forked from phoenix/litellm-mirror
fix(utils.py): fix proxy streaming spend tracking
This commit is contained in:
parent
01a2514b98
commit
f8870fb48e
4 changed files with 130 additions and 14 deletions
|
@ -570,7 +570,7 @@ async def track_cost_callback(
|
|||
litellm_params = kwargs.get("litellm_params", {}) or {}
|
||||
proxy_server_request = litellm_params.get("proxy_server_request") or {}
|
||||
user_id = proxy_server_request.get("body", {}).get("user", None)
|
||||
if "response_cost" in kwargs:
|
||||
if kwargs.get("response_cost", None) is not None:
|
||||
response_cost = kwargs["response_cost"]
|
||||
user_api_key = kwargs["litellm_params"]["metadata"].get(
|
||||
"user_api_key", None
|
||||
|
@ -596,9 +596,13 @@ async def track_cost_callback(
|
|||
end_time=end_time,
|
||||
)
|
||||
else:
|
||||
raise Exception(
|
||||
f"Model not in litellm model cost map. Add custom pricing - https://docs.litellm.ai/docs/proxy/custom_pricing"
|
||||
)
|
||||
if kwargs["stream"] != True or (
|
||||
kwargs["stream"] == True
|
||||
and kwargs.get("complete_streaming_response") in kwargs
|
||||
):
|
||||
raise Exception(
|
||||
f"Model not in litellm model cost map. Add custom pricing - https://docs.litellm.ai/docs/proxy/custom_pricing"
|
||||
)
|
||||
except Exception as e:
|
||||
verbose_proxy_logger.debug(f"error in tracking cost callback - {str(e)}")
|
||||
|
||||
|
|
|
@ -1067,9 +1067,13 @@ class Logging:
|
|||
## if model in model cost map - log the response cost
|
||||
## else set cost to None
|
||||
verbose_logger.debug(f"Model={self.model}; result={result}")
|
||||
if result is not None and (
|
||||
isinstance(result, ModelResponse)
|
||||
or isinstance(result, EmbeddingResponse)
|
||||
if (
|
||||
result is not None
|
||||
and (
|
||||
isinstance(result, ModelResponse)
|
||||
or isinstance(result, EmbeddingResponse)
|
||||
)
|
||||
and self.stream != True
|
||||
):
|
||||
try:
|
||||
self.model_call_details["response_cost"] = litellm.completion_cost(
|
||||
|
@ -1104,6 +1108,12 @@ class Logging:
|
|||
self, result=None, start_time=None, end_time=None, cache_hit=None, **kwargs
|
||||
):
|
||||
verbose_logger.debug(f"Logging Details LiteLLM-Success Call")
|
||||
start_time, end_time, result = self._success_handler_helper_fn(
|
||||
start_time=start_time,
|
||||
end_time=end_time,
|
||||
result=result,
|
||||
cache_hit=cache_hit,
|
||||
)
|
||||
# print(f"original response in success handler: {self.model_call_details['original_response']}")
|
||||
try:
|
||||
verbose_logger.debug(f"success callbacks: {litellm.success_callback}")
|
||||
|
@ -1119,6 +1129,8 @@ class Logging:
|
|||
complete_streaming_response = litellm.stream_chunk_builder(
|
||||
self.sync_streaming_chunks,
|
||||
messages=self.model_call_details.get("messages", None),
|
||||
start_time=start_time,
|
||||
end_time=end_time,
|
||||
)
|
||||
except:
|
||||
complete_streaming_response = None
|
||||
|
@ -1132,13 +1144,19 @@ class Logging:
|
|||
self.model_call_details[
|
||||
"complete_streaming_response"
|
||||
] = complete_streaming_response
|
||||
try:
|
||||
self.model_call_details["response_cost"] = litellm.completion_cost(
|
||||
completion_response=complete_streaming_response,
|
||||
)
|
||||
verbose_logger.debug(
|
||||
f"Model={self.model}; cost={self.model_call_details['response_cost']}"
|
||||
)
|
||||
except litellm.NotFoundError as e:
|
||||
verbose_logger.debug(
|
||||
f"Model={self.model} not found in completion cost map."
|
||||
)
|
||||
self.model_call_details["response_cost"] = None
|
||||
|
||||
start_time, end_time, result = self._success_handler_helper_fn(
|
||||
start_time=start_time,
|
||||
end_time=end_time,
|
||||
result=result,
|
||||
cache_hit=cache_hit,
|
||||
)
|
||||
for callback in litellm.success_callback:
|
||||
try:
|
||||
if callback == "lite_debugger":
|
||||
|
@ -1423,6 +1441,18 @@ class Logging:
|
|||
self.model_call_details[
|
||||
"complete_streaming_response"
|
||||
] = complete_streaming_response
|
||||
try:
|
||||
self.model_call_details["response_cost"] = litellm.completion_cost(
|
||||
completion_response=complete_streaming_response,
|
||||
)
|
||||
verbose_logger.debug(
|
||||
f"Model={self.model}; cost={self.model_call_details['response_cost']}"
|
||||
)
|
||||
except litellm.NotFoundError as e:
|
||||
verbose_logger.debug(
|
||||
f"Model={self.model} not found in completion cost map."
|
||||
)
|
||||
self.model_call_details["response_cost"] = None
|
||||
|
||||
for callback in litellm._async_success_callback:
|
||||
try:
|
||||
|
|
|
@ -4,13 +4,20 @@
|
|||
import pytest
|
||||
import asyncio
|
||||
import aiohttp
|
||||
from openai import AsyncOpenAI
|
||||
import sys, os
|
||||
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../")
|
||||
) # Adds the parent directory to the system path
|
||||
import litellm
|
||||
|
||||
|
||||
async def generate_key(session, i):
|
||||
url = "http://0.0.0.0:4000/key/generate"
|
||||
headers = {"Authorization": "Bearer sk-1234", "Content-Type": "application/json"}
|
||||
data = {
|
||||
"models": ["azure-models"],
|
||||
"models": ["azure-models", "gpt-4"],
|
||||
"aliases": {"mistral-7b": "gpt-3.5-turbo"},
|
||||
"duration": None,
|
||||
}
|
||||
|
@ -82,6 +89,34 @@ async def chat_completion(session, key, model="gpt-4"):
|
|||
if status != 200:
|
||||
raise Exception(f"Request did not return a 200 status code: {status}")
|
||||
|
||||
return await response.json()
|
||||
|
||||
|
||||
async def chat_completion_streaming(session, key, model="gpt-4"):
|
||||
client = AsyncOpenAI(api_key=key, base_url="http://0.0.0.0:4000")
|
||||
messages = [
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "Hello!"},
|
||||
]
|
||||
data = {
|
||||
"model": model,
|
||||
"messages": messages,
|
||||
"stream": True,
|
||||
}
|
||||
response = await client.chat.completions.create(**data)
|
||||
|
||||
content = ""
|
||||
async for chunk in response:
|
||||
content += chunk.choices[0].delta.content or ""
|
||||
|
||||
print(f"content: {content}")
|
||||
prompt_tokens = litellm.token_counter(model="azure/gpt-35-turbo", messages=messages)
|
||||
completion_tokens = litellm.token_counter(
|
||||
model="azure/gpt-35-turbo", text=content, count_response_tokens=True
|
||||
)
|
||||
|
||||
return prompt_tokens, completion_tokens
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_key_update():
|
||||
|
@ -181,3 +216,49 @@ async def test_key_info():
|
|||
random_key = key_gen["key"]
|
||||
status = await get_key_info(session=session, get_key=key, call_key=random_key)
|
||||
assert status == 403
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_key_info_spend_values():
|
||||
"""
|
||||
- create key
|
||||
- make completion call
|
||||
- assert cost is expected value
|
||||
"""
|
||||
async with aiohttp.ClientSession() as session:
|
||||
## Test Spend Update ##
|
||||
# completion
|
||||
# response = await chat_completion(session=session, key=key)
|
||||
# prompt_cost, completion_cost = litellm.cost_per_token(
|
||||
# model="azure/gpt-35-turbo",
|
||||
# prompt_tokens=response["usage"]["prompt_tokens"],
|
||||
# completion_tokens=response["usage"]["completion_tokens"],
|
||||
# )
|
||||
# response_cost = prompt_cost + completion_cost
|
||||
# await asyncio.sleep(5) # allow db log to be updated
|
||||
# key_info = await get_key_info(session=session, get_key=key, call_key=key)
|
||||
# print(
|
||||
# f"response_cost: {response_cost}; key_info spend: {key_info['info']['spend']}"
|
||||
# )
|
||||
# assert response_cost == key_info["info"]["spend"]
|
||||
## streaming
|
||||
key_gen = await generate_key(session=session, i=0)
|
||||
new_key = key_gen["key"]
|
||||
prompt_tokens, completion_tokens = await chat_completion_streaming(
|
||||
session=session, key=new_key
|
||||
)
|
||||
print(f"prompt_tokens: {prompt_tokens}, completion_tokens: {completion_tokens}")
|
||||
prompt_cost, completion_cost = litellm.cost_per_token(
|
||||
model="azure/gpt-35-turbo",
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
)
|
||||
response_cost = prompt_cost + completion_cost
|
||||
await asyncio.sleep(5) # allow db log to be updated
|
||||
key_info = await get_key_info(
|
||||
session=session, get_key=new_key, call_key=new_key
|
||||
)
|
||||
print(
|
||||
f"response_cost: {response_cost}; key_info spend: {key_info['info']['spend']}"
|
||||
)
|
||||
assert response_cost == key_info["info"]["spend"]
|
||||
|
|
|
@ -68,6 +68,7 @@ async def chat_completion(session, key):
|
|||
|
||||
if status != 200:
|
||||
raise Exception(f"Request did not return a 200 status code: {status}")
|
||||
return await response.json()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue