feat - allow sending tags on vertex pass through requests (#6876)

* feat - allow tagging vertex JS SDK request

* add unit testing for passing headers for pass through endpoints

* fix allow using vertex_ai as the primary way for pass through vertex endpoints

* docs on vertex js pass tags

* add e2e test for vertex pass through with spend tags

* add e2e tests for streaming vertex JS with tags

* fix vertex ai testing
This commit is contained in:
Ishaan Jaff 2024-11-25 12:12:09 -08:00 committed by GitHub
parent c73ce95c01
commit f77bf49772
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
7 changed files with 548 additions and 77 deletions

View file

@ -4,17 +4,9 @@ import TabItem from '@theme/TabItem';
# Vertex AI SDK
Use VertexAI SDK to call endpoints on LiteLLM Gateway (native provider format)
:::tip
Looking for the Unified API (OpenAI format) for VertexAI ? [Go here - using vertexAI with LiteLLM SDK or LiteLLM Proxy Server](../providers/vertex.md)
:::
Pass-through endpoints for Vertex AI - call provider-specific endpoint, in native format (no translation).
Just replace `https://REGION-aiplatform.googleapis.com` with `LITELLM_PROXY_BASE_URL/vertex-ai`
Just replace `https://REGION-aiplatform.googleapis.com` with `LITELLM_PROXY_BASE_URL/vertex_ai`
#### **Example Usage**
@ -23,9 +15,9 @@ Just replace `https://REGION-aiplatform.googleapis.com` with `LITELLM_PROXY_BASE
<TabItem value="curl" label="curl">
```bash
curl http://localhost:4000/vertex-ai/publishers/google/models/gemini-1.0-pro:generateContent \
curl http://localhost:4000/vertex_ai/publishers/google/models/gemini-1.0-pro:generateContent \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-H "x-litellm-api-key: Bearer sk-1234" \
-d '{
"contents":[{
"role": "user",
@ -43,7 +35,7 @@ const { VertexAI } = require('@google-cloud/vertexai');
const vertexAI = new VertexAI({
project: 'your-project-id', // enter your vertex project id
location: 'us-central1', // enter your vertex region
apiEndpoint: "localhost:4000/vertex-ai" // <proxy-server-url>/vertex-ai # note, do not include 'https://' in the url
apiEndpoint: "localhost:4000/vertex_ai" // <proxy-server-url>/vertex_ai # note, do not include 'https://' in the url
});
const model = vertexAI.getGenerativeModel({
@ -87,7 +79,7 @@ generateContent();
- Tuning API
- CountTokens API
## Authentication to Vertex AI
#### Authentication to Vertex AI
LiteLLM Proxy Server supports two methods of authentication to Vertex AI:
@ -116,9 +108,9 @@ from vertexai.preview.generative_models import GenerativeModel
LITE_LLM_ENDPOINT = "http://localhost:4000"
vertexai.init(
project="<your-vertex-ai-project-id>", # enter your project id
location="<your-vertex-ai-location>", # enter your region
api_endpoint=f"{LITE_LLM_ENDPOINT}/vertex-ai", # route on litellm
project="<your-vertex_ai-project-id>", # enter your project id
location="<your-vertex_ai-location>", # enter your region
api_endpoint=f"{LITE_LLM_ENDPOINT}/vertex_ai", # route on litellm
api_transport="rest",
)
@ -158,7 +150,7 @@ from google.auth.credentials import Credentials
from vertexai.generative_models import GenerativeModel
LITELLM_PROXY_API_KEY = "sk-1234"
LITELLM_PROXY_BASE = "http://0.0.0.0:4000/vertex-ai"
LITELLM_PROXY_BASE = "http://0.0.0.0:4000/vertex_ai"
import datetime
@ -219,7 +211,7 @@ import vertexai
from vertexai.generative_models import GenerativeModel
LITELLM_PROXY_API_KEY = "sk-1234"
LITELLM_PROXY_BASE = "http://0.0.0.0:4000/vertex-ai"
LITELLM_PROXY_BASE = "http://0.0.0.0:4000/vertex_ai"
vertexai.init(
project="adroit-crow-413218",
@ -247,7 +239,7 @@ from google.auth.credentials import Credentials
from vertexai.generative_models import GenerativeModel
LITELLM_PROXY_API_KEY = "sk-1234"
LITELLM_PROXY_BASE = "http://0.0.0.0:4000/vertex-ai"
LITELLM_PROXY_BASE = "http://0.0.0.0:4000/vertex_ai"
import datetime
@ -297,9 +289,9 @@ print(response.text)
<TabItem value="Curl" label="Curl">
```shell
curl http://localhost:4000/vertex-ai/publishers/google/models/gemini-1.5-flash-001:generateContent \
curl http://localhost:4000/vertex_ai/publishers/google/models/gemini-1.5-flash-001:generateContent \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-H "x-litellm-api-key: Bearer sk-1234" \
-d '{"contents":[{"role": "user", "parts":[{"text": "hi"}]}]}'
```
@ -320,7 +312,7 @@ import vertexai
from vertexai.generative_models import GenerativeModel
LITELLM_PROXY_API_KEY = "sk-1234"
LITELLM_PROXY_BASE = "http://0.0.0.0:4000/vertex-ai"
LITELLM_PROXY_BASE = "http://0.0.0.0:4000/vertex_ai"
import datetime
@ -358,7 +350,7 @@ from google.auth.credentials import Credentials
from vertexai.generative_models import GenerativeModel
LITELLM_PROXY_API_KEY = "sk-1234"
LITELLM_PROXY_BASE = "http://0.0.0.0:4000/vertex-ai"
LITELLM_PROXY_BASE = "http://0.0.0.0:4000/vertex_ai"
import datetime
@ -413,9 +405,9 @@ def embed_text(
<TabItem value="curl" label="Curl">
```shell
curl http://localhost:4000/vertex-ai/publishers/google/models/textembedding-gecko@001:predict \
curl http://localhost:4000/vertex_ai/publishers/google/models/textembedding-gecko@001:predict \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-H "x-litellm-api-key: Bearer sk-1234" \
-d '{"instances":[{"content": "gm"}]}'
```
@ -437,7 +429,7 @@ import vertexai
from google.auth.credentials import Credentials
LITELLM_PROXY_API_KEY = "sk-1234"
LITELLM_PROXY_BASE = "http://0.0.0.0:4000/vertex-ai"
LITELLM_PROXY_BASE = "http://0.0.0.0:4000/vertex_ai"
import datetime
@ -482,7 +474,7 @@ import vertexai
from google.auth.credentials import Credentials
LITELLM_PROXY_API_KEY = "sk-1234"
LITELLM_PROXY_BASE = "http://0.0.0.0:4000/vertex-ai"
LITELLM_PROXY_BASE = "http://0.0.0.0:4000/vertex_ai"
import datetime
@ -547,9 +539,9 @@ print(f"Created output image using {len(images[0]._image_bytes)} bytes")
<TabItem value="curl" label="Curl">
```shell
curl http://localhost:4000/vertex-ai/publishers/google/models/imagen-3.0-generate-001:predict \
curl http://localhost:4000/vertex_ai/publishers/google/models/imagen-3.0-generate-001:predict \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-H "x-litellm-api-key: Bearer sk-1234" \
-d '{"instances":[{"prompt": "make an otter"}], "parameters": {"sampleCount": 1}}'
```
@ -571,7 +563,7 @@ from vertexai.generative_models import GenerativeModel
import vertexai
LITELLM_PROXY_API_KEY = "sk-1234"
LITELLM_PROXY_BASE = "http://0.0.0.0:4000/vertex-ai"
LITELLM_PROXY_BASE = "http://0.0.0.0:4000/vertex_ai"
import datetime
@ -614,7 +606,7 @@ import vertexai
from google.auth.credentials import Credentials
LITELLM_PROXY_API_KEY = "sk-1234"
LITELLM_PROXY_BASE = "http://0.0.0.0:4000/vertex-ai"
LITELLM_PROXY_BASE = "http://0.0.0.0:4000/vertex_ai"
import datetime
@ -677,9 +669,9 @@ print(f"Total Token Count: {usage_metadata.total_token_count}")
```shell
curl http://localhost:4000/vertex-ai/publishers/google/models/gemini-1.5-flash-001:countTokens \
curl http://localhost:4000/vertex_ai/publishers/google/models/gemini-1.5-flash-001:countTokens \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-H "x-litellm-api-key: Bearer sk-1234" \
-d '{"contents":[{"role": "user", "parts":[{"text": "hi"}]}]}'
```
@ -700,7 +692,7 @@ from vertexai.preview.tuning import sft
import vertexai
LITELLM_PROXY_API_KEY = "sk-1234"
LITELLM_PROXY_BASE = "http://0.0.0.0:4000/vertex-ai"
LITELLM_PROXY_BASE = "http://0.0.0.0:4000/vertex_ai"
vertexai.init(
@ -741,7 +733,7 @@ import vertexai
from google.auth.credentials import Credentials
LITELLM_PROXY_API_KEY = "sk-1234"
LITELLM_PROXY_BASE = "http://0.0.0.0:4000/vertex-ai"
LITELLM_PROXY_BASE = "http://0.0.0.0:4000/vertex_ai"
import datetime
@ -801,9 +793,9 @@ print(sft_tuning_job.experiment)
<TabItem value="curl" label="Curl">
```shell
curl http://localhost:4000/vertex-ai/tuningJobs \
curl http://localhost:4000/vertex_ai/tuningJobs \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-H "x-litellm-api-key: Bearer sk-1234" \
-d '{
"baseModel": "gemini-1.0-pro-002",
"supervisedTuningSpec" : {
@ -872,8 +864,8 @@ httpx_client = httpx.Client(timeout=30)
print("Creating cached content")
create_cache = httpx_client.post(
url=f"{LITELLM_BASE_URL}/vertex-ai/cachedContents",
headers={"Authorization": f"Bearer {LITELLM_PROXY_API_KEY}"},
url=f"{LITELLM_BASE_URL}/vertex_ai/cachedContents",
headers={"x-litellm-api-key": f"Bearer {LITELLM_PROXY_API_KEY}"},
json={
"model": "gemini-1.5-pro-001",
"contents": [
@ -922,3 +914,128 @@ print("Response from proxy:", response)
</TabItem>
</Tabs>
## Advanced
Pre-requisites
- [Setup proxy with DB](../proxy/virtual_keys.md#setup)
Use this, to avoid giving developers the raw Anthropic API key, but still letting them use Anthropic endpoints.
### Use with Virtual Keys
1. Setup environment
```bash
export DATABASE_URL=""
export LITELLM_MASTER_KEY=""
```
```bash
litellm
# RUNNING on http://0.0.0.0:4000
```
2. Generate virtual key
```bash
curl -X POST 'http://0.0.0.0:4000/key/generate' \
-H 'x-litellm-api-key: Bearer sk-1234' \
-H 'Content-Type: application/json' \
-d '{}'
```
Expected Response
```bash
{
...
"key": "sk-1234ewknldferwedojwojw"
}
```
3. Test it!
```bash
curl http://localhost:4000/vertex_ai/publishers/google/models/gemini-1.0-pro:generateContent \
-H "Content-Type: application/json" \
-H "x-litellm-api-key: Bearer sk-1234" \
-d '{
"contents":[{
"role": "user",
"parts":[{"text": "How are you doing today?"}]
}]
}'
```
### Send `tags` in request headers
Use this if you wants `tags` to be tracked in the LiteLLM DB and on logging callbacks
Pass `tags` in request headers as a comma separated list. In the example below the following tags will be tracked
```
tags: ["vertex-js-sdk", "pass-through-endpoint"]
```
<Tabs>
<TabItem value="curl" label="curl">
```bash
curl http://localhost:4000/vertex-ai/publishers/google/models/gemini-1.0-pro:generateContent \
-H "Content-Type: application/json" \
-H "x-litellm-api-key: Bearer sk-1234" \
-H "tags: vertex-js-sdk,pass-through-endpoint" \
-d '{
"contents":[{
"role": "user",
"parts":[{"text": "How are you doing today?"}]
}]
}'
```
</TabItem>
<TabItem value="js" label="Vertex Node.js SDK">
```javascript
const { VertexAI } = require('@google-cloud/vertexai');
const vertexAI = new VertexAI({
project: 'your-project-id', // enter your vertex project id
location: 'us-central1', // enter your vertex region
apiEndpoint: "localhost:4000/vertex_ai" // <proxy-server-url>/vertex_ai # note, do not include 'https://' in the url
});
const model = vertexAI.getGenerativeModel({
model: 'gemini-1.0-pro'
}, {
customHeaders: {
"x-litellm-api-key": "sk-1234", // Your litellm Virtual Key
"tags": "vertex-js-sdk,pass-through-endpoint"
}
});
async function generateContent() {
try {
const prompt = {
contents: [{
role: 'user',
parts: [{ text: 'How are you doing today?' }]
}]
};
const response = await model.generateContent(prompt);
console.log('Response:', response);
} catch (error) {
console.error('Error:', error);
}
}
generateContent();
```
</TabItem>
</Tabs>

View file

@ -393,6 +393,7 @@ async def pass_through_request( # noqa: PLR0915
_parsed_body=_parsed_body,
passthrough_logging_payload=passthrough_logging_payload,
litellm_call_id=litellm_call_id,
request=request,
)
# done for supporting 'parallel_request_limiter.py' with pass-through endpoints
logging_obj.update_environment_variables(
@ -572,6 +573,7 @@ async def pass_through_request( # noqa: PLR0915
def _init_kwargs_for_pass_through_endpoint(
request: Request,
user_api_key_dict: UserAPIKeyAuth,
passthrough_logging_payload: PassthroughStandardLoggingPayload,
_parsed_body: Optional[dict] = None,
@ -587,6 +589,12 @@ def _init_kwargs_for_pass_through_endpoint(
}
if _litellm_metadata:
_metadata.update(_litellm_metadata)
_metadata = _update_metadata_with_tags_in_header(
request=request,
metadata=_metadata,
)
kwargs = {
"litellm_params": {
"metadata": _metadata,
@ -598,6 +606,13 @@ def _init_kwargs_for_pass_through_endpoint(
return kwargs
def _update_metadata_with_tags_in_header(request: Request, metadata: dict) -> dict:
_tags = request.headers.get("tags")
if _tags:
metadata["tags"] = _tags.split(",")
return metadata
def create_pass_through_route(
endpoint,
target: str,

View file

@ -113,7 +113,12 @@ def construct_target_url(
@router.api_route(
"/vertex-ai/{endpoint:path}", methods=["GET", "POST", "PUT", "DELETE"]
"/vertex-ai/{endpoint:path}",
methods=["GET", "POST", "PUT", "DELETE"],
include_in_schema=False,
)
@router.api_route(
"/vertex_ai/{endpoint:path}", methods=["GET", "POST", "PUT", "DELETE"]
)
async def vertex_proxy_route(
endpoint: str,

View file

@ -1,31 +1,22 @@
const { VertexAI, RequestOptions } = require('@google-cloud/vertexai');
// Import fetch if the SDK uses it
const originalFetch = global.fetch || require('node-fetch');
// Monkey-patch the fetch used internally
global.fetch = async function patchedFetch(url, options) {
// Modify the URL to use HTTP instead of HTTPS
if (url.startsWith('https://localhost:4000')) {
url = url.replace('https://', 'http://');
}
console.log('Patched fetch sending request to:', url);
return originalFetch(url, options);
};
const vertexAI = new VertexAI({
project: 'adroit-crow-413218',
location: 'us-central1',
apiEndpoint: "localhost:4000/vertex-ai"
apiEndpoint: "127.0.0.1:4000/vertex-ai"
});
// Create customHeaders using Headers
const customHeaders = new Headers({
"X-Litellm-Api-Key": "sk-1234",
tags: "vertexjs,test-2"
});
// Use customHeaders in RequestOptions
const requestOptions = {
customHeaders: new Headers({
"x-litellm-api-key": "sk-1234"
})
customHeaders: customHeaders,
};
const generativeModel = vertexAI.getGenerativeModel(
@ -33,7 +24,7 @@ const generativeModel = vertexAI.getGenerativeModel(
requestOptions
);
async function streamingResponse() {
async function testModel() {
try {
const request = {
contents: [{role: 'user', parts: [{text: 'How are you doing today tell me your name?'}]}],
@ -49,20 +40,4 @@ async function streamingResponse() {
}
}
async function nonStreamingResponse() {
try {
const request = {
contents: [{role: 'user', parts: [{text: 'How are you doing today tell me your name?'}]}],
};
const response = await generativeModel.generateContent(request);
console.log('non streaming response: ', JSON.stringify(response));
} catch (error) {
console.error('Error:', error);
}
}
streamingResponse();
nonStreamingResponse();
testModel();

View file

@ -99,7 +99,7 @@ async def test_basic_vertex_ai_pass_through_with_spendlog():
vertexai.init(
project="adroit-crow-413218",
location="us-central1",
api_endpoint=f"{LITE_LLM_ENDPOINT}/vertex-ai",
api_endpoint=f"{LITE_LLM_ENDPOINT}/vertex_ai",
api_transport="rest",
)
@ -131,7 +131,7 @@ async def test_basic_vertex_ai_pass_through_streaming_with_spendlog():
vertexai.init(
project="adroit-crow-413218",
location="us-central1",
api_endpoint=f"{LITE_LLM_ENDPOINT}/vertex-ai",
api_endpoint=f"{LITE_LLM_ENDPOINT}/vertex_ai",
api_transport="rest",
)
@ -170,7 +170,7 @@ async def test_vertex_ai_pass_through_endpoint_context_caching():
vertexai.init(
project="adroit-crow-413218",
location="us-central1",
api_endpoint=f"{LITE_LLM_ENDPOINT}/vertex-ai",
api_endpoint=f"{LITE_LLM_ENDPOINT}/vertex_ai",
api_transport="rest",
)

View file

@ -0,0 +1,194 @@
const { VertexAI, RequestOptions } = require('@google-cloud/vertexai');
const fs = require('fs');
const path = require('path');
const os = require('os');
const { writeFileSync } = require('fs');
// Import fetch if the SDK uses it
const originalFetch = global.fetch || require('node-fetch');
let lastCallId;
// Monkey-patch the fetch used internally
global.fetch = async function patchedFetch(url, options) {
// Modify the URL to use HTTP instead of HTTPS
if (url.startsWith('https://127.0.0.1:4000')) {
url = url.replace('https://', 'http://');
}
console.log('Patched fetch sending request to:', url);
const response = await originalFetch(url, options);
// Store the call ID if it exists
lastCallId = response.headers.get('x-litellm-call-id');
return response;
};
function loadVertexAiCredentials() {
console.log("loading vertex ai credentials");
const filepath = path.dirname(__filename);
const vertexKeyPath = path.join(filepath, "vertex_key.json");
// Initialize default empty service account data
let serviceAccountKeyData = {};
// Try to read existing vertex_key.json
try {
const content = fs.readFileSync(vertexKeyPath, 'utf8');
if (content && content.trim()) {
serviceAccountKeyData = JSON.parse(content);
}
} catch (error) {
// File doesn't exist or is invalid, continue with empty object
}
// Update with environment variables
const privateKeyId = process.env.VERTEX_AI_PRIVATE_KEY_ID || "";
const privateKey = (process.env.VERTEX_AI_PRIVATE_KEY || "").replace(/\\n/g, "\n");
serviceAccountKeyData.private_key_id = privateKeyId;
serviceAccountKeyData.private_key = privateKey;
// Create temporary file
const tempFilePath = path.join(os.tmpdir(), `vertex-credentials-${Date.now()}.json`);
writeFileSync(tempFilePath, JSON.stringify(serviceAccountKeyData, null, 2));
// Set environment variable
process.env.GOOGLE_APPLICATION_CREDENTIALS = tempFilePath;
}
// Run credential loading before tests
// beforeAll(() => {
// loadVertexAiCredentials();
// });
describe('Vertex AI Tests', () => {
test('should successfully generate non-streaming content with tags', async () => {
const vertexAI = new VertexAI({
project: 'adroit-crow-413218',
location: 'us-central1',
apiEndpoint: "127.0.0.1:4000/vertex_ai"
});
const customHeaders = new Headers({
"x-litellm-api-key": "sk-1234",
"tags": "vertex-js-sdk,pass-through-endpoint"
});
const requestOptions = {
customHeaders: customHeaders
};
const generativeModel = vertexAI.getGenerativeModel(
{ model: 'gemini-1.0-pro' },
requestOptions
);
const request = {
contents: [{role: 'user', parts: [{text: 'Say "hello test" and nothing else'}]}]
};
const result = await generativeModel.generateContent(request);
expect(result).toBeDefined();
// Use the captured callId
const callId = lastCallId;
console.log("Captured Call ID:", callId);
// Wait for spend to be logged
await new Promise(resolve => setTimeout(resolve, 15000));
// Check spend logs
const spendResponse = await fetch(
`http://127.0.0.1:4000/spend/logs?request_id=${callId}`,
{
headers: {
'Authorization': 'Bearer sk-1234'
}
}
);
const spendData = await spendResponse.json();
console.log("spendData", spendData)
expect(spendData).toBeDefined();
expect(spendData[0].request_id).toBe(callId);
expect(spendData[0].call_type).toBe('pass_through_endpoint');
expect(spendData[0].request_tags).toEqual(['vertex-js-sdk', 'pass-through-endpoint']);
expect(spendData[0].metadata).toHaveProperty('user_api_key');
expect(spendData[0].model).toContain('gemini');
expect(spendData[0].spend).toBeGreaterThan(0);
}, 25000);
test('should successfully generate streaming content with tags', async () => {
const vertexAI = new VertexAI({
project: 'adroit-crow-413218',
location: 'us-central1',
apiEndpoint: "127.0.0.1:4000/vertex_ai"
});
const customHeaders = new Headers({
"x-litellm-api-key": "sk-1234",
"tags": "vertex-js-sdk,pass-through-endpoint"
});
const requestOptions = {
customHeaders: customHeaders
};
const generativeModel = vertexAI.getGenerativeModel(
{ model: 'gemini-1.0-pro' },
requestOptions
);
const request = {
contents: [{role: 'user', parts: [{text: 'Say "hello test" and nothing else'}]}]
};
const streamingResult = await generativeModel.generateContentStream(request);
expect(streamingResult).toBeDefined();
// Add some assertions
expect(streamingResult).toBeDefined();
for await (const item of streamingResult.stream) {
console.log('stream chunk:', JSON.stringify(item));
expect(item).toBeDefined();
}
const aggregatedResponse = await streamingResult.response;
console.log('aggregated response:', JSON.stringify(aggregatedResponse));
expect(aggregatedResponse).toBeDefined();
// Use the captured callId
const callId = lastCallId;
console.log("Captured Call ID:", callId);
// Wait for spend to be logged
await new Promise(resolve => setTimeout(resolve, 15000));
// Check spend logs
const spendResponse = await fetch(
`http://127.0.0.1:4000/spend/logs?request_id=${callId}`,
{
headers: {
'Authorization': 'Bearer sk-1234'
}
}
);
const spendData = await spendResponse.json();
console.log("spendData", spendData)
expect(spendData).toBeDefined();
expect(spendData[0].request_id).toBe(callId);
expect(spendData[0].call_type).toBe('pass_through_endpoint');
expect(spendData[0].request_tags).toEqual(['vertex-js-sdk', 'pass-through-endpoint']);
expect(spendData[0].metadata).toHaveProperty('user_api_key');
expect(spendData[0].model).toContain('gemini');
expect(spendData[0].spend).toBeGreaterThan(0);
}, 25000);
});

View file

@ -0,0 +1,165 @@
import json
import os
import sys
from datetime import datetime
from unittest.mock import AsyncMock, Mock, patch, MagicMock
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import httpx
import pytest
import litellm
from typing import AsyncGenerator
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
from litellm.proxy.pass_through_endpoints.types import EndpointType
from litellm.proxy.pass_through_endpoints.success_handler import (
PassThroughEndpointLogging,
)
from litellm.proxy.pass_through_endpoints.streaming_handler import (
PassThroughStreamingHandler,
)
from fastapi import Request
from litellm.proxy._types import UserAPIKeyAuth
from litellm.proxy.pass_through_endpoints.pass_through_endpoints import (
_init_kwargs_for_pass_through_endpoint,
_update_metadata_with_tags_in_header,
)
from litellm.proxy.pass_through_endpoints.types import PassthroughStandardLoggingPayload
@pytest.fixture
def mock_request():
# Create a mock request with headers
class MockRequest:
def __init__(self, headers=None):
self.headers = headers or {}
return MockRequest
@pytest.fixture
def mock_user_api_key_dict():
return UserAPIKeyAuth(
api_key="test-key",
user_id="test-user",
team_id="test-team",
)
def test_update_metadata_with_tags_in_header_no_tags(mock_request):
"""
No tags should be added to metadata if they do not exist in headers
"""
# Test when no tags are present in headers
request = mock_request(headers={})
metadata = {"existing": "value"}
result = _update_metadata_with_tags_in_header(request=request, metadata=metadata)
assert result == {"existing": "value"}
assert "tags" not in result
def test_update_metadata_with_tags_in_header_with_tags(mock_request):
"""
Tags should be added to metadata if they exist in headers
"""
# Test when tags are present in headers
request = mock_request(headers={"tags": "tag1,tag2,tag3"})
metadata = {"existing": "value"}
result = _update_metadata_with_tags_in_header(request=request, metadata=metadata)
assert result == {"existing": "value", "tags": ["tag1", "tag2", "tag3"]}
def test_init_kwargs_for_pass_through_endpoint_basic(
mock_request, mock_user_api_key_dict
):
"""
Basic test for init_kwargs_for_pass_through_endpoint
- metadata should contain user_api_key, user_api_key_user_id, user_api_key_team_id, user_api_key_end_user_id from `mock_user_api_key_dict`
"""
request = mock_request()
passthrough_payload = PassthroughStandardLoggingPayload(
url="https://test.com",
request_body={},
)
result = _init_kwargs_for_pass_through_endpoint(
request=request,
user_api_key_dict=mock_user_api_key_dict,
passthrough_logging_payload=passthrough_payload,
litellm_call_id="test-call-id",
)
assert result["call_type"] == "pass_through_endpoint"
assert result["litellm_call_id"] == "test-call-id"
assert result["passthrough_logging_payload"] == passthrough_payload
# Check metadata
expected_metadata = {
"user_api_key": "test-key",
"user_api_key_user_id": "test-user",
"user_api_key_team_id": "test-team",
"user_api_key_end_user_id": "test-user",
}
assert result["litellm_params"]["metadata"] == expected_metadata
def test_init_kwargs_with_litellm_metadata(mock_request, mock_user_api_key_dict):
"""
Expected behavior: litellm_metadata should be merged with default metadata
see usage example here: https://docs.litellm.ai/docs/pass_through/anthropic_completion#send-litellm_metadata-tags
"""
request = mock_request()
parsed_body = {
"litellm_metadata": {"custom_field": "custom_value", "tags": ["tag1", "tag2"]}
}
passthrough_payload = PassthroughStandardLoggingPayload(
url="https://test.com",
request_body={},
)
result = _init_kwargs_for_pass_through_endpoint(
request=request,
user_api_key_dict=mock_user_api_key_dict,
passthrough_logging_payload=passthrough_payload,
_parsed_body=parsed_body,
litellm_call_id="test-call-id",
)
# Check that litellm_metadata was merged with default metadata
metadata = result["litellm_params"]["metadata"]
print("metadata", metadata)
assert metadata["custom_field"] == "custom_value"
assert metadata["tags"] == ["tag1", "tag2"]
assert metadata["user_api_key"] == "test-key"
def test_init_kwargs_with_tags_in_header(mock_request, mock_user_api_key_dict):
"""
Tags should be added to metadata if they exist in headers
"""
request = mock_request(headers={"tags": "tag1,tag2"})
passthrough_payload = PassthroughStandardLoggingPayload(
url="https://test.com",
request_body={},
)
result = _init_kwargs_for_pass_through_endpoint(
request=request,
user_api_key_dict=mock_user_api_key_dict,
passthrough_logging_payload=passthrough_payload,
litellm_call_id="test-call-id",
)
# Check that tags were added to metadata
metadata = result["litellm_params"]["metadata"]
print("metadata", metadata)
assert metadata["tags"] == ["tag1", "tag2"]