doc example using litellm proxy with groq

This commit is contained in:
Ishaan Jaff 2024-07-24 14:33:49 -07:00
parent 53dd47c5cb
commit fe0b0ddaaa

View file

@ -1,3 +1,6 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# Groq # Groq
https://groq.com/ https://groq.com/
@ -20,7 +23,7 @@ import os
os.environ['GROQ_API_KEY'] = "" os.environ['GROQ_API_KEY'] = ""
response = completion( response = completion(
model="groq/llama2-70b-4096", model="groq/llama3-8b-8192",
messages=[ messages=[
{"role": "user", "content": "hello from litellm"} {"role": "user", "content": "hello from litellm"}
], ],
@ -35,7 +38,7 @@ import os
os.environ['GROQ_API_KEY'] = "" os.environ['GROQ_API_KEY'] = ""
response = completion( response = completion(
model="groq/llama2-70b-4096", model="groq/llama3-8b-8192",
messages=[ messages=[
{"role": "user", "content": "hello from litellm"} {"role": "user", "content": "hello from litellm"}
], ],
@ -47,6 +50,101 @@ for chunk in response:
``` ```
## Usage with LiteLLM Proxy
### 1. Set Groq Models on config.yaml
```yaml
model_list:
- model_name: groq-llama3-8b-8192 # Model Alias to use for requests
litellm_params:
model: groq/llama3-8b-8192
api_key: "os.environ/GROQ_API_KEY" # ensure you have `GROQ_API_KEY` in your .env
```
### 2. Start Proxy
```
litellm --config config.yaml
```
### 3. Test it
Make request to litellm proxy
<Tabs>
<TabItem value="Curl" label="Curl Request">
```shell
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "groq-llama3-8b-8192",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
]
}
'
```
</TabItem>
<TabItem value="openai" label="OpenAI v1.0.0+">
```python
import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:4000"
)
response = client.chat.completions.create(model="groq-llama3-8b-8192", messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
])
print(response)
```
</TabItem>
<TabItem value="langchain" label="Langchain">
```python
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
)
from langchain.schema import HumanMessage, SystemMessage
chat = ChatOpenAI(
openai_api_base="http://0.0.0.0:4000", # set openai_api_base to the LiteLLM Proxy
model = "groq-llama3-8b-8192",
temperature=0.1
)
messages = [
SystemMessage(
content="You are a helpful assistant that im using to make a test request to."
),
HumanMessage(
content="test from litellm. tell me why it's amazing in 1 sentence"
),
]
response = chat(messages)
print(response)
```
</TabItem>
</Tabs>
## Supported Models - ALL Groq Models Supported! ## Supported Models - ALL Groq Models Supported!
We support ALL Groq models, just set `groq/` as a prefix when sending completion requests We support ALL Groq models, just set `groq/` as a prefix when sending completion requests
@ -114,7 +212,7 @@ tools = [
} }
] ]
response = litellm.completion( response = litellm.completion(
model="groq/llama2-70b-4096", model="groq/llama3-8b-8192",
messages=messages, messages=messages,
tools=tools, tools=tools,
tool_choice="auto", # auto is default, but we'll be explicit tool_choice="auto", # auto is default, but we'll be explicit
@ -154,7 +252,7 @@ if tool_calls:
) # extend conversation with function response ) # extend conversation with function response
print(f"messages: {messages}") print(f"messages: {messages}")
second_response = litellm.completion( second_response = litellm.completion(
model="groq/llama2-70b-4096", messages=messages model="groq/llama3-8b-8192", messages=messages
) # get a new response from the model where it can see the function response ) # get a new response from the model where it can see the function response
print("second response\n", second_response) print("second response\n", second_response)
``` ```