs/my-website/sidebars.js b/docs/my-website/sidebars.js
index 50cc83c08..f01402299 100644
--- a/docs/my-website/sidebars.js
+++ b/docs/my-website/sidebars.js
@@ -199,46 +199,52 @@ const sidebars = {
],
},
- {
- type: "category",
- label: "Guides",
- link: {
- type: "generated-index",
- title: "Chat Completions",
- description: "Details on the completion() function",
- slug: "/completion",
- },
- items: [
- "completion/input",
- "completion/provider_specific_params",
- "completion/json_mode",
- "completion/prompt_caching",
- "completion/audio",
- "completion/vision",
- "completion/predict_outputs",
- "completion/prefix",
- "completion/drop_params",
- "completion/prompt_formatting",
- "completion/output",
- "completion/usage",
- "exception_mapping",
- "completion/stream",
- "completion/message_trimming",
- "completion/function_call",
- "completion/model_alias",
- "completion/batching",
- "completion/mock_requests",
- "completion/reliable_completions",
- ],
- },
{
type: "category",
label: "Supported Endpoints",
items: [
+ {
+ type: "category",
+ label: "Chat",
+ link: {
+ type: "generated-index",
+ title: "Chat Completions",
+ description: "Details on the completion() function",
+ slug: "/completion",
+ },
+ items: [
+ "completion/input",
+ "completion/provider_specific_params",
+ "completion/json_mode",
+ "completion/prompt_caching",
+ "completion/audio",
+ "completion/vision",
+ "completion/predict_outputs",
+ "completion/prefix",
+ "completion/drop_params",
+ "completion/prompt_formatting",
+ "completion/output",
+ "completion/usage",
+ "exception_mapping",
+ "completion/stream",
+ "completion/message_trimming",
+ "completion/function_call",
+ "completion/model_alias",
+ "completion/batching",
+ "completion/mock_requests",
+ "completion/reliable_completions",
+ ],
+ },
"embedding/supported_embedding",
"image_generation",
- "audio_transcription",
- "text_to_speech",
+ {
+ type: "category",
+ label: "Audio",
+ "items": [
+ "audio_transcription",
+ "text_to_speech",
+ ]
+ },
"rerank",
"assistants",
"batches",
diff --git a/litellm/litellm_core_utils/streaming_handler.py b/litellm/litellm_core_utils/streaming_handler.py
index 5c18ff512..483121c38 100644
--- a/litellm/litellm_core_utils/streaming_handler.py
+++ b/litellm/litellm_core_utils/streaming_handler.py
@@ -1793,7 +1793,7 @@ class CustomStreamWrapper:
or self.custom_llm_provider == "bedrock"
or self.custom_llm_provider == "triton"
or self.custom_llm_provider == "watsonx"
- or self.custom_llm_provider in litellm.openai_compatible_endpoints
+ or self.custom_llm_provider in litellm.openai_compatible_providers
or self.custom_llm_provider in litellm._custom_providers
):
async for chunk in self.completion_stream:
diff --git a/litellm/llms/OpenAI/chat/o1_handler.py b/litellm/llms/OpenAI/chat/o1_handler.py
index 55dfe3715..5ff53a896 100644
--- a/litellm/llms/OpenAI/chat/o1_handler.py
+++ b/litellm/llms/OpenAI/chat/o1_handler.py
@@ -17,22 +17,6 @@ from litellm.utils import CustomStreamWrapper
class OpenAIO1ChatCompletion(OpenAIChatCompletion):
- async def mock_async_streaming(
- self,
- response: Any,
- model: Optional[str],
- logging_obj: Any,
- ):
- model_response = await response
- completion_stream = MockResponseIterator(model_response=model_response)
- streaming_response = CustomStreamWrapper(
- completion_stream=completion_stream,
- model=model,
- custom_llm_provider="openai",
- logging_obj=logging_obj,
- )
- return streaming_response
-
def completion(
self,
model_response: ModelResponse,
@@ -54,7 +38,7 @@ class OpenAIO1ChatCompletion(OpenAIChatCompletion):
custom_llm_provider: Optional[str] = None,
drop_params: Optional[bool] = None,
):
- stream: Optional[bool] = optional_params.pop("stream", False)
+ # stream: Optional[bool] = optional_params.pop("stream", False)
response = super().completion(
model_response,
timeout,
@@ -76,20 +60,4 @@ class OpenAIO1ChatCompletion(OpenAIChatCompletion):
drop_params,
)
- if stream is True:
- if asyncio.iscoroutine(response):
- return self.mock_async_streaming(
- response=response, model=model, logging_obj=logging_obj # type: ignore
- )
-
- completion_stream = MockResponseIterator(model_response=response)
- streaming_response = CustomStreamWrapper(
- completion_stream=completion_stream,
- model=model,
- custom_llm_provider="openai",
- logging_obj=logging_obj,
- )
-
- return streaming_response
- else:
- return response
+ return response
diff --git a/litellm/llms/groq/chat/handler.py b/litellm/llms/groq/chat/handler.py
index f4a16abc8..1fe87844c 100644
--- a/litellm/llms/groq/chat/handler.py
+++ b/litellm/llms/groq/chat/handler.py
@@ -6,55 +6,68 @@ from typing import Any, Callable, Optional, Union
from httpx._config import Timeout
+from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
+from litellm.types.utils import CustomStreamingDecoder
from litellm.utils import ModelResponse
from ...groq.chat.transformation import GroqChatConfig
-from ...OpenAI.openai import OpenAIChatCompletion
+from ...openai_like.chat.handler import OpenAILikeChatHandler
-class GroqChatCompletion(OpenAIChatCompletion):
+class GroqChatCompletion(OpenAILikeChatHandler):
def __init__(self, **kwargs):
super().__init__(**kwargs)
def completion(
self,
+ *,
+ model: str,
+ messages: list,
+ api_base: str,
+ custom_llm_provider: str,
+ custom_prompt_dict: dict,
model_response: ModelResponse,
- timeout: Union[float, Timeout],
+ print_verbose: Callable,
+ encoding,
+ api_key: Optional[str],
+ logging_obj,
optional_params: dict,
- logging_obj: Any,
- model: Optional[str] = None,
- messages: Optional[list] = None,
- print_verbose: Optional[Callable[..., Any]] = None,
- api_key: Optional[str] = None,
- api_base: Optional[str] = None,
- acompletion: bool = False,
+ acompletion=None,
litellm_params=None,
logger_fn=None,
headers: Optional[dict] = None,
- custom_prompt_dict: dict = {},
- client=None,
- organization: Optional[str] = None,
- custom_llm_provider: Optional[str] = None,
- drop_params: Optional[bool] = None,
+ timeout: Optional[Union[float, Timeout]] = None,
+ client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
+ custom_endpoint: Optional[bool] = None,
+ streaming_decoder: Optional[CustomStreamingDecoder] = None,
+ fake_stream: bool = False
):
messages = GroqChatConfig()._transform_messages(messages) # type: ignore
+
+ if optional_params.get("stream") is True:
+ fake_stream = GroqChatConfig()._should_fake_stream(optional_params)
+ else:
+ fake_stream = False
+
return super().completion(
- model_response,
- timeout,
- optional_params,
- logging_obj,
- model,
- messages,
- print_verbose,
- api_key,
- api_base,
- acompletion,
- litellm_params,
- logger_fn,
- headers,
- custom_prompt_dict,
- client,
- organization,
- custom_llm_provider,
- drop_params,
+ model=model,
+ messages=messages,
+ api_base=api_base,
+ custom_llm_provider=custom_llm_provider,
+ custom_prompt_dict=custom_prompt_dict,
+ model_response=model_response,
+ print_verbose=print_verbose,
+ encoding=encoding,
+ api_key=api_key,
+ logging_obj=logging_obj,
+ optional_params=optional_params,
+ acompletion=acompletion,
+ litellm_params=litellm_params,
+ logger_fn=logger_fn,
+ headers=headers,
+ timeout=timeout,
+ client=client,
+ custom_endpoint=custom_endpoint,
+ streaming_decoder=streaming_decoder,
+ fake_stream=fake_stream,
)
diff --git a/litellm/llms/groq/chat/transformation.py b/litellm/llms/groq/chat/transformation.py
index 4baba7657..dddc56a2c 100644
--- a/litellm/llms/groq/chat/transformation.py
+++ b/litellm/llms/groq/chat/transformation.py
@@ -2,6 +2,7 @@
Translate from OpenAI's `/v1/chat/completions` to Groq's `/v1/chat/completions`
"""
+import json
import types
from typing import List, Optional, Tuple, Union
@@ -9,7 +10,12 @@ from pydantic import BaseModel
import litellm
from litellm.secret_managers.main import get_secret_str
-from litellm.types.llms.openai import AllMessageValues, ChatCompletionAssistantMessage
+from litellm.types.llms.openai import (
+ AllMessageValues,
+ ChatCompletionAssistantMessage,
+ ChatCompletionToolParam,
+ ChatCompletionToolParamFunctionChunk,
+)
from ...OpenAI.chat.gpt_transformation import OpenAIGPTConfig
@@ -99,3 +105,69 @@ class GroqChatConfig(OpenAIGPTConfig):
) # type: ignore
dynamic_api_key = api_key or get_secret_str("GROQ_API_KEY")
return api_base, dynamic_api_key
+
+ def _should_fake_stream(self, optional_params: dict) -> bool:
+ """
+ Groq doesn't support 'response_format' while streaming
+ """
+ if optional_params.get("response_format") is not None:
+ return True
+
+ return False
+
+ def _create_json_tool_call_for_response_format(
+ self,
+ json_schema: dict,
+ ):
+ """
+ Handles creating a tool call for getting responses in JSON format.
+
+ Args:
+ json_schema (Optional[dict]): The JSON schema the response should be in
+
+ Returns:
+ AnthropicMessagesTool: The tool call to send to Anthropic API to get responses in JSON format
+ """
+ return ChatCompletionToolParam(
+ type="function",
+ function=ChatCompletionToolParamFunctionChunk(
+ name="json_tool_call",
+ parameters=json_schema,
+ ),
+ )
+
+ def map_openai_params(
+ self,
+ non_default_params: dict,
+ optional_params: dict,
+ model: str,
+ drop_params: bool = False,
+ ) -> dict:
+ _response_format = non_default_params.get("response_format")
+ if _response_format is not None and isinstance(_response_format, dict):
+ json_schema: Optional[dict] = None
+ if "response_schema" in _response_format:
+ json_schema = _response_format["response_schema"]
+ elif "json_schema" in _response_format:
+ json_schema = _response_format["json_schema"]["schema"]
+ """
+ When using tools in this way: - https://docs.anthropic.com/en/docs/build-with-claude/tool-use#json-mode
+ - You usually want to provide a single tool
+ - You should set tool_choice (see Forcing tool use) to instruct the model to explicitly use that tool
+ - Remember that the model will pass the input to the tool, so the name of the tool and description should be from the model’s perspective.
+ """
+ if json_schema is not None:
+ _tool_choice = {
+ "type": "function",
+ "function": {"name": "json_tool_call"},
+ }
+ _tool = self._create_json_tool_call_for_response_format(
+ json_schema=json_schema,
+ )
+ optional_params["tools"] = [_tool]
+ optional_params["tool_choice"] = _tool_choice
+ optional_params["json_mode"] = True
+ non_default_params.pop("response_format", None)
+ return super().map_openai_params(
+ non_default_params, optional_params, model, drop_params
+ )
diff --git a/litellm/llms/ollama.py b/litellm/llms/ollama.py
index 842d946c6..896b93be5 100644
--- a/litellm/llms/ollama.py
+++ b/litellm/llms/ollama.py
@@ -164,6 +164,30 @@ class OllamaConfig:
"response_format",
]
+ def map_openai_params(
+ self, optional_params: dict, non_default_params: dict
+ ) -> dict:
+ for param, value in non_default_params.items():
+ if param == "max_tokens":
+ optional_params["num_predict"] = value
+ if param == "stream":
+ optional_params["stream"] = value
+ if param == "temperature":
+ optional_params["temperature"] = value
+ if param == "seed":
+ optional_params["seed"] = value
+ if param == "top_p":
+ optional_params["top_p"] = value
+ if param == "frequency_penalty":
+ optional_params["repeat_penalty"] = value
+ if param == "stop":
+ optional_params["stop"] = value
+ if param == "response_format" and isinstance(value, dict):
+ if value["type"] == "json_object":
+ optional_params["format"] = "json"
+
+ return optional_params
+
def _supports_function_calling(self, ollama_model_info: dict) -> bool:
"""
Check if the 'template' field in the ollama_model_info contains a 'tools' or 'function' key.
diff --git a/litellm/llms/openai_like/chat/handler.py b/litellm/llms/openai_like/chat/handler.py
index 0dbc3a978..baa970304 100644
--- a/litellm/llms/openai_like/chat/handler.py
+++ b/litellm/llms/openai_like/chat/handler.py
@@ -17,7 +17,9 @@ import httpx # type: ignore
import requests # type: ignore
import litellm
+from litellm import LlmProviders
from litellm.litellm_core_utils.core_helpers import map_finish_reason
+from litellm.llms.bedrock.chat.invoke_handler import MockResponseIterator
from litellm.llms.custom_httpx.http_handler import (
AsyncHTTPHandler,
HTTPHandler,
@@ -25,9 +27,19 @@ from litellm.llms.custom_httpx.http_handler import (
)
from litellm.llms.databricks.streaming_utils import ModelResponseIterator
from litellm.types.utils import CustomStreamingDecoder, ModelResponse
-from litellm.utils import CustomStreamWrapper, EmbeddingResponse
+from litellm.utils import (
+ Choices,
+ CustomStreamWrapper,
+ EmbeddingResponse,
+ Message,
+ ProviderConfigManager,
+ TextCompletionResponse,
+ Usage,
+ convert_to_model_response_object,
+)
from ..common_utils import OpenAILikeBase, OpenAILikeError
+from .transformation import OpenAILikeChatConfig
async def make_call(
@@ -39,16 +51,22 @@ async def make_call(
messages: list,
logging_obj,
streaming_decoder: Optional[CustomStreamingDecoder] = None,
+ fake_stream: bool = False,
):
if client is None:
client = litellm.module_level_aclient
- response = await client.post(api_base, headers=headers, data=data, stream=True)
+ response = await client.post(
+ api_base, headers=headers, data=data, stream=not fake_stream
+ )
if streaming_decoder is not None:
completion_stream: Any = streaming_decoder.aiter_bytes(
response.aiter_bytes(chunk_size=1024)
)
+ elif fake_stream:
+ model_response = ModelResponse(**response.json())
+ completion_stream = MockResponseIterator(model_response=model_response)
else:
completion_stream = ModelResponseIterator(
streaming_response=response.aiter_lines(), sync_stream=False
@@ -73,11 +91,12 @@ def make_sync_call(
messages: list,
logging_obj,
streaming_decoder: Optional[CustomStreamingDecoder] = None,
+ fake_stream: bool = False,
):
if client is None:
client = litellm.module_level_client # Create a new client if none provided
- response = client.post(api_base, headers=headers, data=data, stream=True)
+ response = client.post(api_base, headers=headers, data=data, stream=not fake_stream)
if response.status_code != 200:
raise OpenAILikeError(status_code=response.status_code, message=response.read())
@@ -86,6 +105,9 @@ def make_sync_call(
completion_stream = streaming_decoder.iter_bytes(
response.iter_bytes(chunk_size=1024)
)
+ elif fake_stream:
+ model_response = ModelResponse(**response.json())
+ completion_stream = MockResponseIterator(model_response=model_response)
else:
completion_stream = ModelResponseIterator(
streaming_response=response.iter_lines(), sync_stream=True
@@ -126,8 +148,8 @@ class OpenAILikeChatHandler(OpenAILikeBase):
headers={},
client: Optional[AsyncHTTPHandler] = None,
streaming_decoder: Optional[CustomStreamingDecoder] = None,
+ fake_stream: bool = False,
) -> CustomStreamWrapper:
-
data["stream"] = True
completion_stream = await make_call(
client=client,
@@ -169,6 +191,7 @@ class OpenAILikeChatHandler(OpenAILikeBase):
logger_fn=None,
headers={},
timeout: Optional[Union[float, httpx.Timeout]] = None,
+ json_mode: bool = False,
) -> ModelResponse:
if timeout is None:
timeout = httpx.Timeout(timeout=600.0, connect=5.0)
@@ -181,8 +204,6 @@ class OpenAILikeChatHandler(OpenAILikeBase):
api_base, headers=headers, data=json.dumps(data), timeout=timeout
)
response.raise_for_status()
-
- response_json = response.json()
except httpx.HTTPStatusError as e:
raise OpenAILikeError(
status_code=e.response.status_code,
@@ -193,22 +214,26 @@ class OpenAILikeChatHandler(OpenAILikeBase):
except Exception as e:
raise OpenAILikeError(status_code=500, message=str(e))
- logging_obj.post_call(
- input=messages,
- api_key="",
- original_response=response_json,
- additional_args={"complete_input_dict": data},
+ return OpenAILikeChatConfig._transform_response(
+ model=model,
+ response=response,
+ model_response=model_response,
+ stream=stream,
+ logging_obj=logging_obj,
+ optional_params=optional_params,
+ api_key=api_key,
+ data=data,
+ messages=messages,
+ print_verbose=print_verbose,
+ encoding=encoding,
+ json_mode=json_mode,
+ custom_llm_provider=custom_llm_provider,
+ base_model=base_model,
)
- response = ModelResponse(**response_json)
-
- response.model = custom_llm_provider + "/" + (response.model or "")
-
- if base_model is not None:
- response._hidden_params["model"] = base_model
- return response
def completion(
self,
+ *,
model: str,
messages: list,
api_base: str,
@@ -230,6 +255,7 @@ class OpenAILikeChatHandler(OpenAILikeBase):
streaming_decoder: Optional[
CustomStreamingDecoder
] = None, # if openai-compatible api needs custom stream decoder - e.g. sagemaker
+ fake_stream: bool = False,
):
custom_endpoint = custom_endpoint or optional_params.pop(
"custom_endpoint", None
@@ -243,13 +269,24 @@ class OpenAILikeChatHandler(OpenAILikeBase):
headers=headers,
)
- stream: bool = optional_params.get("stream", None) or False
- optional_params["stream"] = stream
+ stream: bool = optional_params.pop("stream", None) or False
+ extra_body = optional_params.pop("extra_body", {})
+ json_mode = optional_params.pop("json_mode", None)
+ optional_params.pop("max_retries", None)
+ if not fake_stream:
+ optional_params["stream"] = stream
+
+ if messages is not None and custom_llm_provider is not None:
+ provider_config = ProviderConfigManager.get_provider_config(
+ model=model, provider=LlmProviders(custom_llm_provider)
+ )
+ messages = provider_config._transform_messages(messages)
data = {
"model": model,
"messages": messages,
**optional_params,
+ **extra_body,
}
## LOGGING
@@ -288,6 +325,7 @@ class OpenAILikeChatHandler(OpenAILikeBase):
client=client,
custom_llm_provider=custom_llm_provider,
streaming_decoder=streaming_decoder,
+ fake_stream=fake_stream,
)
else:
return self.acompletion_function(
@@ -327,6 +365,7 @@ class OpenAILikeChatHandler(OpenAILikeBase):
messages=messages,
logging_obj=logging_obj,
streaming_decoder=streaming_decoder,
+ fake_stream=fake_stream,
)
# completion_stream.__iter__()
return CustomStreamWrapper(
@@ -344,7 +383,6 @@ class OpenAILikeChatHandler(OpenAILikeBase):
)
response.raise_for_status()
- response_json = response.json()
except httpx.HTTPStatusError as e:
raise OpenAILikeError(
status_code=e.response.status_code,
@@ -356,17 +394,19 @@ class OpenAILikeChatHandler(OpenAILikeBase):
)
except Exception as e:
raise OpenAILikeError(status_code=500, message=str(e))
- logging_obj.post_call(
- input=messages,
- api_key="",
- original_response=response_json,
- additional_args={"complete_input_dict": data},
+ return OpenAILikeChatConfig._transform_response(
+ model=model,
+ response=response,
+ model_response=model_response,
+ stream=stream,
+ logging_obj=logging_obj,
+ optional_params=optional_params,
+ api_key=api_key,
+ data=data,
+ messages=messages,
+ print_verbose=print_verbose,
+ encoding=encoding,
+ json_mode=json_mode,
+ custom_llm_provider=custom_llm_provider,
+ base_model=base_model,
)
- response = ModelResponse(**response_json)
-
- response.model = custom_llm_provider + "/" + (response.model or "")
-
- if base_model is not None:
- response._hidden_params["model"] = base_model
-
- return response
diff --git a/litellm/llms/openai_like/chat/transformation.py b/litellm/llms/openai_like/chat/transformation.py
new file mode 100644
index 000000000..c355cf330
--- /dev/null
+++ b/litellm/llms/openai_like/chat/transformation.py
@@ -0,0 +1,98 @@
+"""
+OpenAI-like chat completion transformation
+"""
+
+import types
+from typing import List, Optional, Tuple, Union
+
+import httpx
+from pydantic import BaseModel
+
+import litellm
+from litellm.secret_managers.main import get_secret_str
+from litellm.types.llms.openai import AllMessageValues, ChatCompletionAssistantMessage
+from litellm.types.utils import ModelResponse
+
+from ....utils import _remove_additional_properties, _remove_strict_from_schema
+from ...OpenAI.chat.gpt_transformation import OpenAIGPTConfig
+
+
+class OpenAILikeChatConfig(OpenAIGPTConfig):
+ def _get_openai_compatible_provider_info(
+ self, api_base: Optional[str], api_key: Optional[str]
+ ) -> Tuple[Optional[str], Optional[str]]:
+ api_base = api_base or get_secret_str("OPENAI_LIKE_API_BASE") # type: ignore
+ dynamic_api_key = (
+ api_key or get_secret_str("OPENAI_LIKE_API_KEY") or ""
+ ) # vllm does not require an api key
+ return api_base, dynamic_api_key
+
+ @staticmethod
+ def _convert_tool_response_to_message(
+ message: ChatCompletionAssistantMessage, json_mode: bool
+ ) -> ChatCompletionAssistantMessage:
+ """
+ if json_mode is true, convert the returned tool call response to a content with json str
+
+ e.g. input:
+
+ {"role": "assistant", "tool_calls": [{"id": "call_5ms4", "type": "function", "function": {"name": "json_tool_call", "arguments": "{\"key\": \"question\", \"value\": \"What is the capital of France?\"}"}}]}
+
+ output:
+
+ {"role": "assistant", "content": "{\"key\": \"question\", \"value\": \"What is the capital of France?\"}"}
+ """
+ if not json_mode:
+ return message
+
+ _tool_calls = message.get("tool_calls")
+
+ if _tool_calls is None or len(_tool_calls) != 1:
+ return message
+
+ message["content"] = _tool_calls[0]["function"].get("arguments") or ""
+ message["tool_calls"] = None
+
+ return message
+
+ @staticmethod
+ def _transform_response(
+ model: str,
+ response: httpx.Response,
+ model_response: ModelResponse,
+ stream: bool,
+ logging_obj: litellm.litellm_core_utils.litellm_logging.Logging, # type: ignore
+ optional_params: dict,
+ api_key: Optional[str],
+ data: Union[dict, str],
+ messages: List,
+ print_verbose,
+ encoding,
+ json_mode: bool,
+ custom_llm_provider: str,
+ base_model: Optional[str],
+ ) -> ModelResponse:
+ response_json = response.json()
+ logging_obj.post_call(
+ input=messages,
+ api_key="",
+ original_response=response_json,
+ additional_args={"complete_input_dict": data},
+ )
+
+ if json_mode:
+ for choice in response_json["choices"]:
+ message = OpenAILikeChatConfig._convert_tool_response_to_message(
+ choice.get("message"), json_mode
+ )
+ choice["message"] = message
+
+ returned_response = ModelResponse(**response_json)
+
+ returned_response.model = (
+ custom_llm_provider + "/" + (returned_response.model or "")
+ )
+
+ if base_model is not None:
+ returned_response._hidden_params["model"] = base_model
+ return returned_response
diff --git a/litellm/llms/openai_like/embedding/handler.py b/litellm/llms/openai_like/embedding/handler.py
index 84b8405e6..e786b5db8 100644
--- a/litellm/llms/openai_like/embedding/handler.py
+++ b/litellm/llms/openai_like/embedding/handler.py
@@ -65,7 +65,7 @@ class OpenAILikeEmbeddingHandler(OpenAILikeBase):
except httpx.HTTPStatusError as e:
raise OpenAILikeError(
status_code=e.response.status_code,
- message=response.text if response else str(e),
+ message=e.response.text if e.response else str(e),
)
except httpx.TimeoutException:
raise OpenAILikeError(
diff --git a/litellm/llms/prompt_templates/factory.py b/litellm/llms/prompt_templates/factory.py
index 29028e053..45b7a6c5b 100644
--- a/litellm/llms/prompt_templates/factory.py
+++ b/litellm/llms/prompt_templates/factory.py
@@ -943,17 +943,10 @@ def _gemini_tool_call_invoke_helper(
name = function_call_params.get("name", "") or ""
arguments = function_call_params.get("arguments", "")
arguments_dict = json.loads(arguments)
- function_call: Optional[litellm.types.llms.vertex_ai.FunctionCall] = None
- for k, v in arguments_dict.items():
- inferred_protocol_value = infer_protocol_value(value=v)
- _field = litellm.types.llms.vertex_ai.Field(
- key=k, value={inferred_protocol_value: v}
- )
- _fields = litellm.types.llms.vertex_ai.FunctionCallArgs(fields=_field)
- function_call = litellm.types.llms.vertex_ai.FunctionCall(
- name=name,
- args=_fields,
- )
+ function_call = litellm.types.llms.vertex_ai.FunctionCall(
+ name=name,
+ args=arguments_dict,
+ )
return function_call
@@ -978,54 +971,26 @@ def convert_to_gemini_tool_call_invoke(
},
"""
"""
- Gemini tool call invokes: - https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/function-calling#submit-api-output
- content {
- role: "model"
- parts [
+ Gemini tool call invokes:
+ {
+ "role": "model",
+ "parts": [
{
- function_call {
- name: "get_current_weather"
- args {
- fields {
- key: "unit"
- value {
- string_value: "fahrenheit"
- }
- }
- fields {
- key: "predicted_temperature"
- value {
- number_value: 45
- }
- }
- fields {
- key: "location"
- value {
- string_value: "Boston, MA"
- }
- }
- }
- },
- {
- function_call {
- name: "get_current_weather"
- args {
- fields {
- key: "location"
- value {
- string_value: "San Francisco"
- }
- }
- }
+ "functionCall": {
+ "name": "get_current_weather",
+ "args": {
+ "unit": "fahrenheit",
+ "predicted_temperature": 45,
+ "location": "Boston, MA",
}
+ }
}
- ]
+ ]
}
"""
"""
- - json.load the arguments
- - iterate through arguments -> create a FunctionCallArgs for each field
+ - json.load the arguments
"""
try:
_parts_list: List[litellm.types.llms.vertex_ai.PartType] = []
@@ -1128,16 +1093,8 @@ def convert_to_gemini_tool_call_result(
# We can't determine from openai message format whether it's a successful or
# error call result so default to the successful result template
- inferred_content_value = infer_protocol_value(value=content_str)
-
- _field = litellm.types.llms.vertex_ai.Field(
- key="content", value={inferred_content_value: content_str}
- )
-
- _function_call_args = litellm.types.llms.vertex_ai.FunctionCallArgs(fields=_field)
-
_function_response = litellm.types.llms.vertex_ai.FunctionResponse(
- name=name, response=_function_call_args # type: ignore
+ name=name, response={"content": content_str} # type: ignore
)
_part = litellm.types.llms.vertex_ai.PartType(function_response=_function_response)
diff --git a/litellm/llms/vertex_ai_and_google_ai_studio/context_caching/vertex_ai_context_caching.py b/litellm/llms/vertex_ai_and_google_ai_studio/context_caching/vertex_ai_context_caching.py
index e0b7052cf..b9be8a3bd 100644
--- a/litellm/llms/vertex_ai_and_google_ai_studio/context_caching/vertex_ai_context_caching.py
+++ b/litellm/llms/vertex_ai_and_google_ai_studio/context_caching/vertex_ai_context_caching.py
@@ -335,6 +335,13 @@ class ContextCachingEndpoints(VertexBase):
if cached_content is not None:
return messages, cached_content
+ cached_messages, non_cached_messages = separate_cached_messages(
+ messages=messages
+ )
+
+ if len(cached_messages) == 0:
+ return messages, None
+
## AUTHORIZATION ##
token, url = self._get_token_and_url_context_caching(
gemini_api_key=api_key,
@@ -351,25 +358,12 @@ class ContextCachingEndpoints(VertexBase):
headers.update(extra_headers)
if client is None or not isinstance(client, AsyncHTTPHandler):
- _params = {}
- if timeout is not None:
- if isinstance(timeout, float) or isinstance(timeout, int):
- timeout = httpx.Timeout(timeout)
- _params["timeout"] = timeout
client = get_async_httpx_client(
- llm_provider=litellm.LlmProviders.VERTEX_AI,
- params={"timeout": timeout},
+ params={"timeout": timeout}, llm_provider=litellm.LlmProviders.VERTEX_AI
)
else:
client = client
- cached_messages, non_cached_messages = separate_cached_messages(
- messages=messages
- )
-
- if len(cached_messages) == 0:
- return messages, None
-
## CHECK IF CACHED ALREADY
generated_cache_key = local_cache_obj.get_cache_key(messages=cached_messages)
google_cache_name = await self.async_check_cache(
diff --git a/litellm/llms/watsonx/chat/handler.py b/litellm/llms/watsonx/chat/handler.py
index b016bb0a7..932946d3c 100644
--- a/litellm/llms/watsonx/chat/handler.py
+++ b/litellm/llms/watsonx/chat/handler.py
@@ -57,6 +57,7 @@ class WatsonXChatHandler(OpenAILikeChatHandler):
def completion(
self,
+ *,
model: str,
messages: list,
api_base: str,
@@ -75,9 +76,8 @@ class WatsonXChatHandler(OpenAILikeChatHandler):
timeout: Optional[Union[float, httpx.Timeout]] = None,
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
custom_endpoint: Optional[bool] = None,
- streaming_decoder: Optional[
- CustomStreamingDecoder
- ] = None, # if openai-compatible api needs custom stream decoder - e.g. sagemaker
+ streaming_decoder: Optional[CustomStreamingDecoder] = None,
+ fake_stream: bool = False,
):
api_params = _get_api_params(optional_params, print_verbose=print_verbose)
diff --git a/litellm/main.py b/litellm/main.py
index 32055eb9d..5d433eb36 100644
--- a/litellm/main.py
+++ b/litellm/main.py
@@ -1495,8 +1495,8 @@ def completion( # type: ignore # noqa: PLR0915
timeout=timeout, # type: ignore
custom_prompt_dict=custom_prompt_dict,
client=client, # pass AsyncOpenAI, OpenAI client
- organization=organization,
custom_llm_provider=custom_llm_provider,
+ encoding=encoding,
)
elif (
model in litellm.open_ai_chat_completion_models
@@ -3182,6 +3182,7 @@ async def aembedding(*args, **kwargs) -> EmbeddingResponse:
or custom_llm_provider == "azure_ai"
or custom_llm_provider == "together_ai"
or custom_llm_provider == "openai_like"
+ or custom_llm_provider == "jina_ai"
): # currently implemented aiohttp calls for just azure and openai, soon all.
# Await normally
init_response = await loop.run_in_executor(None, func_with_context)
diff --git a/litellm/model_prices_and_context_window_backup.json b/litellm/model_prices_and_context_window_backup.json
index 606a2756b..a56472f7f 100644
--- a/litellm/model_prices_and_context_window_backup.json
+++ b/litellm/model_prices_and_context_window_backup.json
@@ -1745,7 +1745,8 @@
"output_cost_per_token": 0.00000080,
"litellm_provider": "groq",
"mode": "chat",
- "supports_function_calling": true
+ "supports_function_calling": true,
+ "supports_response_schema": true
},
"groq/llama3-8b-8192": {
"max_tokens": 8192,
@@ -1755,7 +1756,74 @@
"output_cost_per_token": 0.00000008,
"litellm_provider": "groq",
"mode": "chat",
- "supports_function_calling": true
+ "supports_function_calling": true,
+ "supports_response_schema": true
+ },
+ "groq/llama-3.2-1b-preview": {
+ "max_tokens": 8192,
+ "max_input_tokens": 8192,
+ "max_output_tokens": 8192,
+ "input_cost_per_token": 0.00000004,
+ "output_cost_per_token": 0.00000004,
+ "litellm_provider": "groq",
+ "mode": "chat",
+ "supports_function_calling": true,
+ "supports_response_schema": true
+ },
+ "groq/llama-3.2-3b-preview": {
+ "max_tokens": 8192,
+ "max_input_tokens": 8192,
+ "max_output_tokens": 8192,
+ "input_cost_per_token": 0.00000006,
+ "output_cost_per_token": 0.00000006,
+ "litellm_provider": "groq",
+ "mode": "chat",
+ "supports_function_calling": true,
+ "supports_response_schema": true
+ },
+ "groq/llama-3.2-11b-text-preview": {
+ "max_tokens": 8192,
+ "max_input_tokens": 8192,
+ "max_output_tokens": 8192,
+ "input_cost_per_token": 0.00000018,
+ "output_cost_per_token": 0.00000018,
+ "litellm_provider": "groq",
+ "mode": "chat",
+ "supports_function_calling": true,
+ "supports_response_schema": true
+ },
+ "groq/llama-3.2-11b-vision-preview": {
+ "max_tokens": 8192,
+ "max_input_tokens": 8192,
+ "max_output_tokens": 8192,
+ "input_cost_per_token": 0.00000018,
+ "output_cost_per_token": 0.00000018,
+ "litellm_provider": "groq",
+ "mode": "chat",
+ "supports_function_calling": true,
+ "supports_response_schema": true
+ },
+ "groq/llama-3.2-90b-text-preview": {
+ "max_tokens": 8192,
+ "max_input_tokens": 8192,
+ "max_output_tokens": 8192,
+ "input_cost_per_token": 0.0000009,
+ "output_cost_per_token": 0.0000009,
+ "litellm_provider": "groq",
+ "mode": "chat",
+ "supports_function_calling": true,
+ "supports_response_schema": true
+ },
+ "groq/llama-3.2-90b-vision-preview": {
+ "max_tokens": 8192,
+ "max_input_tokens": 8192,
+ "max_output_tokens": 8192,
+ "input_cost_per_token": 0.0000009,
+ "output_cost_per_token": 0.0000009,
+ "litellm_provider": "groq",
+ "mode": "chat",
+ "supports_function_calling": true,
+ "supports_response_schema": true
},
"groq/llama3-70b-8192": {
"max_tokens": 8192,
@@ -1765,7 +1833,8 @@
"output_cost_per_token": 0.00000079,
"litellm_provider": "groq",
"mode": "chat",
- "supports_function_calling": true
+ "supports_function_calling": true,
+ "supports_response_schema": true
},
"groq/llama-3.1-8b-instant": {
"max_tokens": 8192,
@@ -1775,7 +1844,8 @@
"output_cost_per_token": 0.00000008,
"litellm_provider": "groq",
"mode": "chat",
- "supports_function_calling": true
+ "supports_function_calling": true,
+ "supports_response_schema": true
},
"groq/llama-3.1-70b-versatile": {
"max_tokens": 8192,
@@ -1785,7 +1855,8 @@
"output_cost_per_token": 0.00000079,
"litellm_provider": "groq",
"mode": "chat",
- "supports_function_calling": true
+ "supports_function_calling": true,
+ "supports_response_schema": true
},
"groq/llama-3.1-405b-reasoning": {
"max_tokens": 8192,
@@ -1795,7 +1866,8 @@
"output_cost_per_token": 0.00000079,
"litellm_provider": "groq",
"mode": "chat",
- "supports_function_calling": true
+ "supports_function_calling": true,
+ "supports_response_schema": true
},
"groq/mixtral-8x7b-32768": {
"max_tokens": 32768,
@@ -1805,7 +1877,8 @@
"output_cost_per_token": 0.00000024,
"litellm_provider": "groq",
"mode": "chat",
- "supports_function_calling": true
+ "supports_function_calling": true,
+ "supports_response_schema": true
},
"groq/gemma-7b-it": {
"max_tokens": 8192,
@@ -1815,7 +1888,8 @@
"output_cost_per_token": 0.00000007,
"litellm_provider": "groq",
"mode": "chat",
- "supports_function_calling": true
+ "supports_function_calling": true,
+ "supports_response_schema": true
},
"groq/gemma2-9b-it": {
"max_tokens": 8192,
@@ -1825,7 +1899,8 @@
"output_cost_per_token": 0.00000020,
"litellm_provider": "groq",
"mode": "chat",
- "supports_function_calling": true
+ "supports_function_calling": true,
+ "supports_response_schema": true
},
"groq/llama3-groq-70b-8192-tool-use-preview": {
"max_tokens": 8192,
@@ -1835,7 +1910,8 @@
"output_cost_per_token": 0.00000089,
"litellm_provider": "groq",
"mode": "chat",
- "supports_function_calling": true
+ "supports_function_calling": true,
+ "supports_response_schema": true
},
"groq/llama3-groq-8b-8192-tool-use-preview": {
"max_tokens": 8192,
@@ -1845,7 +1921,8 @@
"output_cost_per_token": 0.00000019,
"litellm_provider": "groq",
"mode": "chat",
- "supports_function_calling": true
+ "supports_function_calling": true,
+ "supports_response_schema": true
},
"cerebras/llama3.1-8b": {
"max_tokens": 128000,
diff --git a/litellm/proxy/_new_secret_config.yaml b/litellm/proxy/_new_secret_config.yaml
index 1155e0466..974b091cf 100644
--- a/litellm/proxy/_new_secret_config.yaml
+++ b/litellm/proxy/_new_secret_config.yaml
@@ -12,7 +12,6 @@ model_list:
vertex_ai_project: "adroit-crow-413218"
vertex_ai_location: "us-east5"
-
router_settings:
model_group_alias:
"gpt-4-turbo": # Aliased model name
diff --git a/litellm/proxy/auth/route_checks.py b/litellm/proxy/auth/route_checks.py
index c75c1e66c..9496776a8 100644
--- a/litellm/proxy/auth/route_checks.py
+++ b/litellm/proxy/auth/route_checks.py
@@ -192,6 +192,10 @@ class RouteChecks:
return True
if "/langfuse/" in route:
return True
+ if "/anthropic/" in route:
+ return True
+ if "/azure/" in route:
+ return True
return False
@staticmethod
diff --git a/litellm/proxy/vertex_ai_endpoints/google_ai_studio_endpoints.py b/litellm/proxy/pass_through_endpoints/llm_passthrough_endpoints.py
similarity index 98%
rename from litellm/proxy/vertex_ai_endpoints/google_ai_studio_endpoints.py
rename to litellm/proxy/pass_through_endpoints/llm_passthrough_endpoints.py
index c4a64fa21..0834102b3 100644
--- a/litellm/proxy/vertex_ai_endpoints/google_ai_studio_endpoints.py
+++ b/litellm/proxy/pass_through_endpoints/llm_passthrough_endpoints.py
@@ -2,10 +2,8 @@
What is this?
Provider-specific Pass-Through Endpoints
-"""
-"""
-1. Create pass-through endpoints for any LITELLM_BASE_URL/gemini/ map to https://generativelanguage.googleapis.com/
+Use litellm with Anthropic SDK, Vertex AI SDK, Cohere SDK, etc.
"""
import ast
diff --git a/litellm/proxy/proxy_server.py b/litellm/proxy/proxy_server.py
index 1551330d1..9d7c120a7 100644
--- a/litellm/proxy/proxy_server.py
+++ b/litellm/proxy/proxy_server.py
@@ -203,6 +203,9 @@ from litellm.proxy.openai_files_endpoints.files_endpoints import (
router as openai_files_router,
)
from litellm.proxy.openai_files_endpoints.files_endpoints import set_files_config
+from litellm.proxy.pass_through_endpoints.llm_passthrough_endpoints import (
+ router as llm_passthrough_router,
+)
from litellm.proxy.pass_through_endpoints.pass_through_endpoints import (
initialize_pass_through_endpoints,
)
@@ -233,9 +236,6 @@ from litellm.proxy.utils import (
reset_budget,
update_spend,
)
-from litellm.proxy.vertex_ai_endpoints.google_ai_studio_endpoints import (
- router as gemini_router,
-)
from litellm.proxy.vertex_ai_endpoints.langfuse_endpoints import (
router as langfuse_router,
)
@@ -9128,7 +9128,7 @@ app.include_router(router)
app.include_router(rerank_router)
app.include_router(fine_tuning_router)
app.include_router(vertex_router)
-app.include_router(gemini_router)
+app.include_router(llm_passthrough_router)
app.include_router(langfuse_router)
app.include_router(pass_through_router)
app.include_router(health_router)
diff --git a/litellm/types/llms/vertex_ai.py b/litellm/types/llms/vertex_ai.py
index d55cf3ec6..54d4c1af2 100644
--- a/litellm/types/llms/vertex_ai.py
+++ b/litellm/types/llms/vertex_ai.py
@@ -13,23 +13,14 @@ from typing_extensions import (
)
-class Field(TypedDict):
- key: str
- value: Dict[str, Any]
-
-
-class FunctionCallArgs(TypedDict):
- fields: Field
-
-
class FunctionResponse(TypedDict):
name: str
- response: FunctionCallArgs
+ response: Optional[dict]
class FunctionCall(TypedDict):
name: str
- args: FunctionCallArgs
+ args: Optional[dict]
class FileDataType(TypedDict):
diff --git a/litellm/utils.py b/litellm/utils.py
index 2dce9db89..003971142 100644
--- a/litellm/utils.py
+++ b/litellm/utils.py
@@ -1739,15 +1739,15 @@ def supports_response_schema(model: str, custom_llm_provider: Optional[str]) ->
Does not raise error. Defaults to 'False'. Outputs logging.error.
"""
+ ## GET LLM PROVIDER ##
+ model, custom_llm_provider, _, _ = get_llm_provider(
+ model=model, custom_llm_provider=custom_llm_provider
+ )
+
+ if custom_llm_provider == "predibase": # predibase supports this globally
+ return True
+
try:
- ## GET LLM PROVIDER ##
- model, custom_llm_provider, _, _ = get_llm_provider(
- model=model, custom_llm_provider=custom_llm_provider
- )
-
- if custom_llm_provider == "predibase": # predibase supports this globally
- return True
-
## GET MODEL INFO
model_info = litellm.get_model_info(
model=model, custom_llm_provider=custom_llm_provider
@@ -1755,12 +1755,17 @@ def supports_response_schema(model: str, custom_llm_provider: Optional[str]) ->
if model_info.get("supports_response_schema", False) is True:
return True
- return False
except Exception:
- verbose_logger.error(
- f"Model not supports response_schema. You passed model={model}, custom_llm_provider={custom_llm_provider}."
+ ## check if provider supports response schema globally
+ supported_params = get_supported_openai_params(
+ model=model,
+ custom_llm_provider=custom_llm_provider,
+ request_type="chat_completion",
)
- return False
+ if supported_params is not None and "response_schema" in supported_params:
+ return True
+
+ return False
def supports_function_calling(
@@ -2710,6 +2715,7 @@ def get_optional_params( # noqa: PLR0915
non_default_params["response_format"] = type_to_response_format_param(
response_format=non_default_params["response_format"]
)
+
if "tools" in non_default_params and isinstance(
non_default_params, list
): # fixes https://github.com/BerriAI/litellm/issues/4933
@@ -3259,24 +3265,14 @@ def get_optional_params( # noqa: PLR0915
)
_check_valid_arg(supported_params=supported_params)
- if max_tokens is not None:
- optional_params["num_predict"] = max_tokens
- if stream:
- optional_params["stream"] = stream
- if temperature is not None:
- optional_params["temperature"] = temperature
- if seed is not None:
- optional_params["seed"] = seed
- if top_p is not None:
- optional_params["top_p"] = top_p
- if frequency_penalty is not None:
- optional_params["repeat_penalty"] = frequency_penalty
- if stop is not None:
- optional_params["stop"] = stop
- if response_format is not None and response_format["type"] == "json_object":
- optional_params["format"] = "json"
+ optional_params = litellm.OllamaConfig().map_openai_params(
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ )
elif custom_llm_provider == "ollama_chat":
- supported_params = litellm.OllamaChatConfig().get_supported_openai_params()
+ supported_params = get_supported_openai_params(
+ model=model, custom_llm_provider=custom_llm_provider
+ )
_check_valid_arg(supported_params=supported_params)
@@ -3494,24 +3490,16 @@ def get_optional_params( # noqa: PLR0915
)
_check_valid_arg(supported_params=supported_params)
- if temperature is not None:
- optional_params["temperature"] = temperature
- if max_tokens is not None:
- optional_params["max_tokens"] = max_tokens
- if top_p is not None:
- optional_params["top_p"] = top_p
- if stream is not None:
- optional_params["stream"] = stream
- if stop is not None:
- optional_params["stop"] = stop
- if tools is not None:
- optional_params["tools"] = tools
- if tool_choice is not None:
- optional_params["tool_choice"] = tool_choice
- if response_format is not None:
- optional_params["response_format"] = response_format
- if seed is not None:
- optional_params["seed"] = seed
+ optional_params = litellm.GroqChatConfig().map_openai_params(
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ model=model,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
elif custom_llm_provider == "deepseek":
supported_params = get_supported_openai_params(
model=model, custom_llm_provider=custom_llm_provider
@@ -6178,5 +6166,7 @@ class ProviderConfigManager:
return litellm.OpenAIO1Config()
elif litellm.LlmProviders.DEEPSEEK == provider:
return litellm.DeepSeekChatConfig()
+ elif litellm.LlmProviders.GROQ == provider:
+ return litellm.GroqChatConfig()
return OpenAIGPTConfig()
diff --git a/model_prices_and_context_window.json b/model_prices_and_context_window.json
index 606a2756b..a56472f7f 100644
--- a/model_prices_and_context_window.json
+++ b/model_prices_and_context_window.json
@@ -1745,7 +1745,8 @@
"output_cost_per_token": 0.00000080,
"litellm_provider": "groq",
"mode": "chat",
- "supports_function_calling": true
+ "supports_function_calling": true,
+ "supports_response_schema": true
},
"groq/llama3-8b-8192": {
"max_tokens": 8192,
@@ -1755,7 +1756,74 @@
"output_cost_per_token": 0.00000008,
"litellm_provider": "groq",
"mode": "chat",
- "supports_function_calling": true
+ "supports_function_calling": true,
+ "supports_response_schema": true
+ },
+ "groq/llama-3.2-1b-preview": {
+ "max_tokens": 8192,
+ "max_input_tokens": 8192,
+ "max_output_tokens": 8192,
+ "input_cost_per_token": 0.00000004,
+ "output_cost_per_token": 0.00000004,
+ "litellm_provider": "groq",
+ "mode": "chat",
+ "supports_function_calling": true,
+ "supports_response_schema": true
+ },
+ "groq/llama-3.2-3b-preview": {
+ "max_tokens": 8192,
+ "max_input_tokens": 8192,
+ "max_output_tokens": 8192,
+ "input_cost_per_token": 0.00000006,
+ "output_cost_per_token": 0.00000006,
+ "litellm_provider": "groq",
+ "mode": "chat",
+ "supports_function_calling": true,
+ "supports_response_schema": true
+ },
+ "groq/llama-3.2-11b-text-preview": {
+ "max_tokens": 8192,
+ "max_input_tokens": 8192,
+ "max_output_tokens": 8192,
+ "input_cost_per_token": 0.00000018,
+ "output_cost_per_token": 0.00000018,
+ "litellm_provider": "groq",
+ "mode": "chat",
+ "supports_function_calling": true,
+ "supports_response_schema": true
+ },
+ "groq/llama-3.2-11b-vision-preview": {
+ "max_tokens": 8192,
+ "max_input_tokens": 8192,
+ "max_output_tokens": 8192,
+ "input_cost_per_token": 0.00000018,
+ "output_cost_per_token": 0.00000018,
+ "litellm_provider": "groq",
+ "mode": "chat",
+ "supports_function_calling": true,
+ "supports_response_schema": true
+ },
+ "groq/llama-3.2-90b-text-preview": {
+ "max_tokens": 8192,
+ "max_input_tokens": 8192,
+ "max_output_tokens": 8192,
+ "input_cost_per_token": 0.0000009,
+ "output_cost_per_token": 0.0000009,
+ "litellm_provider": "groq",
+ "mode": "chat",
+ "supports_function_calling": true,
+ "supports_response_schema": true
+ },
+ "groq/llama-3.2-90b-vision-preview": {
+ "max_tokens": 8192,
+ "max_input_tokens": 8192,
+ "max_output_tokens": 8192,
+ "input_cost_per_token": 0.0000009,
+ "output_cost_per_token": 0.0000009,
+ "litellm_provider": "groq",
+ "mode": "chat",
+ "supports_function_calling": true,
+ "supports_response_schema": true
},
"groq/llama3-70b-8192": {
"max_tokens": 8192,
@@ -1765,7 +1833,8 @@
"output_cost_per_token": 0.00000079,
"litellm_provider": "groq",
"mode": "chat",
- "supports_function_calling": true
+ "supports_function_calling": true,
+ "supports_response_schema": true
},
"groq/llama-3.1-8b-instant": {
"max_tokens": 8192,
@@ -1775,7 +1844,8 @@
"output_cost_per_token": 0.00000008,
"litellm_provider": "groq",
"mode": "chat",
- "supports_function_calling": true
+ "supports_function_calling": true,
+ "supports_response_schema": true
},
"groq/llama-3.1-70b-versatile": {
"max_tokens": 8192,
@@ -1785,7 +1855,8 @@
"output_cost_per_token": 0.00000079,
"litellm_provider": "groq",
"mode": "chat",
- "supports_function_calling": true
+ "supports_function_calling": true,
+ "supports_response_schema": true
},
"groq/llama-3.1-405b-reasoning": {
"max_tokens": 8192,
@@ -1795,7 +1866,8 @@
"output_cost_per_token": 0.00000079,
"litellm_provider": "groq",
"mode": "chat",
- "supports_function_calling": true
+ "supports_function_calling": true,
+ "supports_response_schema": true
},
"groq/mixtral-8x7b-32768": {
"max_tokens": 32768,
@@ -1805,7 +1877,8 @@
"output_cost_per_token": 0.00000024,
"litellm_provider": "groq",
"mode": "chat",
- "supports_function_calling": true
+ "supports_function_calling": true,
+ "supports_response_schema": true
},
"groq/gemma-7b-it": {
"max_tokens": 8192,
@@ -1815,7 +1888,8 @@
"output_cost_per_token": 0.00000007,
"litellm_provider": "groq",
"mode": "chat",
- "supports_function_calling": true
+ "supports_function_calling": true,
+ "supports_response_schema": true
},
"groq/gemma2-9b-it": {
"max_tokens": 8192,
@@ -1825,7 +1899,8 @@
"output_cost_per_token": 0.00000020,
"litellm_provider": "groq",
"mode": "chat",
- "supports_function_calling": true
+ "supports_function_calling": true,
+ "supports_response_schema": true
},
"groq/llama3-groq-70b-8192-tool-use-preview": {
"max_tokens": 8192,
@@ -1835,7 +1910,8 @@
"output_cost_per_token": 0.00000089,
"litellm_provider": "groq",
"mode": "chat",
- "supports_function_calling": true
+ "supports_function_calling": true,
+ "supports_response_schema": true
},
"groq/llama3-groq-8b-8192-tool-use-preview": {
"max_tokens": 8192,
@@ -1845,7 +1921,8 @@
"output_cost_per_token": 0.00000019,
"litellm_provider": "groq",
"mode": "chat",
- "supports_function_calling": true
+ "supports_function_calling": true,
+ "supports_response_schema": true
},
"cerebras/llama3.1-8b": {
"max_tokens": 128000,
diff --git a/pyproject.toml b/pyproject.toml
index 3e69461ae..d5cf3fb92 100644
--- a/pyproject.toml
+++ b/pyproject.toml
@@ -1,6 +1,6 @@
[tool.poetry]
name = "litellm"
-version = "1.52.12"
+version = "1.52.13"
description = "Library to easily interface with LLM API providers"
authors = ["BerriAI"]
license = "MIT"
@@ -91,7 +91,7 @@ requires = ["poetry-core", "wheel"]
build-backend = "poetry.core.masonry.api"
[tool.commitizen]
-version = "1.52.12"
+version = "1.52.13"
version_files = [
"pyproject.toml:^version"
]
diff --git a/tests/llm_translation/base_llm_unit_tests.py b/tests/llm_translation/base_llm_unit_tests.py
index 74fff60a4..88fce6dac 100644
--- a/tests/llm_translation/base_llm_unit_tests.py
+++ b/tests/llm_translation/base_llm_unit_tests.py
@@ -49,7 +49,7 @@ class BaseLLMChatTest(ABC):
)
assert response is not None
except litellm.InternalServerError:
- pass
+ pytest.skip("Model is overloaded")
# for OpenAI the content contains the JSON schema, so we need to assert that the content is not None
assert response.choices[0].message.content is not None
@@ -92,7 +92,9 @@ class BaseLLMChatTest(ABC):
# relevant issue: https://github.com/BerriAI/litellm/issues/6741
assert response.choices[0].message.content is not None
+ @pytest.mark.flaky(retries=6, delay=1)
def test_json_response_pydantic_obj(self):
+ litellm.set_verbose = True
from pydantic import BaseModel
from litellm.utils import supports_response_schema
@@ -119,6 +121,11 @@ class BaseLLMChatTest(ABC):
response_format=TestModel,
)
assert res is not None
+
+ print(res.choices[0].message)
+
+ assert res.choices[0].message.content is not None
+ assert res.choices[0].message.tool_calls is None
except litellm.InternalServerError:
pytest.skip("Model is overloaded")
@@ -140,12 +147,15 @@ class BaseLLMChatTest(ABC):
},
]
- response = litellm.completion(
- **base_completion_call_args,
- messages=messages,
- response_format={"type": "json_object"},
- stream=True,
- )
+ try:
+ response = litellm.completion(
+ **base_completion_call_args,
+ messages=messages,
+ response_format={"type": "json_object"},
+ stream=True,
+ )
+ except litellm.InternalServerError:
+ pytest.skip("Model is overloaded")
print(response)
@@ -161,6 +171,25 @@ class BaseLLMChatTest(ABC):
assert content is not None
assert len(content) > 0
+ @pytest.fixture
+ def tool_call_no_arguments(self):
+ return {
+ "role": "assistant",
+ "content": "",
+ "tool_calls": [
+ {
+ "id": "call_2c384bc6-de46-4f29-8adc-60dd5805d305",
+ "function": {"name": "Get-FAQ", "arguments": "{}"},
+ "type": "function",
+ }
+ ],
+ }
+
+ @abstractmethod
+ def test_tool_call_no_arguments(self, tool_call_no_arguments):
+ """Test that tool calls with no arguments is translated correctly. Relevant issue: https://github.com/BerriAI/litellm/issues/6833"""
+ pass
+
@pytest.fixture
def pdf_messages(self):
import base64
diff --git a/tests/llm_translation/test_anthropic_completion.py b/tests/llm_translation/test_anthropic_completion.py
index d6ee074b1..812291767 100644
--- a/tests/llm_translation/test_anthropic_completion.py
+++ b/tests/llm_translation/test_anthropic_completion.py
@@ -697,6 +697,15 @@ class TestAnthropicCompletion(BaseLLMChatTest):
assert _document_validation["source"]["media_type"] == "application/pdf"
assert _document_validation["source"]["type"] == "base64"
+ def test_tool_call_no_arguments(self, tool_call_no_arguments):
+ """Test that tool calls with no arguments is translated correctly. Relevant issue: https://github.com/BerriAI/litellm/issues/6833"""
+ from litellm.llms.prompt_templates.factory import (
+ convert_to_anthropic_tool_invoke,
+ )
+
+ result = convert_to_anthropic_tool_invoke([tool_call_no_arguments])
+ print(result)
+
def test_convert_tool_response_to_message_with_values():
"""Test converting a tool response with 'values' key to a message"""
diff --git a/tests/llm_translation/test_deepseek_completion.py b/tests/llm_translation/test_deepseek_completion.py
index b0f7ee663..17b0a340b 100644
--- a/tests/llm_translation/test_deepseek_completion.py
+++ b/tests/llm_translation/test_deepseek_completion.py
@@ -7,3 +7,7 @@ class TestDeepSeekChatCompletion(BaseLLMChatTest):
return {
"model": "deepseek/deepseek-chat",
}
+
+ def test_tool_call_no_arguments(self, tool_call_no_arguments):
+ """Test that tool calls with no arguments is translated correctly. Relevant issue: https://github.com/BerriAI/litellm/issues/6833"""
+ pass
diff --git a/tests/llm_translation/test_groq.py b/tests/llm_translation/test_groq.py
new file mode 100644
index 000000000..359787b2d
--- /dev/null
+++ b/tests/llm_translation/test_groq.py
@@ -0,0 +1,12 @@
+from base_llm_unit_tests import BaseLLMChatTest
+
+
+class TestGroq(BaseLLMChatTest):
+ def get_base_completion_call_args(self) -> dict:
+ return {
+ "model": "groq/llama-3.1-70b-versatile",
+ }
+
+ def test_tool_call_no_arguments(self, tool_call_no_arguments):
+ """Test that tool calls with no arguments is translated correctly. Relevant issue: https://github.com/BerriAI/litellm/issues/6833"""
+ pass
diff --git a/tests/llm_translation/test_mistral_api.py b/tests/llm_translation/test_mistral_api.py
index b2cb36541..bb8cb3c60 100644
--- a/tests/llm_translation/test_mistral_api.py
+++ b/tests/llm_translation/test_mistral_api.py
@@ -32,3 +32,7 @@ class TestMistralCompletion(BaseLLMChatTest):
def get_base_completion_call_args(self) -> dict:
litellm.set_verbose = True
return {"model": "mistral/mistral-small-latest"}
+
+ def test_tool_call_no_arguments(self, tool_call_no_arguments):
+ """Test that tool calls with no arguments is translated correctly. Relevant issue: https://github.com/BerriAI/litellm/issues/6833"""
+ pass
diff --git a/tests/llm_translation/test_optional_params.py b/tests/llm_translation/test_optional_params.py
index 7fe8baeb5..34ecdfaca 100644
--- a/tests/llm_translation/test_optional_params.py
+++ b/tests/llm_translation/test_optional_params.py
@@ -952,3 +952,17 @@ def test_lm_studio_embedding_params():
drop_params=True,
)
assert len(optional_params) == 0
+
+
+def test_ollama_pydantic_obj():
+ from pydantic import BaseModel
+
+ class ResponseFormat(BaseModel):
+ x: str
+ y: str
+
+ get_optional_params(
+ model="qwen2:0.5b",
+ custom_llm_provider="ollama",
+ response_format=ResponseFormat,
+ )
diff --git a/tests/llm_translation/test_vertex.py b/tests/llm_translation/test_vertex.py
index 73960020d..3e1087536 100644
--- a/tests/llm_translation/test_vertex.py
+++ b/tests/llm_translation/test_vertex.py
@@ -306,6 +306,8 @@ def test_multiple_function_call():
)
assert len(r.choices) > 0
+ print(mock_post.call_args.kwargs["json"])
+
assert mock_post.call_args.kwargs["json"] == {
"contents": [
{"role": "user", "parts": [{"text": "do test"}]},
@@ -313,28 +315,8 @@ def test_multiple_function_call():
"role": "model",
"parts": [
{"text": "test"},
- {
- "function_call": {
- "name": "test",
- "args": {
- "fields": {
- "key": "arg",
- "value": {"string_value": "test"},
- }
- },
- }
- },
- {
- "function_call": {
- "name": "test2",
- "args": {
- "fields": {
- "key": "arg",
- "value": {"string_value": "test2"},
- }
- },
- }
- },
+ {"function_call": {"name": "test", "args": {"arg": "test"}}},
+ {"function_call": {"name": "test2", "args": {"arg": "test2"}}},
],
},
{
@@ -342,23 +324,13 @@ def test_multiple_function_call():
{
"function_response": {
"name": "test",
- "response": {
- "fields": {
- "key": "content",
- "value": {"string_value": "42"},
- }
- },
+ "response": {"content": "42"},
}
},
{
"function_response": {
"name": "test2",
- "response": {
- "fields": {
- "key": "content",
- "value": {"string_value": "15"},
- }
- },
+ "response": {"content": "15"},
}
},
]
@@ -441,34 +413,16 @@ def test_multiple_function_call_changed_text_pos():
assert len(resp.choices) > 0
mock_post.assert_called_once()
+ print(mock_post.call_args.kwargs["json"]["contents"])
+
assert mock_post.call_args.kwargs["json"]["contents"] == [
{"role": "user", "parts": [{"text": "do test"}]},
{
"role": "model",
"parts": [
{"text": "test"},
- {
- "function_call": {
- "name": "test",
- "args": {
- "fields": {
- "key": "arg",
- "value": {"string_value": "test"},
- }
- },
- }
- },
- {
- "function_call": {
- "name": "test2",
- "args": {
- "fields": {
- "key": "arg",
- "value": {"string_value": "test2"},
- }
- },
- }
- },
+ {"function_call": {"name": "test", "args": {"arg": "test"}}},
+ {"function_call": {"name": "test2", "args": {"arg": "test2"}}},
],
},
{
@@ -476,23 +430,13 @@ def test_multiple_function_call_changed_text_pos():
{
"function_response": {
"name": "test2",
- "response": {
- "fields": {
- "key": "content",
- "value": {"string_value": "15"},
- }
- },
+ "response": {"content": "15"},
}
},
{
"function_response": {
"name": "test",
- "response": {
- "fields": {
- "key": "content",
- "value": {"string_value": "42"},
- }
- },
+ "response": {"content": "42"},
}
},
]
@@ -1354,3 +1298,20 @@ def test_vertex_embedding_url(model, expected_url):
assert url == expected_url
assert endpoint == "predict"
+
+
+from base_llm_unit_tests import BaseLLMChatTest
+
+
+class TestVertexGemini(BaseLLMChatTest):
+ def get_base_completion_call_args(self) -> dict:
+ return {"model": "gemini/gemini-1.5-flash"}
+
+ def test_tool_call_no_arguments(self, tool_call_no_arguments):
+ """Test that tool calls with no arguments is translated correctly. Relevant issue: https://github.com/BerriAI/litellm/issues/6833"""
+ from litellm.llms.prompt_templates.factory import (
+ convert_to_gemini_tool_call_invoke,
+ )
+
+ result = convert_to_gemini_tool_call_invoke(tool_call_no_arguments)
+ print(result)
diff --git a/tests/local_testing/test_amazing_vertex_completion.py b/tests/local_testing/test_amazing_vertex_completion.py
index f801a53ce..50a39b242 100644
--- a/tests/local_testing/test_amazing_vertex_completion.py
+++ b/tests/local_testing/test_amazing_vertex_completion.py
@@ -2867,6 +2867,7 @@ def test_gemini_function_call_parameter_in_messages():
print(e)
# mock_client.assert_any_call()
+
assert {
"contents": [
{
@@ -2879,12 +2880,7 @@ def test_gemini_function_call_parameter_in_messages():
{
"function_call": {
"name": "search",
- "args": {
- "fields": {
- "key": "queries",
- "value": {"list_value": ["weather in boston"]},
- }
- },
+ "args": {"queries": ["weather in boston"]},
}
}
],
@@ -2895,12 +2891,7 @@ def test_gemini_function_call_parameter_in_messages():
"function_response": {
"name": "search",
"response": {
- "fields": {
- "key": "content",
- "value": {
- "string_value": "The current weather in Boston is 22°F."
- },
- }
+ "content": "The current weather in Boston is 22°F."
},
}
}
@@ -2935,6 +2926,7 @@ def test_gemini_function_call_parameter_in_messages():
def test_gemini_function_call_parameter_in_messages_2():
+ litellm.set_verbose = True
from litellm.llms.vertex_ai_and_google_ai_studio.gemini.transformation import (
_gemini_convert_messages_with_history,
)
@@ -2958,6 +2950,7 @@ def test_gemini_function_call_parameter_in_messages_2():
returned_contents = _gemini_convert_messages_with_history(messages=messages)
+ print(f"returned_contents: {returned_contents}")
assert returned_contents == [
{
"role": "user",
@@ -2970,12 +2963,7 @@ def test_gemini_function_call_parameter_in_messages_2():
{
"function_call": {
"name": "search",
- "args": {
- "fields": {
- "key": "queries",
- "value": {"list_value": ["weather in boston"]},
- }
- },
+ "args": {"queries": ["weather in boston"]},
}
},
],
@@ -2986,12 +2974,7 @@ def test_gemini_function_call_parameter_in_messages_2():
"function_response": {
"name": "search",
"response": {
- "fields": {
- "key": "content",
- "value": {
- "string_value": "The weather in Boston is 100 degrees."
- },
- }
+ "content": "The weather in Boston is 100 degrees."
},
}
}
diff --git a/tests/local_testing/test_ollama.py b/tests/local_testing/test_ollama.py
index de41e24b8..34c0791c3 100644
--- a/tests/local_testing/test_ollama.py
+++ b/tests/local_testing/test_ollama.py
@@ -67,7 +67,8 @@ def test_ollama_json_mode():
assert converted_params == {
"temperature": 0.5,
"format": "json",
- }, f"{converted_params} != {'temperature': 0.5, 'format': 'json'}"
+ "stream": False,
+ }, f"{converted_params} != {'temperature': 0.5, 'format': 'json', 'stream': False}"
except Exception as e:
pytest.fail(f"Error occurred: {e}")
diff --git a/tests/local_testing/test_router_batch_completion.py b/tests/local_testing/test_router_batch_completion.py
index 3de61c0a6..065730d48 100644
--- a/tests/local_testing/test_router_batch_completion.py
+++ b/tests/local_testing/test_router_batch_completion.py
@@ -64,6 +64,7 @@ async def test_batch_completion_multiple_models(mode):
models_in_responses = []
print(f"response: {response}")
for individual_response in response:
+ print(f"individual_response: {individual_response}")
_model = individual_response["model"]
models_in_responses.append(_model)
diff --git a/tests/local_testing/test_utils.py b/tests/local_testing/test_utils.py
index 6e7b0ff05..52946ca30 100644
--- a/tests/local_testing/test_utils.py
+++ b/tests/local_testing/test_utils.py
@@ -749,6 +749,7 @@ def test_convert_model_response_object():
("gemini/gemini-1.5-pro", True),
("predibase/llama3-8b-instruct", True),
("gpt-3.5-turbo", False),
+ ("groq/llama3-70b-8192", True),
],
)
def test_supports_response_schema(model, expected_bool):
diff --git a/tests/proxy_admin_ui_tests/test_route_check_unit_tests.py b/tests/proxy_admin_ui_tests/test_route_check_unit_tests.py
index 001cc0640..a8bba211f 100644
--- a/tests/proxy_admin_ui_tests/test_route_check_unit_tests.py
+++ b/tests/proxy_admin_ui_tests/test_route_check_unit_tests.py
@@ -27,6 +27,9 @@ from fastapi import HTTPException, Request
import pytest
from litellm.proxy.auth.route_checks import RouteChecks
from litellm.proxy._types import LiteLLM_UserTable, LitellmUserRoles, UserAPIKeyAuth
+from litellm.proxy.pass_through_endpoints.llm_passthrough_endpoints import (
+ router as llm_passthrough_router,
+)
# Replace the actual hash_token function with our mock
import litellm.proxy.auth.route_checks
@@ -56,12 +59,21 @@ def test_is_llm_api_route():
assert RouteChecks.is_llm_api_route("/vertex-ai/text") is True
assert RouteChecks.is_llm_api_route("/gemini/generate") is True
assert RouteChecks.is_llm_api_route("/cohere/generate") is True
+ assert RouteChecks.is_llm_api_route("/anthropic/messages") is True
+ assert RouteChecks.is_llm_api_route("/anthropic/v1/messages") is True
+ assert RouteChecks.is_llm_api_route("/azure/endpoint") is True
# check non-matching routes
assert RouteChecks.is_llm_api_route("/some/random/route") is False
assert RouteChecks.is_llm_api_route("/key/regenerate/82akk800000000jjsk") is False
assert RouteChecks.is_llm_api_route("/key/82akk800000000jjsk/delete") is False
+ # check all routes in llm_passthrough_router, ensure they are considered llm api routes
+ for route in llm_passthrough_router.routes:
+ route_path = str(route.path)
+ print("route_path", route_path)
+ assert RouteChecks.is_llm_api_route(route_path) is True
+
# Test _route_matches_pattern
def test_route_matches_pattern():
diff --git a/tests/proxy_unit_tests/test_proxy_server.py b/tests/proxy_unit_tests/test_proxy_server.py
index b1c00ce75..d70962858 100644
--- a/tests/proxy_unit_tests/test_proxy_server.py
+++ b/tests/proxy_unit_tests/test_proxy_server.py
@@ -1794,7 +1794,7 @@ async def test_add_callback_via_key_litellm_pre_call_utils_langsmith(
async def test_gemini_pass_through_endpoint():
from starlette.datastructures import URL
- from litellm.proxy.vertex_ai_endpoints.google_ai_studio_endpoints import (
+ from litellm.proxy.pass_through_endpoints.llm_passthrough_endpoints import (
Request,
Response,
gemini_proxy_route,