forked from phoenix/litellm-mirror
docs(routing.md): adding context window fallback dict and num retries
This commit is contained in:
parent
270fc02578
commit
fb4be198ee
5 changed files with 237 additions and 45 deletions
|
@ -84,8 +84,11 @@ def completion(
|
|||
api_base: Optional[str] = None,
|
||||
api_version: Optional[str] = None,
|
||||
api_key: Optional[str] = None,
|
||||
num_retries: Optional[int] = None, # set to retry a model if an APIError, TimeoutError, or ServiceUnavailableError occurs
|
||||
context_window_fallback_dict: Optional[dict] = None, # mapping of model to use if call fails due to context window error
|
||||
fallbacks: Optional[list] = None, # pass in a list of api_base,keys, etc.
|
||||
metadata: Optional[dict] = None # additional call metadata, passed to logging integrations / custom callbacks
|
||||
|
||||
|
||||
**kwargs,
|
||||
) -> ModelResponse:
|
||||
|
@ -143,10 +146,16 @@ def completion(
|
|||
|
||||
- `request_timeout`: *int (optional)* - Timeout in seconds for completion requests (Defaults to 600 seconds)
|
||||
|
||||
#### litellm-specific params
|
||||
|
||||
- `api_base`: *string (optional)* - The api endpoint you want to call the model with
|
||||
|
||||
- `api_version`: *string (optional)* - (Azure-specific) the api version for the call
|
||||
|
||||
- `num_retries`: *int (optional)* - The number of times to retry the API call if an APIError, TimeoutError or ServiceUnavailableError occurs
|
||||
|
||||
- `context_window_fallback_dict`: *dict (optional)* - A mapping of model to use if call fails due to context window error
|
||||
|
||||
- `fallbacks`: *list (optional)* - A list of model names + params to be used, in case the initial call fails
|
||||
|
||||
- `metadata`: *dict (optional)* - Any additional data you want to be logged when the call is made (sent to logging integrations, eg. promptlayer and accessible via custom callback function)
|
||||
|
|
|
@ -1,62 +1,53 @@
|
|||
# Reliability
|
||||
|
||||
LiteLLM helps prevent failed requests in 2 ways:
|
||||
- Retries
|
||||
- Fallbacks: Context Window + General
|
||||
|
||||
## Helper utils
|
||||
LiteLLM supports the following functions for reliability:
|
||||
* `litellm.longer_context_model_fallback_dict`: Dictionary which has a mapping for those models which have larger equivalents
|
||||
* `completion_with_retries`: use tenacity retries
|
||||
* `num_retries`: use tenacity retries
|
||||
* `completion()` with fallbacks: switch between models/keys/api bases in case of errors.
|
||||
|
||||
## Context Window Errors
|
||||
|
||||
```python
|
||||
from litellm import longer_context_model_fallback_dict, ContextWindowExceededError
|
||||
|
||||
sample_text = "how does a court case get to the Supreme Court?" * 1000
|
||||
messages = [{"content": user_message, "role": "user"}]
|
||||
model = "gpt-3.5-turbo"
|
||||
try:
|
||||
# try the original model
|
||||
response = completion(model=model, messages=messages)
|
||||
# catch the context window error
|
||||
except ContextWindowExceededError as e:
|
||||
if model in longer_context_model_fallback_dict:
|
||||
# switch to the equivalent larger model -> gpt.3.5-turbo-16k
|
||||
new_model = longer_context_model_fallback_dict[model]
|
||||
response = completion(new_model, messages)
|
||||
|
||||
print(response)
|
||||
```
|
||||
|
||||
|
||||
## Retry failed requests
|
||||
|
||||
You can use this as a drop-in replacement for the `completion()` function to use tenacity retries - by default we retry the call 3 times.
|
||||
Call it in completion like this `completion(..num_retries=2)`.
|
||||
|
||||
|
||||
Here's a quick look at how you can use it:
|
||||
|
||||
```python
|
||||
from litellm import completion_with_retries
|
||||
from litellm import completion
|
||||
|
||||
user_message = "Hello, whats the weather in San Francisco??"
|
||||
messages = [{"content": user_message, "role": "user"}]
|
||||
|
||||
# normal call
|
||||
def test_completion_custom_provider_model_name():
|
||||
try:
|
||||
response = completion_with_retries(
|
||||
response = completion(
|
||||
model="gpt-3.5-turbo",
|
||||
messages=messages,
|
||||
num_retries=2
|
||||
)
|
||||
# Add any assertions here to check the response
|
||||
print(response)
|
||||
except Exception as e:
|
||||
printf"Error occurred: {e}")
|
||||
```
|
||||
|
||||
## Switch Models/API Keys/API Bases
|
||||
## Fallbacks
|
||||
|
||||
### Context Window Fallbacks
|
||||
```python
|
||||
from litellm import completion
|
||||
|
||||
fallback_dict = {"gpt-3.5-turbo": "gpt-3.5-turbo-16k"}
|
||||
messages = [{"content": "how does a court case get to the Supreme Court?" * 500, "role": "user"}]
|
||||
|
||||
completion(model="gpt-3.5-turbo", messages=messages, context_window_fallback_dict=ctx_window_fallback_dict)
|
||||
```
|
||||
|
||||
### Fallbacks - Switch Models/API Keys/API Bases
|
||||
|
||||
LLM APIs can be unstable, completion() with fallbacks ensures you'll always get a response from your calls
|
||||
|
||||
### Usage
|
||||
#### Usage
|
||||
To use fallback models with `completion()`, specify a list of models in the `fallbacks` parameter.
|
||||
|
||||
The `fallbacks` list should include the primary model you want to use, followed by additional models that can be used as backups in case the primary model fails to provide a response.
|
||||
|
@ -76,6 +67,11 @@ response = completion(model="azure/gpt-4", messages=messages, api_key=api_key,
|
|||
fallbacks=[{"api_key": "good-key-1"}, {"api_key": "good-key-2", "api_base": "good-api-base-2"}])
|
||||
```
|
||||
|
||||
[Check out this section for implementation details](#fallbacks-1)
|
||||
|
||||
## Implementation Details
|
||||
|
||||
### Fallbacks
|
||||
#### Output from calls
|
||||
```
|
||||
Completion with 'bad-model': got exception Unable to map your input to a model. Check your input - {'model': 'bad-model'
|
||||
|
@ -112,7 +108,7 @@ completion call gpt-3.5-turbo
|
|||
When you pass `fallbacks` to `completion`, it makes the first `completion` call using the primary model specified as `model` in `completion(model=model)`. If the primary model fails or encounters an error, it automatically tries the `fallbacks` models in the specified order. This ensures a response even if the primary model is unavailable.
|
||||
|
||||
|
||||
### Key components of Model Fallbacks implementation:
|
||||
#### Key components of Model Fallbacks implementation:
|
||||
* Looping through `fallbacks`
|
||||
* Cool-Downs for rate-limited models
|
||||
|
||||
|
|
|
@ -1,17 +1,78 @@
|
|||
# Reliability - Fallbacks, Multiple Deployments
|
||||
# Reliability - Fallbacks, Azure Deployments, etc.
|
||||
|
||||
## Model Fallbacks
|
||||
Never fail a request using LiteLLM, LiteLLM allows you to define fallback models for completion requests
|
||||
```python
|
||||
# Reliability
|
||||
|
||||
LiteLLM helps prevent failed requests in 3 ways:
|
||||
- Retries
|
||||
- Fallbacks: Context Window + General
|
||||
- RateLimitManager
|
||||
|
||||
## Helper utils
|
||||
LiteLLM supports the following functions for reliability:
|
||||
* `litellm.longer_context_model_fallback_dict`: Dictionary which has a mapping for those models which have larger equivalents
|
||||
* `num_retries`: use tenacity retries
|
||||
* `completion()` with fallbacks: switch between models/keys/api bases in case of errors.
|
||||
* `router()`: An abstraction on top of completion + embeddings to route the request to a deployment with capacity (available tpm/rpm).
|
||||
|
||||
## Retry failed requests
|
||||
|
||||
Call it in completion like this `completion(..num_retries=2)`.
|
||||
|
||||
|
||||
Here's a quick look at how you can use it:
|
||||
|
||||
```python
|
||||
from litellm import completion
|
||||
# if gpt-4 fails, retry the request with gpt-3.5-turbo->command-nightly->claude-instant-1
|
||||
response = completion(model="gpt-4",messages=messages, fallbacks=["gpt-3.5-turbo" "command-nightly", "claude-instant-1"])
|
||||
|
||||
# if azure/gpt-4 fails, retry the request with fallback api_keys/api_base
|
||||
response = completion(model="azure/gpt-4", messages=messages, api_key=api_key, fallbacks=[{"api_key": "good-key-1"}, {"api_key": "good-key-2", "api_base": "good-api-base-2"}])
|
||||
user_message = "Hello, whats the weather in San Francisco??"
|
||||
messages = [{"content": user_message, "role": "user"}]
|
||||
|
||||
# normal call
|
||||
response = completion(
|
||||
model="gpt-3.5-turbo",
|
||||
messages=messages,
|
||||
num_retries=2
|
||||
)
|
||||
```
|
||||
|
||||
## Fallbacks
|
||||
|
||||
### Context Window Fallbacks
|
||||
```python
|
||||
from litellm import completion
|
||||
|
||||
fallback_dict = {"gpt-3.5-turbo": "gpt-3.5-turbo-16k"}
|
||||
messages = [{"content": "how does a court case get to the Supreme Court?" * 500, "role": "user"}]
|
||||
|
||||
completion(model="gpt-3.5-turbo", messages=messages, context_window_fallback_dict=ctx_window_fallback_dict)
|
||||
```
|
||||
|
||||
### Fallbacks - Switch Models/API Keys/API Bases
|
||||
|
||||
LLM APIs can be unstable, completion() with fallbacks ensures you'll always get a response from your calls
|
||||
|
||||
#### Usage
|
||||
To use fallback models with `completion()`, specify a list of models in the `fallbacks` parameter.
|
||||
|
||||
The `fallbacks` list should include the primary model you want to use, followed by additional models that can be used as backups in case the primary model fails to provide a response.
|
||||
|
||||
#### switch models
|
||||
```python
|
||||
response = completion(model="bad-model", messages=messages,
|
||||
fallbacks=["gpt-3.5-turbo" "command-nightly"])
|
||||
```
|
||||
|
||||
#### switch api keys/bases (E.g. azure deployment)
|
||||
Switch between different keys for the same azure deployment, or use another deployment as well.
|
||||
|
||||
```python
|
||||
api_key="bad-key"
|
||||
response = completion(model="azure/gpt-4", messages=messages, api_key=api_key,
|
||||
fallbacks=[{"api_key": "good-key-1"}, {"api_key": "good-key-2", "api_base": "good-api-base-2"}])
|
||||
```
|
||||
|
||||
[Check out this section for implementation details](#fallbacks-1)
|
||||
|
||||
## Manage Multiple Deployments
|
||||
|
||||
Use this if you're trying to load-balance across multiple deployments (e.g. Azure/OpenAI).
|
||||
|
@ -109,4 +170,131 @@ curl 'http://0.0.0.0:8000/router/completions' \
|
|||
"model": "gpt-3.5-turbo",
|
||||
"messages": [{"role": "user", "content": "Hey"}]
|
||||
}'
|
||||
```
|
||||
|
||||
|
||||
## Implementation Details
|
||||
|
||||
### Fallbacks
|
||||
#### Output from calls
|
||||
```
|
||||
Completion with 'bad-model': got exception Unable to map your input to a model. Check your input - {'model': 'bad-model'
|
||||
|
||||
|
||||
|
||||
completion call gpt-3.5-turbo
|
||||
{
|
||||
"id": "chatcmpl-7qTmVRuO3m3gIBg4aTmAumV1TmQhB",
|
||||
"object": "chat.completion",
|
||||
"created": 1692741891,
|
||||
"model": "gpt-3.5-turbo-0613",
|
||||
"choices": [
|
||||
{
|
||||
"index": 0,
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": "I apologize, but as an AI, I do not have the capability to provide real-time weather updates. However, you can easily check the current weather in San Francisco by using a search engine or checking a weather website or app."
|
||||
},
|
||||
"finish_reason": "stop"
|
||||
}
|
||||
],
|
||||
"usage": {
|
||||
"prompt_tokens": 16,
|
||||
"completion_tokens": 46,
|
||||
"total_tokens": 62
|
||||
}
|
||||
}
|
||||
|
||||
```
|
||||
|
||||
#### How does fallbacks work
|
||||
|
||||
When you pass `fallbacks` to `completion`, it makes the first `completion` call using the primary model specified as `model` in `completion(model=model)`. If the primary model fails or encounters an error, it automatically tries the `fallbacks` models in the specified order. This ensures a response even if the primary model is unavailable.
|
||||
|
||||
|
||||
#### Key components of Model Fallbacks implementation:
|
||||
* Looping through `fallbacks`
|
||||
* Cool-Downs for rate-limited models
|
||||
|
||||
#### Looping through `fallbacks`
|
||||
Allow `45seconds` for each request. In the 45s this function tries calling the primary model set as `model`. If model fails it loops through the backup `fallbacks` models and attempts to get a response in the allocated `45s` time set here:
|
||||
```python
|
||||
while response == None and time.time() - start_time < 45:
|
||||
for model in fallbacks:
|
||||
```
|
||||
|
||||
#### Cool-Downs for rate-limited models
|
||||
If a model API call leads to an error - allow it to cooldown for `60s`
|
||||
```python
|
||||
except Exception as e:
|
||||
print(f"got exception {e} for model {model}")
|
||||
rate_limited_models.add(model)
|
||||
model_expiration_times[model] = (
|
||||
time.time() + 60
|
||||
) # cool down this selected model
|
||||
pass
|
||||
```
|
||||
|
||||
Before making an LLM API call we check if the selected model is in `rate_limited_models`, if so skip making the API call
|
||||
```python
|
||||
if (
|
||||
model in rate_limited_models
|
||||
): # check if model is currently cooling down
|
||||
if (
|
||||
model_expiration_times.get(model)
|
||||
and time.time() >= model_expiration_times[model]
|
||||
):
|
||||
rate_limited_models.remove(
|
||||
model
|
||||
) # check if it's been 60s of cool down and remove model
|
||||
else:
|
||||
continue # skip model
|
||||
|
||||
```
|
||||
|
||||
#### Full code of completion with fallbacks()
|
||||
```python
|
||||
|
||||
response = None
|
||||
rate_limited_models = set()
|
||||
model_expiration_times = {}
|
||||
start_time = time.time()
|
||||
fallbacks = [kwargs["model"]] + kwargs["fallbacks"]
|
||||
del kwargs["fallbacks"] # remove fallbacks so it's not recursive
|
||||
|
||||
while response == None and time.time() - start_time < 45:
|
||||
for model in fallbacks:
|
||||
# loop thru all models
|
||||
try:
|
||||
if (
|
||||
model in rate_limited_models
|
||||
): # check if model is currently cooling down
|
||||
if (
|
||||
model_expiration_times.get(model)
|
||||
and time.time() >= model_expiration_times[model]
|
||||
):
|
||||
rate_limited_models.remove(
|
||||
model
|
||||
) # check if it's been 60s of cool down and remove model
|
||||
else:
|
||||
continue # skip model
|
||||
|
||||
# delete model from kwargs if it exists
|
||||
if kwargs.get("model"):
|
||||
del kwargs["model"]
|
||||
|
||||
print("making completion call", model)
|
||||
response = litellm.completion(**kwargs, model=model)
|
||||
|
||||
if response != None:
|
||||
return response
|
||||
|
||||
except Exception as e:
|
||||
print(f"got exception {e} for model {model}")
|
||||
rate_limited_models.add(model)
|
||||
model_expiration_times[model] = (
|
||||
time.time() + 60
|
||||
) # cool down this selected model
|
||||
pass
|
||||
return response
|
||||
```
|
|
@ -36,7 +36,6 @@ const sidebars = {
|
|||
"completion/message_trimming",
|
||||
"completion/function_call",
|
||||
"completion/model_alias",
|
||||
"completion/reliable_completions",
|
||||
"completion/config",
|
||||
"completion/batching",
|
||||
"completion/mock_requests",
|
||||
|
|
|
@ -1149,7 +1149,7 @@ def test_completion_with_fallbacks():
|
|||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
# test_completion_with_fallbacks()
|
||||
test_completion_with_fallbacks()
|
||||
def test_completion_anyscale_api():
|
||||
try:
|
||||
# litellm.set_verbose=True
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue