exception_type work

This commit is contained in:
ishaan-jaff 2023-09-19 21:29:51 -07:00
parent e9899db545
commit fc10cf5eeb
4 changed files with 53 additions and 19 deletions

View file

@ -38,6 +38,7 @@ cache: Optional[Cache] = None # cache object
model_alias_map: Dict[str, str] = {} model_alias_map: Dict[str, str] = {}
max_budget: float = 0.0 # set the max budget across all providers max_budget: float = 0.0 # set the max budget across all providers
_current_cost = 0 # private variable, used if max budget is set _current_cost = 0 # private variable, used if max budget is set
error_logs: Dict = {}
############################################# #############################################
def get_model_cost_map(): def get_model_cost_map():

View file

@ -1046,7 +1046,7 @@ def completion(
except Exception as e: except Exception as e:
## Map to OpenAI Exception ## Map to OpenAI Exception
raise exception_type( raise exception_type(
model=model, custom_llm_provider=custom_llm_provider, original_exception=e model=model, custom_llm_provider=custom_llm_provider, original_exception=e, completion_kwargs=args,
) )

View file

@ -134,24 +134,24 @@ def test_completion_with_litellm_call_id():
# pytest.fail(f"Error occurred: {e}") # pytest.fail(f"Error occurred: {e}")
# using Non TGI or conversational LLMs # using Non TGI or conversational LLMs
# def hf_test_completion(): def hf_test_completion():
# try: try:
# # litellm.set_verbose=True # litellm.set_verbose=True
# user_message = "My name is Merve and my favorite" user_message = "My name is Merve and my favorite"
# messages = [{ "content": user_message,"role": "user"}] messages = [{ "content": user_message,"role": "user"}]
# response = completion( response = completion(
# model="huggingface/roneneldan/TinyStories-3M", model="huggingface/roneneldan/TinyStories-3M",
# messages=messages, messages=messages,
# api_base="https://p69xlsj6rpno5drq.us-east-1.aws.endpoints.huggingface.cloud", api_base="https://p69xlsj6rpno5drq.us-east-1.aws.endpoints.huggingface.cloud",
# task=None,
# )
# # Add any assertions here to check the response
# print(response)
# except Exception as e: )
# pytest.fail(f"Error occurred: {e}") # Add any assertions here to check the response
print(response)
# hf_test_completion() except Exception as e:
pytest.fail(f"Error occurred: {e}")
hf_test_completion()
def test_completion_cohere(): # commenting for now as the cohere endpoint is being flaky def test_completion_cohere(): # commenting for now as the cohere endpoint is being flaky
try: try:
@ -352,7 +352,7 @@ def test_completion_azure():
try: try:
print("azure gpt-3.5 test\n\n") print("azure gpt-3.5 test\n\n")
response = completion( response = completion(
model="azure/chatgpt-v-2", model="chatgpt-v-2",
messages=messages, messages=messages,
) )
# Add any assertions here to check the response # Add any assertions here to check the response

View file

@ -198,6 +198,7 @@ class Logging:
def pre_call(self, input, api_key, model=None, additional_args={}): def pre_call(self, input, api_key, model=None, additional_args={}):
# Log the exact input to the LLM API # Log the exact input to the LLM API
print_verbose(f"Logging Details Pre-API Call for call id {self.litellm_call_id}") print_verbose(f"Logging Details Pre-API Call for call id {self.litellm_call_id}")
litellm.error_logs['PRE_CALL'] = locals()
try: try:
# print_verbose(f"logging pre call for model: {self.model} with call type: {self.call_type}") # print_verbose(f"logging pre call for model: {self.model} with call type: {self.call_type}")
self.model_call_details["input"] = input self.model_call_details["input"] = input
@ -280,6 +281,7 @@ class Logging:
def post_call(self, original_response, input=None, api_key=None, additional_args={}): def post_call(self, original_response, input=None, api_key=None, additional_args={}):
# Log the exact result from the LLM API, for streaming - log the type of response received # Log the exact result from the LLM API, for streaming - log the type of response received
litellm.error_logs['POST_CALL'] = locals()
try: try:
self.model_call_details["input"] = input self.model_call_details["input"] = input
self.model_call_details["api_key"] = api_key self.model_call_details["api_key"] = api_key
@ -1870,9 +1872,40 @@ def get_model_list():
) )
####### EXCEPTION MAPPING ################ ####### EXCEPTION MAPPING ################
def exception_type(model, original_exception, custom_llm_provider): def exception_type(
model,
original_exception,
custom_llm_provider,
completion_kwargs={},
):
global user_logger_fn, liteDebuggerClient global user_logger_fn, liteDebuggerClient
exception_mapping_worked = False exception_mapping_worked = False
litellm.error_logs['EXCEPTION'] = original_exception
litellm.error_logs['KWARGS'] = completion_kwargs
import urllib.parse
import json
for log_key in litellm.error_logs:
current_logs = litellm.error_logs[log_key]
if type(current_logs) == dict:
filtered_error_logs = {key: value for key, value in current_logs.items() if isinstance(value, (str, int, float, bool, list, dict))}
litellm.error_logs[log_key] = filtered_error_logs
else:
litellm.error_logs[log_key] = str(current_logs)
# Convert the filtered_error_logs dictionary to a JSON string
error_logs_json = json.dumps(litellm.error_logs)
# URL-encode the JSON data
encoded_data = urllib.parse.quote(error_logs_json)
print(encoded_data)
# Print the encoded data (this is what you can include in a URL)
print("\033[91m" + str(litellm.error_logs) + "\033[0m")
decoded_data = urllib.parse.unquote(encoded_data)
# Print the decoded data
print(decoded_data)
try: try:
if isinstance(original_exception, OriginalError): if isinstance(original_exception, OriginalError):
# Handle the OpenAIError # Handle the OpenAIError