forked from phoenix/litellm-mirror
feat: add cost tracking + caching for transcription calls
This commit is contained in:
parent
e10991e02b
commit
fa45c569fd
8 changed files with 225 additions and 37 deletions
|
@ -10,7 +10,7 @@
|
|||
import litellm
|
||||
import time, logging, asyncio
|
||||
import json, traceback, ast, hashlib
|
||||
from typing import Optional, Literal, List, Union, Any
|
||||
from typing import Optional, Literal, List, Union, Any, BinaryIO
|
||||
from openai._models import BaseModel as OpenAIObject
|
||||
from litellm._logging import verbose_logger
|
||||
|
||||
|
@ -764,8 +764,24 @@ class Cache:
|
|||
password: Optional[str] = None,
|
||||
similarity_threshold: Optional[float] = None,
|
||||
supported_call_types: Optional[
|
||||
List[Literal["completion", "acompletion", "embedding", "aembedding"]]
|
||||
] = ["completion", "acompletion", "embedding", "aembedding"],
|
||||
List[
|
||||
Literal[
|
||||
"completion",
|
||||
"acompletion",
|
||||
"embedding",
|
||||
"aembedding",
|
||||
"atranscription",
|
||||
"transcription",
|
||||
]
|
||||
]
|
||||
] = [
|
||||
"completion",
|
||||
"acompletion",
|
||||
"embedding",
|
||||
"aembedding",
|
||||
"atranscription",
|
||||
"transcription",
|
||||
],
|
||||
# s3 Bucket, boto3 configuration
|
||||
s3_bucket_name: Optional[str] = None,
|
||||
s3_region_name: Optional[str] = None,
|
||||
|
@ -880,9 +896,18 @@ class Cache:
|
|||
"input",
|
||||
"encoding_format",
|
||||
] # embedding kwargs = model, input, user, encoding_format. Model, user are checked in completion_kwargs
|
||||
|
||||
transcription_only_kwargs = [
|
||||
"model",
|
||||
"file",
|
||||
"language",
|
||||
"prompt",
|
||||
"response_format",
|
||||
"temperature",
|
||||
]
|
||||
# combined_kwargs - NEEDS to be ordered across get_cache_key(). Do not use a set()
|
||||
combined_kwargs = completion_kwargs + embedding_only_kwargs
|
||||
combined_kwargs = (
|
||||
completion_kwargs + embedding_only_kwargs + transcription_only_kwargs
|
||||
)
|
||||
for param in combined_kwargs:
|
||||
# ignore litellm params here
|
||||
if param in kwargs:
|
||||
|
@ -914,6 +939,17 @@ class Cache:
|
|||
param_value = (
|
||||
caching_group or model_group or kwargs[param]
|
||||
) # use caching_group, if set then model_group if it exists, else use kwargs["model"]
|
||||
elif param == "file":
|
||||
metadata_file_name = kwargs.get("metadata", {}).get(
|
||||
"file_name", None
|
||||
)
|
||||
litellm_params_file_name = kwargs.get("litellm_params", {}).get(
|
||||
"file_name", None
|
||||
)
|
||||
if metadata_file_name is not None:
|
||||
param_value = metadata_file_name
|
||||
elif litellm_params_file_name is not None:
|
||||
param_value = litellm_params_file_name
|
||||
else:
|
||||
if kwargs[param] is None:
|
||||
continue # ignore None params
|
||||
|
@ -1143,8 +1179,24 @@ def enable_cache(
|
|||
port: Optional[str] = None,
|
||||
password: Optional[str] = None,
|
||||
supported_call_types: Optional[
|
||||
List[Literal["completion", "acompletion", "embedding", "aembedding"]]
|
||||
] = ["completion", "acompletion", "embedding", "aembedding"],
|
||||
List[
|
||||
Literal[
|
||||
"completion",
|
||||
"acompletion",
|
||||
"embedding",
|
||||
"aembedding",
|
||||
"atranscription",
|
||||
"transcription",
|
||||
]
|
||||
]
|
||||
] = [
|
||||
"completion",
|
||||
"acompletion",
|
||||
"embedding",
|
||||
"aembedding",
|
||||
"atranscription",
|
||||
"transcription",
|
||||
],
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
|
@ -1192,8 +1244,24 @@ def update_cache(
|
|||
port: Optional[str] = None,
|
||||
password: Optional[str] = None,
|
||||
supported_call_types: Optional[
|
||||
List[Literal["completion", "acompletion", "embedding", "aembedding"]]
|
||||
] = ["completion", "acompletion", "embedding", "aembedding"],
|
||||
List[
|
||||
Literal[
|
||||
"completion",
|
||||
"acompletion",
|
||||
"embedding",
|
||||
"aembedding",
|
||||
"atranscription",
|
||||
"transcription",
|
||||
]
|
||||
]
|
||||
] = [
|
||||
"completion",
|
||||
"acompletion",
|
||||
"embedding",
|
||||
"aembedding",
|
||||
"atranscription",
|
||||
"transcription",
|
||||
],
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
|
|
|
@ -861,7 +861,8 @@ class AzureChatCompletion(BaseLLM):
|
|||
additional_args={"complete_input_dict": data},
|
||||
original_response=stringified_response,
|
||||
)
|
||||
final_response = convert_to_model_response_object(response_object=stringified_response, model_response_object=model_response, response_type="audio_transcription") # type: ignore
|
||||
hidden_params = {"model": "whisper-1", "custom_llm_provider": "azure"}
|
||||
final_response = convert_to_model_response_object(response_object=stringified_response, model_response_object=model_response, hidden_params=hidden_params, response_type="audio_transcription") # type: ignore
|
||||
return final_response
|
||||
|
||||
async def async_audio_transcriptions(
|
||||
|
@ -921,7 +922,8 @@ class AzureChatCompletion(BaseLLM):
|
|||
},
|
||||
original_response=stringified_response,
|
||||
)
|
||||
response = convert_to_model_response_object(response_object=stringified_response, model_response_object=model_response, response_type="audio_transcription") # type: ignore
|
||||
hidden_params = {"model": "whisper-1", "custom_llm_provider": "azure"}
|
||||
response = convert_to_model_response_object(response_object=stringified_response, model_response_object=model_response, hidden_params=hidden_params, response_type="audio_transcription") # type: ignore
|
||||
return response
|
||||
except Exception as e:
|
||||
## LOGGING
|
||||
|
|
|
@ -824,7 +824,8 @@ class OpenAIChatCompletion(BaseLLM):
|
|||
additional_args={"complete_input_dict": data},
|
||||
original_response=stringified_response,
|
||||
)
|
||||
final_response = convert_to_model_response_object(response_object=stringified_response, model_response_object=model_response, response_type="audio_transcription") # type: ignore
|
||||
hidden_params = {"model": "whisper-1", "custom_llm_provider": "openai"}
|
||||
final_response = convert_to_model_response_object(response_object=stringified_response, model_response_object=model_response, hidden_params=hidden_params, response_type="audio_transcription") # type: ignore
|
||||
return final_response
|
||||
|
||||
async def async_audio_transcriptions(
|
||||
|
@ -862,7 +863,8 @@ class OpenAIChatCompletion(BaseLLM):
|
|||
additional_args={"complete_input_dict": data},
|
||||
original_response=stringified_response,
|
||||
)
|
||||
return convert_to_model_response_object(response_object=stringified_response, model_response_object=model_response, response_type="audio_transcription") # type: ignore
|
||||
hidden_params = {"model": "whisper-1", "custom_llm_provider": "openai"}
|
||||
return convert_to_model_response_object(response_object=stringified_response, model_response_object=model_response, hidden_params=hidden_params, response_type="audio_transcription") # type: ignore
|
||||
except Exception as e:
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
|
|
|
@ -3282,6 +3282,7 @@ async def audio_transcriptions(
|
|||
user_api_key_dict, "team_id", None
|
||||
)
|
||||
data["metadata"]["endpoint"] = str(request.url)
|
||||
data["metadata"]["file_name"] = file.filename
|
||||
|
||||
### TEAM-SPECIFIC PARAMS ###
|
||||
if user_api_key_dict.team_id is not None:
|
||||
|
@ -3316,7 +3317,7 @@ async def audio_transcriptions(
|
|||
data = await proxy_logging_obj.pre_call_hook(
|
||||
user_api_key_dict=user_api_key_dict,
|
||||
data=data,
|
||||
call_type="moderation",
|
||||
call_type="audio_transcription",
|
||||
)
|
||||
|
||||
## ROUTE TO CORRECT ENDPOINT ##
|
||||
|
|
|
@ -96,7 +96,11 @@ class ProxyLogging:
|
|||
user_api_key_dict: UserAPIKeyAuth,
|
||||
data: dict,
|
||||
call_type: Literal[
|
||||
"completion", "embeddings", "image_generation", "moderation"
|
||||
"completion",
|
||||
"embeddings",
|
||||
"image_generation",
|
||||
"moderation",
|
||||
"audio_transcription",
|
||||
],
|
||||
):
|
||||
"""
|
||||
|
|
|
@ -6,7 +6,12 @@ sys.path.insert(
|
|||
) # Adds the parent directory to the system path
|
||||
import time
|
||||
import litellm
|
||||
from litellm import get_max_tokens, model_cost, open_ai_chat_completion_models
|
||||
from litellm import (
|
||||
get_max_tokens,
|
||||
model_cost,
|
||||
open_ai_chat_completion_models,
|
||||
TranscriptionResponse,
|
||||
)
|
||||
import pytest
|
||||
|
||||
|
||||
|
@ -238,3 +243,57 @@ def test_cost_bedrock_pricing_actual_calls():
|
|||
messages=[{"role": "user", "content": "Hey, how's it going?"}],
|
||||
)
|
||||
assert cost > 0
|
||||
|
||||
|
||||
def test_whisper_openai():
|
||||
litellm.set_verbose = True
|
||||
transcription = TranscriptionResponse(
|
||||
text="Four score and seven years ago, our fathers brought forth on this continent a new nation, conceived in liberty and dedicated to the proposition that all men are created equal. Now we are engaged in a great civil war, testing whether that nation, or any nation so conceived and so dedicated, can long endure."
|
||||
)
|
||||
transcription._hidden_params = {
|
||||
"model": "whisper-1",
|
||||
"custom_llm_provider": "openai",
|
||||
"optional_params": {},
|
||||
"model_id": None,
|
||||
}
|
||||
_total_time_in_seconds = 3
|
||||
|
||||
transcription._response_ms = _total_time_in_seconds * 1000
|
||||
cost = litellm.completion_cost(model="whisper-1", completion_response=transcription)
|
||||
|
||||
print(f"cost: {cost}")
|
||||
print(f"whisper dict: {litellm.model_cost['whisper-1']}")
|
||||
expected_cost = round(
|
||||
litellm.model_cost["whisper-1"]["output_cost_per_second"]
|
||||
* _total_time_in_seconds,
|
||||
5,
|
||||
)
|
||||
assert cost == expected_cost
|
||||
|
||||
|
||||
def test_whisper_azure():
|
||||
litellm.set_verbose = True
|
||||
transcription = TranscriptionResponse(
|
||||
text="Four score and seven years ago, our fathers brought forth on this continent a new nation, conceived in liberty and dedicated to the proposition that all men are created equal. Now we are engaged in a great civil war, testing whether that nation, or any nation so conceived and so dedicated, can long endure."
|
||||
)
|
||||
transcription._hidden_params = {
|
||||
"model": "whisper-1",
|
||||
"custom_llm_provider": "azure",
|
||||
"optional_params": {},
|
||||
"model_id": None,
|
||||
}
|
||||
_total_time_in_seconds = 3
|
||||
|
||||
transcription._response_ms = _total_time_in_seconds * 1000
|
||||
cost = litellm.completion_cost(
|
||||
model="azure/azure-whisper", completion_response=transcription
|
||||
)
|
||||
|
||||
print(f"cost: {cost}")
|
||||
print(f"whisper dict: {litellm.model_cost['whisper-1']}")
|
||||
expected_cost = round(
|
||||
litellm.model_cost["whisper-1"]["output_cost_per_second"]
|
||||
* _total_time_in_seconds,
|
||||
5,
|
||||
)
|
||||
assert cost == expected_cost
|
||||
|
|
|
@ -1168,6 +1168,7 @@ class Logging:
|
|||
isinstance(result, ModelResponse)
|
||||
or isinstance(result, EmbeddingResponse)
|
||||
or isinstance(result, ImageResponse)
|
||||
or isinstance(result, TranscriptionResponse)
|
||||
)
|
||||
and self.stream != True
|
||||
): # handle streaming separately
|
||||
|
@ -1203,9 +1204,6 @@ class Logging:
|
|||
model=base_model,
|
||||
)
|
||||
)
|
||||
verbose_logger.debug(
|
||||
f"Model={self.model}; cost={self.model_call_details['response_cost']}"
|
||||
)
|
||||
except litellm.NotFoundError as e:
|
||||
verbose_logger.debug(
|
||||
f"Model={self.model} not found in completion cost map."
|
||||
|
@ -1236,7 +1234,7 @@ class Logging:
|
|||
def success_handler(
|
||||
self, result=None, start_time=None, end_time=None, cache_hit=None, **kwargs
|
||||
):
|
||||
verbose_logger.debug(f"Logging Details LiteLLM-Success Call: {cache_hit}")
|
||||
print_verbose(f"Logging Details LiteLLM-Success Call: {cache_hit}")
|
||||
start_time, end_time, result = self._success_handler_helper_fn(
|
||||
start_time=start_time,
|
||||
end_time=end_time,
|
||||
|
@ -1681,6 +1679,7 @@ class Logging:
|
|||
"""
|
||||
Implementing async callbacks, to handle asyncio event loop issues when custom integrations need to use async functions.
|
||||
"""
|
||||
print_verbose(f"Logging Details LiteLLM-Async Success Call: {cache_hit}")
|
||||
start_time, end_time, result = self._success_handler_helper_fn(
|
||||
start_time=start_time, end_time=end_time, result=result, cache_hit=cache_hit
|
||||
)
|
||||
|
@ -2473,6 +2472,7 @@ def client(original_function):
|
|||
and kwargs.get("aembedding", False) != True
|
||||
and kwargs.get("acompletion", False) != True
|
||||
and kwargs.get("aimg_generation", False) != True
|
||||
and kwargs.get("atranscription", False) != True
|
||||
): # allow users to control returning cached responses from the completion function
|
||||
# checking cache
|
||||
print_verbose(f"INSIDE CHECKING CACHE")
|
||||
|
@ -2875,6 +2875,19 @@ def client(original_function):
|
|||
model_response_object=EmbeddingResponse(),
|
||||
response_type="embedding",
|
||||
)
|
||||
elif call_type == CallTypes.atranscription.value and isinstance(
|
||||
cached_result, dict
|
||||
):
|
||||
hidden_params = {
|
||||
"model": "whisper-1",
|
||||
"custom_llm_provider": custom_llm_provider,
|
||||
}
|
||||
cached_result = convert_to_model_response_object(
|
||||
response_object=cached_result,
|
||||
model_response_object=TranscriptionResponse(),
|
||||
response_type="audio_transcription",
|
||||
hidden_params=hidden_params,
|
||||
)
|
||||
if kwargs.get("stream", False) == False:
|
||||
# LOG SUCCESS
|
||||
asyncio.create_task(
|
||||
|
@ -3001,6 +3014,20 @@ def client(original_function):
|
|||
else:
|
||||
return result
|
||||
|
||||
# ADD HIDDEN PARAMS - additional call metadata
|
||||
if hasattr(result, "_hidden_params"):
|
||||
result._hidden_params["model_id"] = kwargs.get("model_info", {}).get(
|
||||
"id", None
|
||||
)
|
||||
if (
|
||||
isinstance(result, ModelResponse)
|
||||
or isinstance(result, EmbeddingResponse)
|
||||
or isinstance(result, TranscriptionResponse)
|
||||
):
|
||||
result._response_ms = (
|
||||
end_time - start_time
|
||||
).total_seconds() * 1000 # return response latency in ms like openai
|
||||
|
||||
### POST-CALL RULES ###
|
||||
post_call_processing(original_response=result, model=model)
|
||||
|
||||
|
@ -3013,8 +3040,10 @@ def client(original_function):
|
|||
)
|
||||
and (kwargs.get("cache", {}).get("no-store", False) != True)
|
||||
):
|
||||
if isinstance(result, litellm.ModelResponse) or isinstance(
|
||||
result, litellm.EmbeddingResponse
|
||||
if (
|
||||
isinstance(result, litellm.ModelResponse)
|
||||
or isinstance(result, litellm.EmbeddingResponse)
|
||||
or isinstance(result, TranscriptionResponse)
|
||||
):
|
||||
if (
|
||||
isinstance(result, EmbeddingResponse)
|
||||
|
@ -3058,18 +3087,7 @@ def client(original_function):
|
|||
args=(result, start_time, end_time),
|
||||
).start()
|
||||
|
||||
# RETURN RESULT
|
||||
if hasattr(result, "_hidden_params"):
|
||||
result._hidden_params["model_id"] = kwargs.get("model_info", {}).get(
|
||||
"id", None
|
||||
)
|
||||
if isinstance(result, ModelResponse) or isinstance(
|
||||
result, EmbeddingResponse
|
||||
):
|
||||
result._response_ms = (
|
||||
end_time - start_time
|
||||
).total_seconds() * 1000 # return response latency in ms like openai
|
||||
|
||||
# REBUILD EMBEDDING CACHING
|
||||
if (
|
||||
isinstance(result, EmbeddingResponse)
|
||||
and final_embedding_cached_response is not None
|
||||
|
@ -3575,6 +3593,20 @@ def cost_per_token(
|
|||
completion_tokens_cost_usd_dollar = (
|
||||
model_cost_ref[model]["output_cost_per_token"] * completion_tokens
|
||||
)
|
||||
elif (
|
||||
model_cost_ref[model].get("output_cost_per_second", None) is not None
|
||||
and response_time_ms is not None
|
||||
):
|
||||
print_verbose(
|
||||
f"For model={model} - output_cost_per_second: {model_cost_ref[model].get('output_cost_per_second')}; response time: {response_time_ms}"
|
||||
)
|
||||
## COST PER SECOND ##
|
||||
prompt_tokens_cost_usd_dollar = 0
|
||||
completion_tokens_cost_usd_dollar = (
|
||||
model_cost_ref[model]["output_cost_per_second"]
|
||||
* response_time_ms
|
||||
/ 1000
|
||||
)
|
||||
elif (
|
||||
model_cost_ref[model].get("input_cost_per_second", None) is not None
|
||||
and response_time_ms is not None
|
||||
|
@ -3659,6 +3691,8 @@ def completion_cost(
|
|||
"text_completion",
|
||||
"image_generation",
|
||||
"aimage_generation",
|
||||
"transcription",
|
||||
"atranscription",
|
||||
] = "completion",
|
||||
### REGION ###
|
||||
custom_llm_provider=None,
|
||||
|
@ -3703,6 +3737,7 @@ def completion_cost(
|
|||
and custom_llm_provider == "azure"
|
||||
):
|
||||
model = "dall-e-2" # for dall-e-2, azure expects an empty model name
|
||||
|
||||
# Handle Inputs to completion_cost
|
||||
prompt_tokens = 0
|
||||
completion_tokens = 0
|
||||
|
@ -3717,10 +3752,11 @@ def completion_cost(
|
|||
verbose_logger.debug(
|
||||
f"completion_response response ms: {completion_response.get('_response_ms')} "
|
||||
)
|
||||
model = (
|
||||
model or completion_response["model"]
|
||||
model = model or completion_response.get(
|
||||
"model", None
|
||||
) # check if user passed an override for model, if it's none check completion_response['model']
|
||||
if hasattr(completion_response, "_hidden_params"):
|
||||
model = completion_response._hidden_params.get("model", model)
|
||||
custom_llm_provider = completion_response._hidden_params.get(
|
||||
"custom_llm_provider", ""
|
||||
)
|
||||
|
@ -3801,6 +3837,7 @@ def completion_cost(
|
|||
# see https://replicate.com/pricing
|
||||
elif model in litellm.replicate_models or "replicate" in model:
|
||||
return get_replicate_completion_pricing(completion_response, total_time)
|
||||
|
||||
(
|
||||
prompt_tokens_cost_usd_dollar,
|
||||
completion_tokens_cost_usd_dollar,
|
||||
|
@ -6314,6 +6351,7 @@ def convert_to_model_response_object(
|
|||
stream=False,
|
||||
start_time=None,
|
||||
end_time=None,
|
||||
hidden_params: Optional[dict] = None,
|
||||
):
|
||||
try:
|
||||
if response_type == "completion" and (
|
||||
|
@ -6373,6 +6411,9 @@ def convert_to_model_response_object(
|
|||
end_time - start_time
|
||||
).total_seconds() * 1000
|
||||
|
||||
if hidden_params is not None:
|
||||
model_response_object._hidden_params = hidden_params
|
||||
|
||||
return model_response_object
|
||||
elif response_type == "embedding" and (
|
||||
model_response_object is None
|
||||
|
@ -6402,6 +6443,9 @@ def convert_to_model_response_object(
|
|||
end_time - start_time
|
||||
).total_seconds() * 1000 # return response latency in ms like openai
|
||||
|
||||
if hidden_params is not None:
|
||||
model_response_object._hidden_params = hidden_params
|
||||
|
||||
return model_response_object
|
||||
elif response_type == "image_generation" and (
|
||||
model_response_object is None
|
||||
|
@ -6419,6 +6463,9 @@ def convert_to_model_response_object(
|
|||
if "data" in response_object:
|
||||
model_response_object.data = response_object["data"]
|
||||
|
||||
if hidden_params is not None:
|
||||
model_response_object._hidden_params = hidden_params
|
||||
|
||||
return model_response_object
|
||||
elif response_type == "audio_transcription" and (
|
||||
model_response_object is None
|
||||
|
@ -6432,6 +6479,9 @@ def convert_to_model_response_object(
|
|||
|
||||
if "text" in response_object:
|
||||
model_response_object.text = response_object["text"]
|
||||
|
||||
if hidden_params is not None:
|
||||
model_response_object._hidden_params = hidden_params
|
||||
return model_response_object
|
||||
except Exception as e:
|
||||
raise Exception(f"Invalid response object {traceback.format_exc()}")
|
||||
|
|
|
@ -31,7 +31,8 @@ def test_transcription():
|
|||
model="whisper-1",
|
||||
file=audio_file,
|
||||
)
|
||||
print(f"transcript: {transcript}")
|
||||
print(f"transcript: {transcript.model_dump()}")
|
||||
print(f"transcript: {transcript._hidden_params}")
|
||||
|
||||
|
||||
# test_transcription()
|
||||
|
@ -47,6 +48,7 @@ def test_transcription_azure():
|
|||
api_version="2024-02-15-preview",
|
||||
)
|
||||
|
||||
print(f"transcript: {transcript}")
|
||||
assert transcript.text is not None
|
||||
assert isinstance(transcript.text, str)
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue