version 0.1.2

This commit is contained in:
Krrish Dholakia 2023-07-31 08:46:23 -07:00
parent 740208d643
commit fa65f960e3
18 changed files with 888 additions and 234 deletions

BIN
.DS_Store vendored

Binary file not shown.

View file

@ -1,5 +1,4 @@
OPENAI_API_KEY = ""
COHERE_API_KEY = ""
OPENROUTER_API_KEY = ""
OR_SITE_URL = ""
OR_APP_NAME = "LiteLLM Example app"

View file

@ -1,7 +1,17 @@
import os, openai, cohere, dotenv
import os, openai, cohere, replicate, sys
from typing import Any
from func_timeout import func_set_timeout, FunctionTimedOut
from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT
import json
import traceback
import threading
import dotenv
import traceback
import subprocess
####### ENVIRONMENT VARIABLES ###################
# Loading env variables using dotenv
dotenv.load_dotenv()
set_verbose = False
####### COMPLETION MODELS ###################
open_ai_chat_completion_models = [
@ -16,16 +26,9 @@ cohere_models = [
'command-nightly',
]
openrouter_models = [
'google/palm-2-codechat-bison',
'google/palm-2-chat-bison',
'openai/gpt-3.5-turbo',
'openai/gpt-3.5-turbo-16k',
'openai/gpt-4-32k',
'anthropic/claude-2',
'anthropic/claude-instant-v1',
'meta-llama/llama-2-13b-chat',
'meta-llama/llama-2-70b-chat'
anthropic_models = [
"claude-2",
"claude-instant-1"
]
####### EMBEDDING MODELS ###################
@ -38,122 +41,389 @@ open_ai_embedding_models = [
####### COMPLETION ENDPOINTS ################
#############################################
def completion(model, messages, azure=False):
if azure == True:
# azure configs
openai.api_type = "azure"
openai.api_base = os.environ.get("AZURE_API_BASE")
openai.api_version = os.environ.get("AZURE_API_VERSION")
openai.api_key = os.environ.get("AZURE_API_KEY")
response = openai.ChatCompletion.create(
engine=model,
messages = messages
)
elif "replicate" in model:
prompt = " ".join([message["content"] for message in messages])
output = replicate.run(
model,
input={
"prompt": prompt,
})
print(f"output: {output}")
response = ""
for item in output:
print(f"item: {item}")
response += item
new_response = {
"choices": [
{
"finish_reason": "stop",
"index": 0,
"message": {
"content": response,
"role": "assistant"
}
}
]
}
print(f"new response: {new_response}")
response = new_response
elif model in cohere_models:
cohere_key = os.environ.get("COHERE_API_KEY")
co = cohere.Client(cohere_key)
prompt = " ".join([message["content"] for message in messages])
response = co.generate(
model=model,
prompt = prompt
)
new_response = {
"choices": [
{
"finish_reason": "stop",
"index": 0,
"message": {
"content": response[0],
"role": "assistant"
}
}
],
}
response = new_response
elif model in open_ai_chat_completion_models:
openai.api_type = "openai"
openai.api_base = "https://api.openai.com/v1"
openai.api_version = None
openai.api_key = os.environ.get("OPENAI_API_KEY")
response = openai.ChatCompletion.create(
model=model,
@func_set_timeout(10, allowOverride=True) ## https://pypi.org/project/func-timeout/ - timeouts, in case calls hang (e.g. Azure)
def completion(model, messages, max_tokens=None, forceTimeout=10, azure=False, logger_fn=None):
try:
if azure == True:
# azure configs
openai.api_type = "azure"
openai.api_base = os.environ.get("AZURE_API_BASE")
openai.api_version = os.environ.get("AZURE_API_VERSION")
openai.api_key = os.environ.get("AZURE_API_KEY")
## LOGGING
logging(model=model, input=input, azure=azure, logger_fn=logger_fn)
## COMPLETION CALL
response = openai.ChatCompletion.create(
engine=model,
messages = messages
)
elif model in open_ai_text_completion_models:
openai.api_type = "openai"
openai.api_base = "https://api.openai.com/v1"
openai.api_version = None
openai.api_key = os.environ.get("OPENAI_API_KEY")
prompt = " ".join([message["content"] for message in messages])
response = openai.Completion.create(
)
elif "replicate" in model:
# replicate defaults to os.environ.get("REPLICATE_API_TOKEN")
# checking in case user set it to REPLICATE_API_KEY instead
if not os.environ.get("REPLICATE_API_TOKEN") and os.environ.get("REPLICATE_API_KEY"):
replicate_api_token = os.environ.get("REPLICATE_API_KEY")
os.environ["REPLICATE_API_TOKEN"] = replicate_api_token
prompt = " ".join([message["content"] for message in messages])
input = [{"prompt": prompt}]
if max_tokens:
input["max_length"] = max_tokens # for t5 models
input["max_new_tokens"] = max_tokens # for llama2 models
## LOGGING
logging(model=model, input=input, azure=azure, additional_args={"max_tokens": max_tokens}, logger_fn=logger_fn)
## COMPLETION CALL
output = replicate.run(
model,
input=input)
response = ""
for item in output:
response += item
new_response = {
"choices": [
{
"finish_reason": "stop",
"index": 0,
"message": {
"content": response,
"role": "assistant"
}
}
]
}
response = new_response
elif model in anthropic_models:
#anthropic defaults to os.environ.get("ANTHROPIC_API_KEY")
prompt = f"{HUMAN_PROMPT}"
for message in messages:
if "role" in message:
if message["role"] == "user":
prompt += f"{HUMAN_PROMPT}{message['content']}"
else:
prompt += f"{AI_PROMPT}{message['content']}"
else:
prompt += f"{HUMAN_PROMPT}{message['content']}"
prompt += f"{AI_PROMPT}"
anthropic = Anthropic()
if max_tokens:
max_tokens_to_sample = max_tokens
else:
max_tokens_to_sample = 300 # default in Anthropic docs https://docs.anthropic.com/claude/reference/client-libraries
## LOGGING
logging(model=model, input=prompt, azure=azure, additional_args={"max_tokens": max_tokens}, logger_fn=logger_fn)
## COMPLETION CALL
completion = anthropic.completions.create(
model=model,
prompt=prompt,
max_tokens_to_sample=max_tokens_to_sample
)
new_response = {
"choices": [
{
"finish_reason": "stop",
"index": 0,
"message": {
"content": completion.completion,
"role": "assistant"
}
}
]
}
print(f"new response: {new_response}")
response = new_response
elif model in cohere_models:
cohere_key = os.environ.get("COHERE_API_KEY")
co = cohere.Client(cohere_key)
prompt = " ".join([message["content"] for message in messages])
## LOGGING
logging(model=model, input=prompt, azure=azure, logger_fn=logger_fn)
## COMPLETION CALL
response = co.generate(
model=model,
prompt = prompt
)
elif model in openrouter_models:
openai.api_base = "https://openrouter.ai/api/v1"
openai.api_key = os.environ.get("OPENROUTER_API_KEY")
prompt = " ".join([message["content"] for message in messages])
response = openai.ChatCompletion.create(
model=model,
messages=messages,
headers={
"HTTP-Referer": os.environ.get("OR_SITE_URL"), # To identify your app
"X-Title": os.environ.get("OR_APP_NAME")
},
)
reply = response.choices[0].message
return response
)
new_response = {
"choices": [
{
"finish_reason": "stop",
"index": 0,
"message": {
"content": response[0],
"role": "assistant"
}
}
],
}
response = new_response
elif model in open_ai_chat_completion_models:
openai.api_type = "openai"
openai.api_base = "https://api.openai.com/v1"
openai.api_version = None
openai.api_key = os.environ.get("OPENAI_API_KEY")
## LOGGING
logging(model=model, input=messages, azure=azure, logger_fn=logger_fn)
## COMPLETION CALL
response = openai.ChatCompletion.create(
model=model,
messages = messages
)
elif model in open_ai_text_completion_models:
openai.api_type = "openai"
openai.api_base = "https://api.openai.com/v1"
openai.api_version = None
openai.api_key = os.environ.get("OPENAI_API_KEY")
prompt = " ".join([message["content"] for message in messages])
## LOGGING
logging(model=model, input=prompt, azure=azure, logger_fn=logger_fn)
## COMPLETION CALL
response = openai.Completion.create(
model=model,
prompt = prompt
)
else:
logging(model=model, input=messages, azure=azure, logger_fn=logger_fn)
return response
except Exception as e:
logging(model=model, input=messages, azure=azure, additional_args={"max_tokens": max_tokens}, logger_fn=logger_fn)
raise e
### EMBEDDING ENDPOINTS ####################
def embedding(model, input=[], azure=False):
@func_set_timeout(60, allowOverride=True) ## https://pypi.org/project/func-timeout/
def embedding(model, input=[], azure=False, forceTimeout=60, logger_fn=None):
response = None
if azure == True:
# azure configs
openai.api_type = "azure"
openai.api_base = os.environ.get("AZURE_API_BASE")
openai.api_version = os.environ.get("AZURE_API_VERSION")
openai.api_key = os.environ.get("AZURE_API_KEY")
openai.api_key = os.environ.get("AZURE_API_KEY")
## LOGGING
logging(model=model, input=input, azure=azure, logger_fn=logger_fn)
## EMBEDDING CALL
response = openai.Embedding.create(input=input, engine=model)
print_verbose(f"response_value: {str(response)[:50]}")
elif model in open_ai_embedding_models:
openai.api_type = "openai"
openai.api_base = "https://api.openai.com/v1"
openai.api_version = None
openai.api_key = os.environ.get("OPENAI_API_KEY")
## LOGGING
logging(model=model, input=input, azure=azure, logger_fn=logger_fn)
## EMBEDDING CALL
response = openai.Embedding.create(input=input, model=model)
print_verbose(f"response_value: {str(response)[:50]}")
else:
logging(model=model, input=input, azure=azure, logger_fn=logger_fn)
return response
#############################################
#############################################
### CLIENT CLASS #################### make it easy to push completion/embedding runs to different sources -> sentry/posthog/slack, etc.
class litellm_client:
def __init__(self, success_callback=[], failure_callback=[], verbose=False): # Constructor
set_verbose = verbose
self.success_callback = success_callback
self.failure_callback = failure_callback
self.logger_fn = None # if user passes in their own logging function
self.callback_list = list(set(self.success_callback + self.failure_callback))
self.set_callbacks()
## COMPLETION CALL
def completion(self, model, messages, max_tokens=None, forceTimeout=10, azure=False, logger_fn=None, additional_details={}) -> Any:
try:
self.logger_fn = logger_fn
response = completion(model=model, messages=messages, max_tokens=max_tokens, forceTimeout=forceTimeout, azure=azure, logger_fn=self.handle_input)
my_thread = threading.Thread(target=self.handle_success, args=(model, messages, additional_details)) # don't interrupt execution of main thread
my_thread.start()
return response
except Exception as e:
args = locals() # get all the param values
self.handle_failure(e, args)
raise e
## EMBEDDING CALL
def embedding(self, model, input=[], azure=False, logger_fn=None, forceTimeout=60, additional_details={}) -> Any:
try:
self.logger_fn = logger_fn
response = embedding(model, input, azure=azure, logger_fn=self.handle_input)
my_thread = threading.Thread(target=self.handle_success, args=(model, input, additional_details)) # don't interrupt execution of main thread
my_thread.start()
return response
except Exception as e:
args = locals() # get all the param values
self.handle_failure(e, args)
raise e
def set_callbacks(self): #instantiate any external packages
for callback in self.callback_list: # only install what's required
if callback == "sentry":
try:
import sentry_sdk
except ImportError:
print_verbose("Package 'sentry_sdk' is missing. Installing it...")
subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'sentry_sdk'])
import sentry_sdk
self.sentry_sdk = sentry_sdk
self.sentry_sdk.init(dsn=os.environ.get("SENTRY_API_URL"), traces_sample_rate=float(os.environ.get("SENTRY_API_TRACE_RATE")))
self.capture_exception = self.sentry_sdk.capture_exception
self.add_breadcrumb = self.sentry_sdk.add_breadcrumb
elif callback == "posthog":
try:
from posthog import Posthog
except:
print_verbose("Package 'posthog' is missing. Installing it...")
subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'posthog'])
from posthog import Posthog
self.posthog = Posthog(
project_api_key=os.environ.get("POSTHOG_API_KEY"),
host=os.environ.get("POSTHOG_API_URL"))
elif callback == "slack":
try:
from slack_bolt import App
except ImportError:
print_verbose("Package 'slack_bolt' is missing. Installing it...")
subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'slack_bolt'])
from slack_bolt import App
self.slack_app = App(
token=os.environ.get("SLACK_API_TOKEN"),
signing_secret=os.environ.get("SLACK_API_SECRET")
)
self.alerts_channel = os.environ["SLACK_API_CHANNEL"]
def handle_input(self, model_call_details={}):
if len(model_call_details.keys()) > 0:
model = model_call_details["model"] if "model" in model_call_details else None
if model:
for callback in self.callback_list:
if callback == "sentry": # add a sentry breadcrumb if user passed in sentry integration
self.add_breadcrumb(
category=f'{model}',
message='Trying request model {} input {}'.format(model, json.dumps(model_call_details)),
level='info',
)
if self.logger_fn and callable(self.logger_fn):
self.logger_fn(model_call_details)
pass
def handle_success(self, model, messages, additional_details):
success_handler = additional_details.pop("success_handler", None)
failure_handler = additional_details.pop("failure_handler", None)
additional_details["litellm_model"] = str(model)
additional_details["litellm_messages"] = str(messages)
for callback in self.success_callback:
try:
if callback == "posthog":
ph_obj = {}
for detail in additional_details:
ph_obj[detail] = additional_details[detail]
event_name = additional_details["successful_event"] if "successful_event" in additional_details else "litellm.succes_query"
if "user_id" in additional_details:
self.posthog.capture(additional_details["user_id"], event_name, ph_obj)
else:
self.posthog.capture(event_name, ph_obj)
pass
elif callback == "slack":
slack_msg = ""
if len(additional_details.keys()) > 0:
for detail in additional_details:
slack_msg += f"{detail}: {additional_details[detail]}\n"
slack_msg += f"Successful call"
self.slack_app.client.chat_postMessage(channel=self.alerts_channel, text=slack_msg)
except:
pass
if success_handler and callable(success_handler):
call_details = {
"model": model,
"messages": messages,
"additional_details": additional_details
}
success_handler(call_details)
pass
def handle_failure(self, exception, args):
args.pop("self")
additional_details = args.pop("additional_details", {})
success_handler = additional_details.pop("success_handler", None)
failure_handler = additional_details.pop("failure_handler", None)
for callback in self.failure_callback:
try:
if callback == "slack":
slack_msg = ""
for param in args:
slack_msg += f"{param}: {args[param]}\n"
if len(additional_details.keys()) > 0:
for detail in additional_details:
slack_msg += f"{detail}: {additional_details[detail]}\n"
slack_msg += f"Traceback: {traceback.format_exc()}"
self.slack_app.client.chat_postMessage(channel=self.alerts_channel, text=slack_msg)
elif callback == "sentry":
self.capture_exception(exception)
elif callback == "posthog":
if len(additional_details.keys()) > 0:
ph_obj = {}
for param in args:
ph_obj[param] += args[param]
for detail in additional_details:
ph_obj[detail] = additional_details[detail]
event_name = additional_details["failed_event"] if "failed_event" in additional_details else "litellm.failed_query"
if "user_id" in additional_details:
self.posthog.capture(additional_details["user_id"], event_name, ph_obj)
else:
self.posthog.capture(event_name, ph_obj)
else:
pass
except:
print(f"got an error calling {callback} - {traceback.format_exc()}")
if failure_handler and callable(failure_handler):
call_details = {
"exception": exception,
"additional_details": additional_details
}
failure_handler(call_details)
pass
####### HELPER FUNCTIONS ################
#Logging function -> log the exact model details + what's being sent | Non-Blocking
def logging(model, input, azure=False, additional_args={}, logger_fn=None):
try:
model_call_details = {}
model_call_details["model"] = model
model_call_details["input"] = input
model_call_details["azure"] = azure
model_call_details["additional_args"] = additional_args
if logger_fn and callable(logger_fn):
try:
# log additional call details -> api key, etc.
if azure == True or model in open_ai_chat_completion_models or model in open_ai_chat_completion_models or model in open_ai_embedding_models:
model_call_details["api_type"] = openai.api_type
model_call_details["api_base"] = openai.api_base
model_call_details["api_version"] = openai.api_version
model_call_details["api_key"] = openai.api_key
elif "replicate" in model:
model_call_details["api_key"] = os.environ.get("REPLICATE_API_TOKEN")
elif model in anthropic_models:
model_call_details["api_key"] = os.environ.get("ANTHROPIC_API_KEY")
elif model in cohere_models:
model_call_details["api_key"] = os.environ.get("COHERE_API_KEY")
logger_fn(model_call_details) # Expectation: any logger function passed in by the user should accept a dict object
except:
print_verbose(f"Basic model call details: {model_call_details}")
print_verbose(f"[Non-Blocking] Exception occurred while logging {traceback.format_exc()}")
pass
else:
print_verbose(f"Basic model call details: {model_call_details}")
pass
except:
pass
## Set verbose to true -> ```litellm.verbose = True```
def print_verbose(print_statement):
if set_verbose:
print(f"LiteLLM: {print_statement}")
print("Get help - https://discord.com/invite/wuPM9dRgDw")

View file

@ -26,9 +26,4 @@ print(response)
# cohere call
response = completion("command-nightly", messages)
print("\nCohere call")
print(response)
# openrouter call
response = completion("google/palm-2-codechat-bison", messages)
print("\OpenRouter call")
print(response)

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

BIN
dist/litellm-0.1.2-py3-none-any.whl vendored Normal file

Binary file not shown.

BIN
dist/litellm-0.1.2.tar.gz vendored Normal file

Binary file not shown.

View file

@ -1,12 +1,6 @@
Metadata-Version: 2.1
Name: litellm
Version: 0.1.1
Version: 0.1.2
Summary: Library to easily interface with LLM API providers
Home-page: UNKNOWN
Author: Ishaan Jaffer
License: UNKNOWN
Platform: UNKNOWN
Author: BerriAI
License-File: LICENSE
UNKNOWN

BIN
litellm/.DS_Store vendored Normal file

Binary file not shown.

View file

@ -1,7 +1,17 @@
import os, openai, cohere, dotenv
import os, openai, cohere, replicate, sys
from typing import Any
from func_timeout import func_set_timeout, FunctionTimedOut
from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT
import json
import traceback
import threading
import dotenv
import traceback
import subprocess
####### ENVIRONMENT VARIABLES ###################
# Loading env variables using dotenv
dotenv.load_dotenv()
set_verbose = False
####### COMPLETION MODELS ###################
open_ai_chat_completion_models = [
@ -16,16 +26,9 @@ cohere_models = [
'command-nightly',
]
openrouter_models = [
'google/palm-2-codechat-bison',
'google/palm-2-chat-bison',
'openai/gpt-3.5-turbo',
'openai/gpt-3.5-turbo-16k',
'openai/gpt-4-32k',
'anthropic/claude-2',
'anthropic/claude-instant-v1',
'meta-llama/llama-2-13b-chat',
'meta-llama/llama-2-70b-chat'
anthropic_models = [
"claude-2",
"claude-instant-1"
]
####### EMBEDDING MODELS ###################
@ -38,123 +41,389 @@ open_ai_embedding_models = [
####### COMPLETION ENDPOINTS ################
#############################################
def completion(model, messages, azure=False):
if azure == True:
# azure configs
openai.api_type = "azure"
openai.api_base = os.environ.get("AZURE_API_BASE")
openai.api_version = os.environ.get("AZURE_API_VERSION")
openai.api_key = os.environ.get("AZURE_API_KEY")
response = openai.ChatCompletion.create(
engine=model,
messages = messages
)
elif "replicate" in model:
prompt = " ".join([message["content"] for message in messages])
output = replicate.run(
model,
input={
"prompt": prompt,
})
print(f"output: {output}")
response = ""
for item in output:
print(f"item: {item}")
response += item
new_response = {
"choices": [
{
"finish_reason": "stop",
"index": 0,
"message": {
"content": response,
"role": "assistant"
}
}
]
}
print(f"new response: {new_response}")
response = new_response
elif model in cohere_models:
cohere_key = os.environ.get("COHERE_API_KEY")
co = cohere.Client(cohere_key)
prompt = " ".join([message["content"] for message in messages])
response = co.generate(
model=model,
prompt = prompt
)
new_response = {
"choices": [
{
"finish_reason": "stop",
"index": 0,
"message": {
"content": response[0],
"role": "assistant"
}
}
],
}
response = new_response
elif model in open_ai_chat_completion_models:
openai.api_type = "openai"
openai.api_base = "https://api.openai.com/v1"
openai.api_version = None
openai.api_key = os.environ.get("OPENAI_API_KEY")
response = openai.ChatCompletion.create(
model=model,
@func_set_timeout(10, allowOverride=True) ## https://pypi.org/project/func-timeout/ - timeouts, in case calls hang (e.g. Azure)
def completion(model, messages, max_tokens=None, forceTimeout=10, azure=False, logger_fn=None):
try:
if azure == True:
# azure configs
openai.api_type = "azure"
openai.api_base = os.environ.get("AZURE_API_BASE")
openai.api_version = os.environ.get("AZURE_API_VERSION")
openai.api_key = os.environ.get("AZURE_API_KEY")
## LOGGING
logging(model=model, input=input, azure=azure, logger_fn=logger_fn)
## COMPLETION CALL
response = openai.ChatCompletion.create(
engine=model,
messages = messages
)
elif model in open_ai_text_completion_models:
openai.api_type = "openai"
openai.api_base = "https://api.openai.com/v1"
openai.api_version = None
openai.api_key = os.environ.get("OPENAI_API_KEY")
prompt = " ".join([message["content"] for message in messages])
response = openai.Completion.create(
)
elif "replicate" in model:
# replicate defaults to os.environ.get("REPLICATE_API_TOKEN")
# checking in case user set it to REPLICATE_API_KEY instead
if not os.environ.get("REPLICATE_API_TOKEN") and os.environ.get("REPLICATE_API_KEY"):
replicate_api_token = os.environ.get("REPLICATE_API_KEY")
os.environ["REPLICATE_API_TOKEN"] = replicate_api_token
prompt = " ".join([message["content"] for message in messages])
input = [{"prompt": prompt}]
if max_tokens:
input["max_length"] = max_tokens # for t5 models
input["max_new_tokens"] = max_tokens # for llama2 models
## LOGGING
logging(model=model, input=input, azure=azure, additional_args={"max_tokens": max_tokens}, logger_fn=logger_fn)
## COMPLETION CALL
output = replicate.run(
model,
input=input)
response = ""
for item in output:
response += item
new_response = {
"choices": [
{
"finish_reason": "stop",
"index": 0,
"message": {
"content": response,
"role": "assistant"
}
}
]
}
response = new_response
elif model in anthropic_models:
#anthropic defaults to os.environ.get("ANTHROPIC_API_KEY")
prompt = f"{HUMAN_PROMPT}"
for message in messages:
if "role" in message:
if message["role"] == "user":
prompt += f"{HUMAN_PROMPT}{message['content']}"
else:
prompt += f"{AI_PROMPT}{message['content']}"
else:
prompt += f"{HUMAN_PROMPT}{message['content']}"
prompt += f"{AI_PROMPT}"
anthropic = Anthropic()
if max_tokens:
max_tokens_to_sample = max_tokens
else:
max_tokens_to_sample = 300 # default in Anthropic docs https://docs.anthropic.com/claude/reference/client-libraries
## LOGGING
logging(model=model, input=prompt, azure=azure, additional_args={"max_tokens": max_tokens}, logger_fn=logger_fn)
## COMPLETION CALL
completion = anthropic.completions.create(
model=model,
prompt=prompt,
max_tokens_to_sample=max_tokens_to_sample
)
new_response = {
"choices": [
{
"finish_reason": "stop",
"index": 0,
"message": {
"content": completion.completion,
"role": "assistant"
}
}
]
}
print(f"new response: {new_response}")
response = new_response
elif model in cohere_models:
cohere_key = os.environ.get("COHERE_API_KEY")
co = cohere.Client(cohere_key)
prompt = " ".join([message["content"] for message in messages])
## LOGGING
logging(model=model, input=prompt, azure=azure, logger_fn=logger_fn)
## COMPLETION CALL
response = co.generate(
model=model,
prompt = prompt
)
elif model in openrouter_models:
openai.api_base = "https://openrouter.ai/api/v1"
openai.api_key = os.environ.get("OPENROUTER_API_KEY")
prompt = " ".join([message["content"] for message in messages])
response = openai.ChatCompletion.create(
model=model,
messages=messages,
headers={
"HTTP-Referer": os.environ.get("OR_SITE_URL"), # To identify your app
"X-Title": os.environ.get("OR_APP_NAME")
},
)
reply = response.choices[0].message
return response
)
new_response = {
"choices": [
{
"finish_reason": "stop",
"index": 0,
"message": {
"content": response[0],
"role": "assistant"
}
}
],
}
response = new_response
elif model in open_ai_chat_completion_models:
openai.api_type = "openai"
openai.api_base = "https://api.openai.com/v1"
openai.api_version = None
openai.api_key = os.environ.get("OPENAI_API_KEY")
## LOGGING
logging(model=model, input=messages, azure=azure, logger_fn=logger_fn)
## COMPLETION CALL
response = openai.ChatCompletion.create(
model=model,
messages = messages
)
elif model in open_ai_text_completion_models:
openai.api_type = "openai"
openai.api_base = "https://api.openai.com/v1"
openai.api_version = None
openai.api_key = os.environ.get("OPENAI_API_KEY")
prompt = " ".join([message["content"] for message in messages])
## LOGGING
logging(model=model, input=prompt, azure=azure, logger_fn=logger_fn)
## COMPLETION CALL
response = openai.Completion.create(
model=model,
prompt = prompt
)
else:
logging(model=model, input=messages, azure=azure, logger_fn=logger_fn)
return response
except Exception as e:
logging(model=model, input=messages, azure=azure, additional_args={"max_tokens": max_tokens}, logger_fn=logger_fn)
raise e
### EMBEDDING ENDPOINTS ####################
def embedding(model, input=[], azure=False):
@func_set_timeout(60, allowOverride=True) ## https://pypi.org/project/func-timeout/
def embedding(model, input=[], azure=False, forceTimeout=60, logger_fn=None):
response = None
if azure == True:
# azure configs
openai.api_type = "azure"
openai.api_base = os.environ.get("AZURE_API_BASE")
openai.api_version = os.environ.get("AZURE_API_VERSION")
openai.api_key = os.environ.get("AZURE_API_KEY")
openai.api_key = os.environ.get("AZURE_API_KEY")
## LOGGING
logging(model=model, input=input, azure=azure, logger_fn=logger_fn)
## EMBEDDING CALL
response = openai.Embedding.create(input=input, engine=model)
print_verbose(f"response_value: {str(response)[:50]}")
elif model in open_ai_embedding_models:
openai.api_type = "openai"
openai.api_base = "https://api.openai.com/v1"
openai.api_version = None
openai.api_key = os.environ.get("OPENAI_API_KEY")
## LOGGING
logging(model=model, input=input, azure=azure, logger_fn=logger_fn)
## EMBEDDING CALL
response = openai.Embedding.create(input=input, model=model)
print_verbose(f"response_value: {str(response)[:50]}")
else:
logging(model=model, input=input, azure=azure, logger_fn=logger_fn)
return response
#############################################
#############################################
### CLIENT CLASS #################### make it easy to push completion/embedding runs to different sources -> sentry/posthog/slack, etc.
class litellm_client:
def __init__(self, success_callback=[], failure_callback=[], verbose=False): # Constructor
set_verbose = verbose
self.success_callback = success_callback
self.failure_callback = failure_callback
self.logger_fn = None # if user passes in their own logging function
self.callback_list = list(set(self.success_callback + self.failure_callback))
self.set_callbacks()
## COMPLETION CALL
def completion(self, model, messages, max_tokens=None, forceTimeout=10, azure=False, logger_fn=None, additional_details={}) -> Any:
try:
self.logger_fn = logger_fn
response = completion(model=model, messages=messages, max_tokens=max_tokens, forceTimeout=forceTimeout, azure=azure, logger_fn=self.handle_input)
my_thread = threading.Thread(target=self.handle_success, args=(model, messages, additional_details)) # don't interrupt execution of main thread
my_thread.start()
return response
except Exception as e:
args = locals() # get all the param values
self.handle_failure(e, args)
raise e
## EMBEDDING CALL
def embedding(self, model, input=[], azure=False, logger_fn=None, forceTimeout=60, additional_details={}) -> Any:
try:
self.logger_fn = logger_fn
response = embedding(model, input, azure=azure, logger_fn=self.handle_input)
my_thread = threading.Thread(target=self.handle_success, args=(model, input, additional_details)) # don't interrupt execution of main thread
my_thread.start()
return response
except Exception as e:
args = locals() # get all the param values
self.handle_failure(e, args)
raise e
def set_callbacks(self): #instantiate any external packages
for callback in self.callback_list: # only install what's required
if callback == "sentry":
try:
import sentry_sdk
except ImportError:
print_verbose("Package 'sentry_sdk' is missing. Installing it...")
subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'sentry_sdk'])
import sentry_sdk
self.sentry_sdk = sentry_sdk
self.sentry_sdk.init(dsn=os.environ.get("SENTRY_API_URL"), traces_sample_rate=float(os.environ.get("SENTRY_API_TRACE_RATE")))
self.capture_exception = self.sentry_sdk.capture_exception
self.add_breadcrumb = self.sentry_sdk.add_breadcrumb
elif callback == "posthog":
try:
from posthog import Posthog
except:
print_verbose("Package 'posthog' is missing. Installing it...")
subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'posthog'])
from posthog import Posthog
self.posthog = Posthog(
project_api_key=os.environ.get("POSTHOG_API_KEY"),
host=os.environ.get("POSTHOG_API_URL"))
elif callback == "slack":
try:
from slack_bolt import App
except ImportError:
print_verbose("Package 'slack_bolt' is missing. Installing it...")
subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'slack_bolt'])
from slack_bolt import App
self.slack_app = App(
token=os.environ.get("SLACK_API_TOKEN"),
signing_secret=os.environ.get("SLACK_API_SECRET")
)
self.alerts_channel = os.environ["SLACK_API_CHANNEL"]
def handle_input(self, model_call_details={}):
if len(model_call_details.keys()) > 0:
model = model_call_details["model"] if "model" in model_call_details else None
if model:
for callback in self.callback_list:
if callback == "sentry": # add a sentry breadcrumb if user passed in sentry integration
self.add_breadcrumb(
category=f'{model}',
message='Trying request model {} input {}'.format(model, json.dumps(model_call_details)),
level='info',
)
if self.logger_fn and callable(self.logger_fn):
self.logger_fn(model_call_details)
pass
def handle_success(self, model, messages, additional_details):
success_handler = additional_details.pop("success_handler", None)
failure_handler = additional_details.pop("failure_handler", None)
additional_details["litellm_model"] = str(model)
additional_details["litellm_messages"] = str(messages)
for callback in self.success_callback:
try:
if callback == "posthog":
ph_obj = {}
for detail in additional_details:
ph_obj[detail] = additional_details[detail]
event_name = additional_details["successful_event"] if "successful_event" in additional_details else "litellm.succes_query"
if "user_id" in additional_details:
self.posthog.capture(additional_details["user_id"], event_name, ph_obj)
else:
self.posthog.capture(event_name, ph_obj)
pass
elif callback == "slack":
slack_msg = ""
if len(additional_details.keys()) > 0:
for detail in additional_details:
slack_msg += f"{detail}: {additional_details[detail]}\n"
slack_msg += f"Successful call"
self.slack_app.client.chat_postMessage(channel=self.alerts_channel, text=slack_msg)
except:
pass
if success_handler and callable(success_handler):
call_details = {
"model": model,
"messages": messages,
"additional_details": additional_details
}
success_handler(call_details)
pass
def handle_failure(self, exception, args):
args.pop("self")
additional_details = args.pop("additional_details", {})
success_handler = additional_details.pop("success_handler", None)
failure_handler = additional_details.pop("failure_handler", None)
for callback in self.failure_callback:
try:
if callback == "slack":
slack_msg = ""
for param in args:
slack_msg += f"{param}: {args[param]}\n"
if len(additional_details.keys()) > 0:
for detail in additional_details:
slack_msg += f"{detail}: {additional_details[detail]}\n"
slack_msg += f"Traceback: {traceback.format_exc()}"
self.slack_app.client.chat_postMessage(channel=self.alerts_channel, text=slack_msg)
elif callback == "sentry":
self.capture_exception(exception)
elif callback == "posthog":
if len(additional_details.keys()) > 0:
ph_obj = {}
for param in args:
ph_obj[param] += args[param]
for detail in additional_details:
ph_obj[detail] = additional_details[detail]
event_name = additional_details["failed_event"] if "failed_event" in additional_details else "litellm.failed_query"
if "user_id" in additional_details:
self.posthog.capture(additional_details["user_id"], event_name, ph_obj)
else:
self.posthog.capture(event_name, ph_obj)
else:
pass
except:
print(f"got an error calling {callback} - {traceback.format_exc()}")
if failure_handler and callable(failure_handler):
call_details = {
"exception": exception,
"additional_details": additional_details
}
failure_handler(call_details)
pass
####### HELPER FUNCTIONS ################
#Logging function -> log the exact model details + what's being sent | Non-Blocking
def logging(model, input, azure=False, additional_args={}, logger_fn=None):
try:
model_call_details = {}
model_call_details["model"] = model
model_call_details["input"] = input
model_call_details["azure"] = azure
model_call_details["additional_args"] = additional_args
if logger_fn and callable(logger_fn):
try:
# log additional call details -> api key, etc.
if azure == True or model in open_ai_chat_completion_models or model in open_ai_chat_completion_models or model in open_ai_embedding_models:
model_call_details["api_type"] = openai.api_type
model_call_details["api_base"] = openai.api_base
model_call_details["api_version"] = openai.api_version
model_call_details["api_key"] = openai.api_key
elif "replicate" in model:
model_call_details["api_key"] = os.environ.get("REPLICATE_API_TOKEN")
elif model in anthropic_models:
model_call_details["api_key"] = os.environ.get("ANTHROPIC_API_KEY")
elif model in cohere_models:
model_call_details["api_key"] = os.environ.get("COHERE_API_KEY")
logger_fn(model_call_details) # Expectation: any logger function passed in by the user should accept a dict object
except:
print_verbose(f"Basic model call details: {model_call_details}")
print_verbose(f"[Non-Blocking] Exception occurred while logging {traceback.format_exc()}")
pass
else:
print_verbose(f"Basic model call details: {model_call_details}")
pass
except:
pass
## Set verbose to true -> ```litellm.verbose = True```
def print_verbose(print_statement):
if set_verbose:
print(f"LiteLLM: {print_statement}")
print("Get help - https://discord.com/invite/wuPM9dRgDw")

View file

@ -0,0 +1,20 @@
import sys, os
import traceback
sys.path.append('..') # Adds the parent directory to the system path
import main
from main import litellm_client
client = litellm_client(success_callback=["posthog"], failure_callback=["slack", "sentry", "posthog"], verbose=True)
completion = client.completion
embedding = client.embedding
main.set_verbose = True
user_message = "Hello, how are you?"
messages = [{ "content": user_message,"role": "user"}]
model_val = None
# test on empty
try:
response = completion(model=model_val, messages=messages)
except:
print(f"error occurred: {traceback.format_exc()}")
pass

View file

@ -0,0 +1,59 @@
import sys, os
import traceback
sys.path.append('..') # Adds the parent directory to the system path
import main
from main import litellm_client
client = litellm_client(success_callback=["posthog"], failure_callback=["slack", "sentry", "posthog"], verbose=True)
completion = client.completion
embedding = client.embedding
main.set_verbose = True
def logger_fn(model_call_object: dict):
print(f"model call details: {model_call_object}")
user_message = "Hello, how are you?"
messages = [{ "content": user_message,"role": "user"}]
# test on openai completion call
try:
response = completion(model="gpt-3.5-turbo", messages=messages, logger_fn=logger_fn)
except:
print(f"error occurred: {traceback.format_exc()}")
pass
# test on openai completion call
try:
response = completion(model="gpt-3.5-turbo", messages=messages, logger_fn=logger_fn)
except:
print(f"error occurred: {traceback.format_exc()}")
pass
# test on non-openai completion call
try:
response = completion(model="claude-instant-1", messages=messages, logger_fn=logger_fn)
except:
print(f"error occurred: {traceback.format_exc()}")
pass
# test on openai embedding call
try:
response = embedding(model='text-embedding-ada-002', input=[user_message], logger_fn=logger_fn)
print(f"response: {str(response)[:50]}")
except:
traceback.print_exc()
# test on bad azure openai embedding call -> missing azure flag and this isn't an embedding model
try:
response = embedding(model='chatgpt-test', input=[user_message], logger_fn=logger_fn)
print(f"response: {str(response)[:50]}")
except:
traceback.print_exc()
# test on good azure openai embedding call
try:
response = embedding(model='azure-embedding-model', input=[user_message], azure=True, logger_fn=logger_fn)
print(f"response: {str(response)[:50]}")
except:
traceback.print_exc()

View file

@ -0,0 +1,48 @@
import sys, os
import traceback
sys.path.append('..') # Adds the parent directory to the system path
import main
from main import completion, embedding
main.verbose = True ## Replace to: ```litellm.verbose = True``` when using pypi package
def logger_fn(model_call_object: dict):
print(f"model call details: {model_call_object}")
user_message = "Hello, how are you?"
messages = [{ "content": user_message,"role": "user"}]
# test on openai completion call
try:
response = completion(model="gpt-3.5-turbo", messages=messages)
except:
print(f"error occurred: {traceback.format_exc()}")
pass
# test on non-openai completion call
try:
response = completion(model="claude-instant-1", messages=messages, logger_fn=logger_fn)
except:
print(f"error occurred: {traceback.format_exc()}")
pass
# test on openai embedding call
try:
response = embedding(model='text-embedding-ada-002', input=[user_message], logger_fn=logger_fn)
print(f"response: {str(response)[:50]}")
except:
traceback.print_exc()
# test on bad azure openai embedding call -> missing azure flag and this isn't an embedding model
try:
response = embedding(model='chatgpt-test', input=[user_message], logger_fn=logger_fn)
print(f"response: {str(response)[:50]}")
except:
traceback.print_exc()
# test on good azure openai embedding call
try:
response = embedding(model='azure-embedding-model', input=[user_message], azure=True, logger_fn=logger_fn)
print(f"response: {str(response)[:50]}")
except:
traceback.print_exc()

View file

@ -2,9 +2,9 @@ from setuptools import setup, find_packages
setup(
name='litellm',
version='0.1.202',
version='0.1.2',
description='Library to easily interface with LLM API providers',
author='Ishaan Jaffer',
author='BerriAI',
packages=[
'litellm'
],