forked from phoenix/litellm-mirror
doc example using litellm proxy with groq
This commit is contained in:
parent
53dd47c5cb
commit
fe0b0ddaaa
1 changed files with 102 additions and 4 deletions
|
@ -1,3 +1,6 @@
|
|||
import Tabs from '@theme/Tabs';
|
||||
import TabItem from '@theme/TabItem';
|
||||
|
||||
# Groq
|
||||
https://groq.com/
|
||||
|
||||
|
@ -20,7 +23,7 @@ import os
|
|||
|
||||
os.environ['GROQ_API_KEY'] = ""
|
||||
response = completion(
|
||||
model="groq/llama2-70b-4096",
|
||||
model="groq/llama3-8b-8192",
|
||||
messages=[
|
||||
{"role": "user", "content": "hello from litellm"}
|
||||
],
|
||||
|
@ -35,7 +38,7 @@ import os
|
|||
|
||||
os.environ['GROQ_API_KEY'] = ""
|
||||
response = completion(
|
||||
model="groq/llama2-70b-4096",
|
||||
model="groq/llama3-8b-8192",
|
||||
messages=[
|
||||
{"role": "user", "content": "hello from litellm"}
|
||||
],
|
||||
|
@ -47,6 +50,101 @@ for chunk in response:
|
|||
```
|
||||
|
||||
|
||||
|
||||
## Usage with LiteLLM Proxy
|
||||
|
||||
### 1. Set Groq Models on config.yaml
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: groq-llama3-8b-8192 # Model Alias to use for requests
|
||||
litellm_params:
|
||||
model: groq/llama3-8b-8192
|
||||
api_key: "os.environ/GROQ_API_KEY" # ensure you have `GROQ_API_KEY` in your .env
|
||||
```
|
||||
|
||||
### 2. Start Proxy
|
||||
|
||||
```
|
||||
litellm --config config.yaml
|
||||
```
|
||||
|
||||
### 3. Test it
|
||||
|
||||
Make request to litellm proxy
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="Curl" label="Curl Request">
|
||||
|
||||
```shell
|
||||
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
||||
--header 'Content-Type: application/json' \
|
||||
--data ' {
|
||||
"model": "groq-llama3-8b-8192",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "what llm are you"
|
||||
}
|
||||
]
|
||||
}
|
||||
'
|
||||
```
|
||||
</TabItem>
|
||||
<TabItem value="openai" label="OpenAI v1.0.0+">
|
||||
|
||||
```python
|
||||
import openai
|
||||
client = openai.OpenAI(
|
||||
api_key="anything",
|
||||
base_url="http://0.0.0.0:4000"
|
||||
)
|
||||
|
||||
response = client.chat.completions.create(model="groq-llama3-8b-8192", messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "this is a test request, write a short poem"
|
||||
}
|
||||
])
|
||||
|
||||
print(response)
|
||||
|
||||
```
|
||||
</TabItem>
|
||||
<TabItem value="langchain" label="Langchain">
|
||||
|
||||
```python
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from langchain.prompts.chat import (
|
||||
ChatPromptTemplate,
|
||||
HumanMessagePromptTemplate,
|
||||
SystemMessagePromptTemplate,
|
||||
)
|
||||
from langchain.schema import HumanMessage, SystemMessage
|
||||
|
||||
chat = ChatOpenAI(
|
||||
openai_api_base="http://0.0.0.0:4000", # set openai_api_base to the LiteLLM Proxy
|
||||
model = "groq-llama3-8b-8192",
|
||||
temperature=0.1
|
||||
)
|
||||
|
||||
messages = [
|
||||
SystemMessage(
|
||||
content="You are a helpful assistant that im using to make a test request to."
|
||||
),
|
||||
HumanMessage(
|
||||
content="test from litellm. tell me why it's amazing in 1 sentence"
|
||||
),
|
||||
]
|
||||
response = chat(messages)
|
||||
|
||||
print(response)
|
||||
```
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
|
||||
|
||||
## Supported Models - ALL Groq Models Supported!
|
||||
We support ALL Groq models, just set `groq/` as a prefix when sending completion requests
|
||||
|
||||
|
@ -114,7 +212,7 @@ tools = [
|
|||
}
|
||||
]
|
||||
response = litellm.completion(
|
||||
model="groq/llama2-70b-4096",
|
||||
model="groq/llama3-8b-8192",
|
||||
messages=messages,
|
||||
tools=tools,
|
||||
tool_choice="auto", # auto is default, but we'll be explicit
|
||||
|
@ -154,7 +252,7 @@ if tool_calls:
|
|||
) # extend conversation with function response
|
||||
print(f"messages: {messages}")
|
||||
second_response = litellm.completion(
|
||||
model="groq/llama2-70b-4096", messages=messages
|
||||
model="groq/llama3-8b-8192", messages=messages
|
||||
) # get a new response from the model where it can see the function response
|
||||
print("second response\n", second_response)
|
||||
```
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue