fix use 1 file for vertex success handler

This commit is contained in:
Ishaan Jaff 2024-11-21 17:30:14 -08:00
parent 5533ba4b04
commit fe5f57b86c
2 changed files with 124 additions and 98 deletions

View file

@ -0,0 +1,120 @@
import json
import re
from datetime import datetime
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
import httpx
import litellm
from litellm._logging import verbose_proxy_logger
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
from litellm.litellm_core_utils.litellm_logging import (
get_standard_logging_object_payload,
)
if TYPE_CHECKING:
from ..success_handler import PassThroughEndpointLogging
from ..types import EndpointType
else:
PassThroughEndpointLogging = Any
EndpointType = Any
class VertexPassthroughLoggingHandler:
@staticmethod
async def vertex_passthrough_handler(
httpx_response: httpx.Response,
logging_obj: LiteLLMLoggingObj,
url_route: str,
result: str,
start_time: datetime,
end_time: datetime,
cache_hit: bool,
**kwargs,
):
if "generateContent" in url_route:
model = VertexPassthroughLoggingHandler.extract_model_from_url(url_route)
instance_of_vertex_llm = litellm.VertexGeminiConfig()
litellm_model_response: litellm.ModelResponse = (
instance_of_vertex_llm._transform_response(
model=model,
messages=[
{"role": "user", "content": "no-message-pass-through-endpoint"}
],
response=httpx_response,
model_response=litellm.ModelResponse(),
logging_obj=logging_obj,
optional_params={},
litellm_params={},
api_key="",
data={},
print_verbose=litellm.print_verbose,
encoding=None,
)
)
logging_obj.model = litellm_model_response.model or model
logging_obj.model_call_details["model"] = logging_obj.model
await logging_obj.async_success_handler(
result=litellm_model_response,
start_time=start_time,
end_time=end_time,
cache_hit=cache_hit,
**kwargs,
)
elif "predict" in url_route:
from litellm.llms.vertex_ai_and_google_ai_studio.image_generation.image_generation_handler import (
VertexImageGeneration,
)
from litellm.types.utils import PassthroughCallTypes
vertex_image_generation_class = VertexImageGeneration()
model = VertexPassthroughLoggingHandler.extract_model_from_url(url_route)
_json_response = httpx_response.json()
litellm_prediction_response: Union[
litellm.ModelResponse, litellm.EmbeddingResponse, litellm.ImageResponse
] = litellm.ModelResponse()
if vertex_image_generation_class.is_image_generation_response(
_json_response
):
litellm_prediction_response = (
vertex_image_generation_class.process_image_generation_response(
_json_response,
model_response=litellm.ImageResponse(),
model=model,
)
)
logging_obj.call_type = (
PassthroughCallTypes.passthrough_image_generation.value
)
else:
litellm_prediction_response = litellm.vertexAITextEmbeddingConfig.transform_vertex_response_to_openai(
response=_json_response,
model=model,
model_response=litellm.EmbeddingResponse(),
)
if isinstance(litellm_prediction_response, litellm.EmbeddingResponse):
litellm_prediction_response.model = model
logging_obj.model = model
logging_obj.model_call_details["model"] = logging_obj.model
await logging_obj.async_success_handler(
result=litellm_prediction_response,
start_time=start_time,
end_time=end_time,
cache_hit=cache_hit,
**kwargs,
)
@staticmethod
def extract_model_from_url(url: str) -> str:
pattern = r"/models/([^:]+)"
match = re.search(pattern, url)
if match:
return match.group(1)
return "unknown"

View file

@ -21,6 +21,9 @@ from litellm.types.utils import StandardPassThroughResponseObject
from .llm_provider_handlers.anthropic_passthrough_logging_handler import (
AnthropicPassthroughLoggingHandler,
)
from .llm_provider_handlers.vertex_passthrough_logging_handler import (
VertexPassthroughLoggingHandler,
)
class PassThroughEndpointLogging:
@ -47,7 +50,7 @@ class PassThroughEndpointLogging:
**kwargs,
):
if self.is_vertex_route(url_route):
await self.vertex_passthrough_handler(
await VertexPassthroughLoggingHandler.vertex_passthrough_handler(
httpx_response=httpx_response,
logging_obj=logging_obj,
url_route=url_route,
@ -105,100 +108,3 @@ class PassThroughEndpointLogging:
if route in url_route:
return True
return False
def extract_model_from_url(self, url: str) -> str:
pattern = r"/models/([^:]+)"
match = re.search(pattern, url)
if match:
return match.group(1)
return "unknown"
async def vertex_passthrough_handler(
self,
httpx_response: httpx.Response,
logging_obj: LiteLLMLoggingObj,
url_route: str,
result: str,
start_time: datetime,
end_time: datetime,
cache_hit: bool,
**kwargs,
):
if "generateContent" in url_route:
model = self.extract_model_from_url(url_route)
instance_of_vertex_llm = litellm.VertexGeminiConfig()
litellm_model_response: litellm.ModelResponse = (
instance_of_vertex_llm._transform_response(
model=model,
messages=[
{"role": "user", "content": "no-message-pass-through-endpoint"}
],
response=httpx_response,
model_response=litellm.ModelResponse(),
logging_obj=logging_obj,
optional_params={},
litellm_params={},
api_key="",
data={},
print_verbose=litellm.print_verbose,
encoding=None,
)
)
logging_obj.model = litellm_model_response.model or model
logging_obj.model_call_details["model"] = logging_obj.model
await logging_obj.async_success_handler(
result=litellm_model_response,
start_time=start_time,
end_time=end_time,
cache_hit=cache_hit,
**kwargs,
)
elif "predict" in url_route:
from litellm.llms.vertex_ai_and_google_ai_studio.image_generation.image_generation_handler import (
VertexImageGeneration,
)
from litellm.types.utils import PassthroughCallTypes
vertex_image_generation_class = VertexImageGeneration()
model = self.extract_model_from_url(url_route)
_json_response = httpx_response.json()
litellm_prediction_response: Union[
litellm.ModelResponse, litellm.EmbeddingResponse, litellm.ImageResponse
] = litellm.ModelResponse()
if vertex_image_generation_class.is_image_generation_response(
_json_response
):
litellm_prediction_response = (
vertex_image_generation_class.process_image_generation_response(
_json_response,
model_response=litellm.ImageResponse(),
model=model,
)
)
logging_obj.call_type = (
PassthroughCallTypes.passthrough_image_generation.value
)
else:
litellm_prediction_response = litellm.vertexAITextEmbeddingConfig.transform_vertex_response_to_openai(
response=_json_response,
model=model,
model_response=litellm.EmbeddingResponse(),
)
if isinstance(litellm_prediction_response, litellm.EmbeddingResponse):
litellm_prediction_response.model = model
logging_obj.model = model
logging_obj.model_call_details["model"] = logging_obj.model
await logging_obj.async_success_handler(
result=litellm_prediction_response,
start_time=start_time,
end_time=end_time,
cache_hit=cache_hit,
**kwargs,
)