forked from phoenix/litellm-mirror
fixes to core logging
This commit is contained in:
parent
8af86419a6
commit
fda6dba1ec
5 changed files with 274 additions and 47 deletions
Binary file not shown.
Binary file not shown.
|
@ -1,66 +1,285 @@
|
|||
#### What this tests ####
|
||||
# This tests error logging (with custom user functions) for the raw `completion` + `embedding` endpoints
|
||||
|
||||
import sys, os
|
||||
import traceback
|
||||
# Test Scenarios (test across completion, streaming, embedding)
|
||||
## 1: Pre-API-Call
|
||||
## 2: Post-API-Call
|
||||
## 3: On LiteLLM Call success
|
||||
## 4: On LiteLLM Call failure
|
||||
|
||||
import sys, os, io
|
||||
import traceback, logging
|
||||
import pytest
|
||||
import dotenv
|
||||
dotenv.load_dotenv()
|
||||
|
||||
# Create logger
|
||||
logger = logging.getLogger(__name__)
|
||||
logger.setLevel(logging.DEBUG)
|
||||
|
||||
# Create a stream handler
|
||||
stream_handler = logging.StreamHandler(sys.stdout)
|
||||
logger.addHandler(stream_handler)
|
||||
|
||||
# Create a function to log information
|
||||
def logger_fn(message):
|
||||
logger.info(message)
|
||||
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../..")
|
||||
) # Adds the parent directory to the system path
|
||||
import litellm
|
||||
from litellm import embedding, completion
|
||||
|
||||
litellm.set_verbose = False
|
||||
from openai.error import AuthenticationError
|
||||
litellm.set_verbose = True
|
||||
|
||||
score = 0
|
||||
|
||||
|
||||
def logger_fn(model_call_object: dict):
|
||||
print(f"model call details: {model_call_object}")
|
||||
|
||||
|
||||
user_message = "Hello, how are you?"
|
||||
messages = [{"content": user_message, "role": "user"}]
|
||||
|
||||
# test on openai completion call
|
||||
# 1. On Call Success
|
||||
# normal completion
|
||||
## test on openai completion call
|
||||
try:
|
||||
response = completion(model="gpt-3.5-turbo", messages=messages, logger_fn=logger_fn)
|
||||
# Redirect stdout
|
||||
old_stdout = sys.stdout
|
||||
sys.stdout = new_stdout = io.StringIO()
|
||||
|
||||
response = completion(model="gpt-3.5-turbo", messages=messages)
|
||||
# Restore stdout
|
||||
sys.stdout = old_stdout
|
||||
output = new_stdout.getvalue().strip()
|
||||
|
||||
if "Logging Details Pre-API Call" not in output:
|
||||
raise Exception("Required log message not found!")
|
||||
elif "Logging Details Post-API Call" not in output:
|
||||
raise Exception("Required log message not found!")
|
||||
elif "Logging Details LiteLLM-Success Call" not in output:
|
||||
raise Exception("Required log message not found!")
|
||||
score += 1
|
||||
except:
|
||||
print(f"error occurred: {traceback.format_exc()}")
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
pass
|
||||
|
||||
# test on non-openai completion call
|
||||
## test on non-openai completion call
|
||||
try:
|
||||
response = completion(
|
||||
model="claude-instant-1", messages=messages, logger_fn=logger_fn
|
||||
)
|
||||
print(f"claude response: {response}")
|
||||
# Redirect stdout
|
||||
old_stdout = sys.stdout
|
||||
sys.stdout = new_stdout = io.StringIO()
|
||||
|
||||
response = completion(model="claude-instant-1", messages=messages)
|
||||
|
||||
# Restore stdout
|
||||
sys.stdout = old_stdout
|
||||
output = new_stdout.getvalue().strip()
|
||||
|
||||
if "Logging Details Pre-API Call" not in output:
|
||||
raise Exception("Required log message not found!")
|
||||
elif "Logging Details Post-API Call" not in output:
|
||||
raise Exception("Required log message not found!")
|
||||
elif "Logging Details LiteLLM-Success Call" not in output:
|
||||
raise Exception("Required log message not found!")
|
||||
score += 1
|
||||
except:
|
||||
print(f"error occurred: {traceback.format_exc()}")
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
pass
|
||||
|
||||
# # test on openai embedding call
|
||||
# try:
|
||||
# response = embedding(model='text-embedding-ada-002', input=[user_message], logger_fn=logger_fn)
|
||||
# score +=1
|
||||
# except:
|
||||
# traceback.print_exc()
|
||||
# streaming completion
|
||||
## test on openai completion call
|
||||
try:
|
||||
# Redirect stdout
|
||||
old_stdout = sys.stdout
|
||||
sys.stdout = new_stdout = io.StringIO()
|
||||
|
||||
# # test on bad azure openai embedding call -> missing azure flag and this isn't an embedding model
|
||||
# try:
|
||||
# response = embedding(model='chatgpt-test', input=[user_message], logger_fn=logger_fn)
|
||||
# except:
|
||||
# score +=1 # expect this to fail
|
||||
# traceback.print_exc()
|
||||
response = completion(model="gpt-3.5-turbo", messages=messages)
|
||||
|
||||
# # test on good azure openai embedding call
|
||||
# try:
|
||||
# response = embedding(model='azure-embedding-model', input=[user_message], azure=True, logger_fn=logger_fn)
|
||||
# score +=1
|
||||
# except:
|
||||
# traceback.print_exc()
|
||||
# Restore stdout
|
||||
sys.stdout = old_stdout
|
||||
output = new_stdout.getvalue().strip()
|
||||
|
||||
if "Logging Details Pre-API Call" not in output:
|
||||
raise Exception("Required log message not found!")
|
||||
elif "Logging Details Post-API Call" not in output:
|
||||
raise Exception("Required log message not found!")
|
||||
elif "Logging Details LiteLLM-Success Call" not in output:
|
||||
raise Exception("Required log message not found!")
|
||||
score += 1
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
pass
|
||||
|
||||
# print(f"Score: {score}, Overall score: {score/5}")
|
||||
## test on non-openai completion call
|
||||
try:
|
||||
# Redirect stdout
|
||||
old_stdout = sys.stdout
|
||||
sys.stdout = new_stdout = io.StringIO()
|
||||
|
||||
response = completion(model="claude-instant-1", messages=messages)
|
||||
|
||||
# Restore stdout
|
||||
sys.stdout = old_stdout
|
||||
output = new_stdout.getvalue().strip()
|
||||
|
||||
if "Logging Details Pre-API Call" not in output:
|
||||
raise Exception("Required log message not found!")
|
||||
elif "Logging Details Post-API Call" not in output:
|
||||
raise Exception("Required log message not found!")
|
||||
elif "Logging Details LiteLLM-Success Call" not in output:
|
||||
raise Exception("Required log message not found!")
|
||||
score += 1
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
pass
|
||||
|
||||
# embedding
|
||||
|
||||
try:
|
||||
# Redirect stdout
|
||||
old_stdout = sys.stdout
|
||||
sys.stdout = new_stdout = io.StringIO()
|
||||
|
||||
response = embedding(model="text-embedding-ada-002", input=["good morning from litellm"])
|
||||
|
||||
# Restore stdout
|
||||
sys.stdout = old_stdout
|
||||
output = new_stdout.getvalue().strip()
|
||||
|
||||
if "Logging Details Pre-API Call" not in output:
|
||||
raise Exception("Required log message not found!")
|
||||
elif "Logging Details Post-API Call" not in output:
|
||||
raise Exception("Required log message not found!")
|
||||
elif "Logging Details LiteLLM-Success Call" not in output:
|
||||
raise Exception("Required log message not found!")
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
## 2. On LiteLLM Call failure
|
||||
## TEST BAD KEY
|
||||
|
||||
temporary_oai_key = os.environ["OPENAI_API_KEY"]
|
||||
os.environ["OPENAI_API_KEY"] = "bad-key"
|
||||
|
||||
temporary_anthropic_key = os.environ["ANTHROPIC_API_KEY"]
|
||||
os.environ["ANTHROPIC_API_KEY"] = "bad-key"
|
||||
|
||||
# normal completion
|
||||
## test on openai completion call
|
||||
try:
|
||||
# Redirect stdout
|
||||
old_stdout = sys.stdout
|
||||
sys.stdout = new_stdout = io.StringIO()
|
||||
|
||||
response = completion(model="gpt-3.5-turbo", messages=messages)
|
||||
|
||||
# Restore stdout
|
||||
sys.stdout = old_stdout
|
||||
output = new_stdout.getvalue().strip()
|
||||
|
||||
if "Logging Details Pre-API Call" not in output:
|
||||
raise Exception("Required log message not found!")
|
||||
elif "Logging Details Post-API Call" not in output:
|
||||
raise Exception("Required log message not found!")
|
||||
elif "Logging Details LiteLLM-Failure Call" not in output:
|
||||
raise Exception("Required log message not found!")
|
||||
score += 1
|
||||
except Exception as e:
|
||||
print(f"exception type: {type(e).__name__}")
|
||||
if not isinstance(e, AuthenticationError):
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
## test on non-openai completion call
|
||||
try:
|
||||
# Redirect stdout
|
||||
old_stdout = sys.stdout
|
||||
sys.stdout = new_stdout = io.StringIO()
|
||||
|
||||
response = completion(model="claude-instant-1", messages=messages)
|
||||
|
||||
# Restore stdout
|
||||
sys.stdout = old_stdout
|
||||
output = new_stdout.getvalue().strip()
|
||||
|
||||
if "Logging Details Pre-API Call" not in output:
|
||||
raise Exception("Required log message not found!")
|
||||
elif "Logging Details Post-API Call" not in output:
|
||||
raise Exception("Required log message not found!")
|
||||
elif "Logging Details LiteLLM-Failure Call" not in output:
|
||||
raise Exception("Required log message not found!")
|
||||
score += 1
|
||||
except Exception as e:
|
||||
if not isinstance(e, AuthenticationError):
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
# streaming completion
|
||||
## test on openai completion call
|
||||
try:
|
||||
# Redirect stdout
|
||||
old_stdout = sys.stdout
|
||||
sys.stdout = new_stdout = io.StringIO()
|
||||
|
||||
response = completion(model="gpt-3.5-turbo", messages=messages)
|
||||
|
||||
# Restore stdout
|
||||
sys.stdout = old_stdout
|
||||
output = new_stdout.getvalue().strip()
|
||||
|
||||
if "Logging Details Pre-API Call" not in output:
|
||||
raise Exception("Required log message not found!")
|
||||
elif "Logging Details Post-API Call" not in output:
|
||||
raise Exception("Required log message not found!")
|
||||
elif "Logging Details LiteLLM-Failure Call" not in output:
|
||||
raise Exception("Required log message not found!")
|
||||
score += 1
|
||||
except Exception as e:
|
||||
if not isinstance(e, AuthenticationError):
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
## test on non-openai completion call
|
||||
try:
|
||||
# Redirect stdout
|
||||
old_stdout = sys.stdout
|
||||
sys.stdout = new_stdout = io.StringIO()
|
||||
|
||||
response = completion(model="claude-instant-1", messages=messages)
|
||||
|
||||
# Restore stdout
|
||||
sys.stdout = old_stdout
|
||||
output = new_stdout.getvalue().strip()
|
||||
|
||||
if "Logging Details Pre-API Call" not in output:
|
||||
raise Exception("Required log message not found!")
|
||||
elif "Logging Details Post-API Call" not in output:
|
||||
raise Exception("Required log message not found!")
|
||||
elif "Logging Details LiteLLM-Failure Call" not in output:
|
||||
raise Exception("Required log message not found!")
|
||||
score += 1
|
||||
except Exception as e:
|
||||
if not isinstance(e, AuthenticationError):
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
# embedding
|
||||
|
||||
try:
|
||||
# Redirect stdout
|
||||
old_stdout = sys.stdout
|
||||
sys.stdout = new_stdout = io.StringIO()
|
||||
|
||||
response = embedding(model="text-embedding-ada-002", input=["good morning from litellm"])
|
||||
|
||||
# Restore stdout
|
||||
sys.stdout = old_stdout
|
||||
output = new_stdout.getvalue().strip()
|
||||
|
||||
if "Logging Details Pre-API Call" not in output:
|
||||
raise Exception("Required log message not found!")
|
||||
elif "Logging Details Post-API Call" not in output:
|
||||
raise Exception("Required log message not found!")
|
||||
elif "Logging Details LiteLLM-Failure Call" not in output:
|
||||
raise Exception("Required log message not found!")
|
||||
except Exception as e:
|
||||
if not isinstance(e, AuthenticationError):
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
os.environ["OPENAI_API_KEY"] = temporary_oai_key
|
||||
os.environ["ANTHROPIC_API_KEY"] = temporary_anthropic_key
|
|
@ -180,8 +180,10 @@ class Logging:
|
|||
}
|
||||
|
||||
def pre_call(self, input, api_key, model=None, additional_args={}):
|
||||
# Log the exact input to the LLM API
|
||||
print_verbose(f"Logging Details Pre-API Call")
|
||||
try:
|
||||
print_verbose(f"logging pre call for model: {self.model} with call type: {self.call_type}")
|
||||
# print_verbose(f"logging pre call for model: {self.model} with call type: {self.call_type}")
|
||||
self.model_call_details["input"] = input
|
||||
self.model_call_details["api_key"] = api_key
|
||||
self.model_call_details["additional_args"] = additional_args
|
||||
|
@ -193,9 +195,6 @@ class Logging:
|
|||
|
||||
# User Logging -> if you pass in a custom logging function
|
||||
print_verbose(f"model call details: {self.model_call_details}")
|
||||
print_verbose(
|
||||
f"Logging Details: logger_fn - {self.logger_fn} | callable(logger_fn) - {callable(self.logger_fn)}"
|
||||
)
|
||||
if self.logger_fn and callable(self.logger_fn):
|
||||
try:
|
||||
self.logger_fn(
|
||||
|
@ -257,7 +256,7 @@ class Logging:
|
|||
capture_exception(e)
|
||||
|
||||
def post_call(self, original_response, input=None, api_key=None, additional_args={}):
|
||||
# Do something here
|
||||
# Log the exact result from the LLM API, for streaming - log the type of response received
|
||||
try:
|
||||
self.model_call_details["input"] = input
|
||||
self.model_call_details["api_key"] = api_key
|
||||
|
@ -266,7 +265,7 @@ class Logging:
|
|||
|
||||
# User Logging -> if you pass in a custom logging function
|
||||
print_verbose(
|
||||
f"Logging Details: logger_fn - {self.logger_fn} | callable(logger_fn) - {callable(self.logger_fn)}"
|
||||
f"Logging Details Post-API Call: logger_fn - {self.logger_fn} | callable(logger_fn) - {callable(self.logger_fn)}"
|
||||
)
|
||||
if self.logger_fn and callable(self.logger_fn):
|
||||
try:
|
||||
|
@ -331,6 +330,9 @@ class Logging:
|
|||
|
||||
|
||||
def success_handler(self, result, start_time, end_time):
|
||||
print_verbose(
|
||||
f"Logging Details LiteLLM-Success Call"
|
||||
)
|
||||
try:
|
||||
for callback in litellm.success_callback:
|
||||
try:
|
||||
|
@ -364,6 +366,9 @@ class Logging:
|
|||
pass
|
||||
|
||||
def failure_handler(self, exception, traceback_exception, start_time, end_time):
|
||||
print_verbose(
|
||||
f"Logging Details LiteLLM-Failure Call"
|
||||
)
|
||||
try:
|
||||
for callback in litellm.failure_callback:
|
||||
if callback == "lite_debugger":
|
||||
|
@ -1699,6 +1704,9 @@ class CustomStreamWrapper:
|
|||
self.model = model
|
||||
self.custom_llm_provider = custom_llm_provider
|
||||
self.logging_obj = logging_obj
|
||||
if self.logging_obj:
|
||||
# Log the type of the received item
|
||||
self.logging_obj.post_call(str(type(completion_stream)))
|
||||
if model in litellm.cohere_models:
|
||||
# cohere does not return an iterator, so we need to wrap it in one
|
||||
self.completion_stream = iter(completion_stream)
|
||||
|
@ -1825,7 +1833,7 @@ class CustomStreamWrapper:
|
|||
completion_obj["content"] = self.handle_openai_chat_completion_chunk(chunk)
|
||||
|
||||
# LOGGING
|
||||
self.logging_obj.post_call(completion_obj["content"])
|
||||
# self.logging_obj.post_call(completion_obj["content"])
|
||||
# return this for all models
|
||||
return {"choices": [{"delta": completion_obj}]}
|
||||
except:
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
[tool.poetry]
|
||||
name = "litellm"
|
||||
version = "0.1.512"
|
||||
version = "0.1.513"
|
||||
description = "Library to easily interface with LLM API providers"
|
||||
authors = ["BerriAI"]
|
||||
license = "MIT License"
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue