forked from phoenix/litellm-mirror
Merge pull request #5250 from BerriAI/docs_sagemaker_docs
[Docs] Sagemaker add example on using with LiteLLM Proxy and temperature=0
This commit is contained in:
commit
f92cabbceb
2 changed files with 341 additions and 25 deletions
|
@ -1,10 +1,18 @@
|
|||
import Tabs from '@theme/Tabs';
|
||||
import TabItem from '@theme/TabItem'
|
||||
|
||||
# AWS Sagemaker
|
||||
LiteLLM supports All Sagemaker Huggingface Jumpstart Models
|
||||
|
||||
:::tip
|
||||
|
||||
**We support ALL Sagemaker models, just set `model=sagemaker/<any-model-on-sagemaker>` as a prefix when sending litellm requests**
|
||||
|
||||
:::
|
||||
|
||||
|
||||
### API KEYS
|
||||
```python
|
||||
!pip install boto3
|
||||
|
||||
os.environ["AWS_ACCESS_KEY_ID"] = ""
|
||||
os.environ["AWS_SECRET_ACCESS_KEY"] = ""
|
||||
os.environ["AWS_REGION_NAME"] = ""
|
||||
|
@ -27,6 +35,327 @@ response = completion(
|
|||
)
|
||||
```
|
||||
|
||||
### Usage - Streaming
|
||||
Sagemaker currently does not support streaming - LiteLLM fakes streaming by returning chunks of the response string
|
||||
|
||||
```python
|
||||
import os
|
||||
from litellm import completion
|
||||
|
||||
os.environ["AWS_ACCESS_KEY_ID"] = ""
|
||||
os.environ["AWS_SECRET_ACCESS_KEY"] = ""
|
||||
os.environ["AWS_REGION_NAME"] = ""
|
||||
|
||||
response = completion(
|
||||
model="sagemaker/jumpstart-dft-meta-textgeneration-llama-2-7b",
|
||||
messages=[{ "content": "Hello, how are you?","role": "user"}],
|
||||
temperature=0.2,
|
||||
max_tokens=80,
|
||||
stream=True,
|
||||
)
|
||||
for chunk in response:
|
||||
print(chunk)
|
||||
```
|
||||
|
||||
|
||||
## **LiteLLM Proxy Usage**
|
||||
|
||||
Here's how to call Sagemaker with the LiteLLM Proxy Server
|
||||
|
||||
### 1. Setup config.yaml
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: jumpstart-model
|
||||
litellm_params:
|
||||
model: sagemaker/jumpstart-dft-hf-textgeneration1-mp-20240815-185614
|
||||
aws_access_key_id: os.environ/CUSTOM_AWS_ACCESS_KEY_ID
|
||||
aws_secret_access_key: os.environ/CUSTOM_AWS_SECRET_ACCESS_KEY
|
||||
aws_region_name: os.environ/CUSTOM_AWS_REGION_NAME
|
||||
```
|
||||
|
||||
All possible auth params:
|
||||
|
||||
```
|
||||
aws_access_key_id: Optional[str],
|
||||
aws_secret_access_key: Optional[str],
|
||||
aws_session_token: Optional[str],
|
||||
aws_region_name: Optional[str],
|
||||
aws_session_name: Optional[str],
|
||||
aws_profile_name: Optional[str],
|
||||
aws_role_name: Optional[str],
|
||||
aws_web_identity_token: Optional[str],
|
||||
```
|
||||
|
||||
### 2. Start the proxy
|
||||
|
||||
```bash
|
||||
litellm --config /path/to/config.yaml
|
||||
```
|
||||
### 3. Test it
|
||||
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="Curl" label="Curl Request">
|
||||
|
||||
```shell
|
||||
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
||||
--header 'Content-Type: application/json' \
|
||||
--data ' {
|
||||
"model": "jumpstart-model",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "what llm are you"
|
||||
}
|
||||
]
|
||||
}
|
||||
'
|
||||
```
|
||||
</TabItem>
|
||||
<TabItem value="openai" label="OpenAI v1.0.0+">
|
||||
|
||||
```python
|
||||
import openai
|
||||
client = openai.OpenAI(
|
||||
api_key="anything",
|
||||
base_url="http://0.0.0.0:4000"
|
||||
)
|
||||
|
||||
response = client.chat.completions.create(model="jumpstart-model", messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "this is a test request, write a short poem"
|
||||
}
|
||||
])
|
||||
|
||||
print(response)
|
||||
|
||||
```
|
||||
</TabItem>
|
||||
<TabItem value="langchain" label="Langchain">
|
||||
|
||||
```python
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from langchain.prompts.chat import (
|
||||
ChatPromptTemplate,
|
||||
HumanMessagePromptTemplate,
|
||||
SystemMessagePromptTemplate,
|
||||
)
|
||||
from langchain.schema import HumanMessage, SystemMessage
|
||||
|
||||
chat = ChatOpenAI(
|
||||
openai_api_base="http://0.0.0.0:4000", # set openai_api_base to the LiteLLM Proxy
|
||||
model = "jumpstart-model",
|
||||
temperature=0.1
|
||||
)
|
||||
|
||||
messages = [
|
||||
SystemMessage(
|
||||
content="You are a helpful assistant that im using to make a test request to."
|
||||
),
|
||||
HumanMessage(
|
||||
content="test from litellm. tell me why it's amazing in 1 sentence"
|
||||
),
|
||||
]
|
||||
response = chat(messages)
|
||||
|
||||
print(response)
|
||||
```
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
## Set temperature, top p, etc.
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="sdk" label="SDK">
|
||||
|
||||
```python
|
||||
import os
|
||||
from litellm import completion
|
||||
|
||||
os.environ["AWS_ACCESS_KEY_ID"] = ""
|
||||
os.environ["AWS_SECRET_ACCESS_KEY"] = ""
|
||||
os.environ["AWS_REGION_NAME"] = ""
|
||||
|
||||
response = completion(
|
||||
model="sagemaker/jumpstart-dft-hf-textgeneration1-mp-20240815-185614",
|
||||
messages=[{ "content": "Hello, how are you?","role": "user"}],
|
||||
temperature=0.7,
|
||||
top_p=1
|
||||
)
|
||||
```
|
||||
</TabItem>
|
||||
<TabItem value="proxy" label="PROXY">
|
||||
|
||||
**Set on yaml**
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: jumpstart-model
|
||||
litellm_params:
|
||||
model: sagemaker/jumpstart-dft-hf-textgeneration1-mp-20240815-185614
|
||||
temperature: <your-temp>
|
||||
top_p: <your-top-p>
|
||||
```
|
||||
|
||||
**Set on request**
|
||||
|
||||
```python
|
||||
|
||||
import openai
|
||||
client = openai.OpenAI(
|
||||
api_key="anything",
|
||||
base_url="http://0.0.0.0:4000"
|
||||
)
|
||||
|
||||
# request sent to model set on litellm proxy, `litellm --model`
|
||||
response = client.chat.completions.create(model="jumpstart-model", messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "this is a test request, write a short poem"
|
||||
}
|
||||
],
|
||||
temperature=0.7,
|
||||
top_p=1
|
||||
)
|
||||
|
||||
print(response)
|
||||
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
## **Allow setting temperature=0** for Sagemaker
|
||||
|
||||
By default when `temperature=0` is sent in requests to LiteLLM, LiteLLM rounds up to `temperature=0.1` since Sagemaker fails most requests when `temperature=0`
|
||||
|
||||
If you want to send `temperature=0` for your model here's how to set it up (Since Sagemaker can host any kind of model, some models allow zero temperature)
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="sdk" label="SDK">
|
||||
|
||||
```python
|
||||
import os
|
||||
from litellm import completion
|
||||
|
||||
os.environ["AWS_ACCESS_KEY_ID"] = ""
|
||||
os.environ["AWS_SECRET_ACCESS_KEY"] = ""
|
||||
os.environ["AWS_REGION_NAME"] = ""
|
||||
|
||||
response = completion(
|
||||
model="sagemaker/jumpstart-dft-hf-textgeneration1-mp-20240815-185614",
|
||||
messages=[{ "content": "Hello, how are you?","role": "user"}],
|
||||
temperature=0,
|
||||
aws_sagemaker_allow_zero_temp=True,
|
||||
)
|
||||
```
|
||||
</TabItem>
|
||||
<TabItem value="proxy" label="PROXY">
|
||||
|
||||
**Set `aws_sagemaker_allow_zero_temp` on yaml**
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: jumpstart-model
|
||||
litellm_params:
|
||||
model: sagemaker/jumpstart-dft-hf-textgeneration1-mp-20240815-185614
|
||||
aws_sagemaker_allow_zero_temp: true
|
||||
```
|
||||
|
||||
**Set `temperature=0` on request**
|
||||
|
||||
```python
|
||||
|
||||
import openai
|
||||
client = openai.OpenAI(
|
||||
api_key="anything",
|
||||
base_url="http://0.0.0.0:4000"
|
||||
)
|
||||
|
||||
# request sent to model set on litellm proxy, `litellm --model`
|
||||
response = client.chat.completions.create(model="jumpstart-model", messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "this is a test request, write a short poem"
|
||||
}
|
||||
],
|
||||
temperature=0,
|
||||
)
|
||||
|
||||
print(response)
|
||||
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
## Pass provider-specific params
|
||||
|
||||
If you pass a non-openai param to litellm, we'll assume it's provider-specific and send it as a kwarg in the request body. [See more](../completion/input.md#provider-specific-params)
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="sdk" label="SDK">
|
||||
|
||||
```python
|
||||
import os
|
||||
from litellm import completion
|
||||
|
||||
os.environ["AWS_ACCESS_KEY_ID"] = ""
|
||||
os.environ["AWS_SECRET_ACCESS_KEY"] = ""
|
||||
os.environ["AWS_REGION_NAME"] = ""
|
||||
|
||||
response = completion(
|
||||
model="sagemaker/jumpstart-dft-hf-textgeneration1-mp-20240815-185614",
|
||||
messages=[{ "content": "Hello, how are you?","role": "user"}],
|
||||
top_k=1 # 👈 PROVIDER-SPECIFIC PARAM
|
||||
)
|
||||
```
|
||||
</TabItem>
|
||||
<TabItem value="proxy" label="PROXY">
|
||||
|
||||
**Set on yaml**
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: jumpstart-model
|
||||
litellm_params:
|
||||
model: sagemaker/jumpstart-dft-hf-textgeneration1-mp-20240815-185614
|
||||
top_k: 1 # 👈 PROVIDER-SPECIFIC PARAM
|
||||
```
|
||||
|
||||
**Set on request**
|
||||
|
||||
```python
|
||||
|
||||
import openai
|
||||
client = openai.OpenAI(
|
||||
api_key="anything",
|
||||
base_url="http://0.0.0.0:4000"
|
||||
)
|
||||
|
||||
# request sent to model set on litellm proxy, `litellm --model`
|
||||
response = client.chat.completions.create(model="jumpstart-model", messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "this is a test request, write a short poem"
|
||||
}
|
||||
],
|
||||
temperature=0.7,
|
||||
extra_body={
|
||||
top_k=1 # 👈 PROVIDER-SPECIFIC PARAM
|
||||
}
|
||||
)
|
||||
|
||||
print(response)
|
||||
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
|
||||
### Passing Inference Component Name
|
||||
|
||||
If you have multiple models on an endpoint, you'll need to specify the individual model names, do this via `model_id`.
|
||||
|
@ -85,29 +414,16 @@ response = completion(
|
|||
|
||||
You can also pass in your own [custom prompt template](../completion/prompt_formatting.md#format-prompt-yourself)
|
||||
|
||||
### Usage - Streaming
|
||||
Sagemaker currently does not support streaming - LiteLLM fakes streaming by returning chunks of the response string
|
||||
|
||||
```python
|
||||
import os
|
||||
from litellm import completion
|
||||
|
||||
os.environ["AWS_ACCESS_KEY_ID"] = ""
|
||||
os.environ["AWS_SECRET_ACCESS_KEY"] = ""
|
||||
os.environ["AWS_REGION_NAME"] = ""
|
||||
|
||||
response = completion(
|
||||
model="sagemaker/jumpstart-dft-meta-textgeneration-llama-2-7b",
|
||||
messages=[{ "content": "Hello, how are you?","role": "user"}],
|
||||
temperature=0.2,
|
||||
max_tokens=80,
|
||||
stream=True,
|
||||
)
|
||||
for chunk in response:
|
||||
print(chunk)
|
||||
```
|
||||
|
||||
### Completion Models
|
||||
|
||||
|
||||
:::tip
|
||||
|
||||
**We support ALL Sagemaker models, just set `model=sagemaker/<any-model-on-sagemaker>` as a prefix when sending litellm requests**
|
||||
|
||||
:::
|
||||
|
||||
Here's an example of using a sagemaker model with LiteLLM
|
||||
|
||||
| Model Name | Function Call |
|
||||
|
@ -120,7 +436,7 @@ Here's an example of using a sagemaker model with LiteLLM
|
|||
| Meta Llama 2 70B | `completion(model='sagemaker/jumpstart-dft-meta-textgeneration-llama-2-70b', messages=messages)` | `os.environ['AWS_ACCESS_KEY_ID']`, `os.environ['AWS_SECRET_ACCESS_KEY']`, `os.environ['AWS_REGION_NAME']` |
|
||||
| Meta Llama 2 70B (Chat/Fine-tuned) | `completion(model='sagemaker/jumpstart-dft-meta-textgeneration-llama-2-70b-b-f', messages=messages)` | `os.environ['AWS_ACCESS_KEY_ID']`, `os.environ['AWS_SECRET_ACCESS_KEY']`, `os.environ['AWS_REGION_NAME']` |
|
||||
|
||||
### Embedding Models
|
||||
## Embedding Models
|
||||
|
||||
LiteLLM supports all Sagemaker Jumpstart Huggingface Embedding models. Here's how to call it:
|
||||
|
||||
|
|
|
@ -36,7 +36,7 @@ response = completion(
|
|||
)
|
||||
```
|
||||
|
||||
## OpenAI Proxy Usage
|
||||
## LiteLLM Proxy Usage
|
||||
|
||||
Here's how to call Anthropic with the LiteLLM Proxy Server
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue