forked from phoenix/litellm-mirror
fix use 1 file for vertex success handler
This commit is contained in:
parent
5533ba4b04
commit
fe5f57b86c
2 changed files with 124 additions and 98 deletions
|
@ -0,0 +1,120 @@
|
|||
import json
|
||||
import re
|
||||
from datetime import datetime
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
|
||||
|
||||
import httpx
|
||||
|
||||
import litellm
|
||||
from litellm._logging import verbose_proxy_logger
|
||||
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
|
||||
from litellm.litellm_core_utils.litellm_logging import (
|
||||
get_standard_logging_object_payload,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ..success_handler import PassThroughEndpointLogging
|
||||
from ..types import EndpointType
|
||||
else:
|
||||
PassThroughEndpointLogging = Any
|
||||
EndpointType = Any
|
||||
|
||||
|
||||
class VertexPassthroughLoggingHandler:
|
||||
@staticmethod
|
||||
async def vertex_passthrough_handler(
|
||||
httpx_response: httpx.Response,
|
||||
logging_obj: LiteLLMLoggingObj,
|
||||
url_route: str,
|
||||
result: str,
|
||||
start_time: datetime,
|
||||
end_time: datetime,
|
||||
cache_hit: bool,
|
||||
**kwargs,
|
||||
):
|
||||
if "generateContent" in url_route:
|
||||
model = VertexPassthroughLoggingHandler.extract_model_from_url(url_route)
|
||||
|
||||
instance_of_vertex_llm = litellm.VertexGeminiConfig()
|
||||
litellm_model_response: litellm.ModelResponse = (
|
||||
instance_of_vertex_llm._transform_response(
|
||||
model=model,
|
||||
messages=[
|
||||
{"role": "user", "content": "no-message-pass-through-endpoint"}
|
||||
],
|
||||
response=httpx_response,
|
||||
model_response=litellm.ModelResponse(),
|
||||
logging_obj=logging_obj,
|
||||
optional_params={},
|
||||
litellm_params={},
|
||||
api_key="",
|
||||
data={},
|
||||
print_verbose=litellm.print_verbose,
|
||||
encoding=None,
|
||||
)
|
||||
)
|
||||
logging_obj.model = litellm_model_response.model or model
|
||||
logging_obj.model_call_details["model"] = logging_obj.model
|
||||
|
||||
await logging_obj.async_success_handler(
|
||||
result=litellm_model_response,
|
||||
start_time=start_time,
|
||||
end_time=end_time,
|
||||
cache_hit=cache_hit,
|
||||
**kwargs,
|
||||
)
|
||||
elif "predict" in url_route:
|
||||
from litellm.llms.vertex_ai_and_google_ai_studio.image_generation.image_generation_handler import (
|
||||
VertexImageGeneration,
|
||||
)
|
||||
from litellm.types.utils import PassthroughCallTypes
|
||||
|
||||
vertex_image_generation_class = VertexImageGeneration()
|
||||
|
||||
model = VertexPassthroughLoggingHandler.extract_model_from_url(url_route)
|
||||
_json_response = httpx_response.json()
|
||||
|
||||
litellm_prediction_response: Union[
|
||||
litellm.ModelResponse, litellm.EmbeddingResponse, litellm.ImageResponse
|
||||
] = litellm.ModelResponse()
|
||||
if vertex_image_generation_class.is_image_generation_response(
|
||||
_json_response
|
||||
):
|
||||
litellm_prediction_response = (
|
||||
vertex_image_generation_class.process_image_generation_response(
|
||||
_json_response,
|
||||
model_response=litellm.ImageResponse(),
|
||||
model=model,
|
||||
)
|
||||
)
|
||||
|
||||
logging_obj.call_type = (
|
||||
PassthroughCallTypes.passthrough_image_generation.value
|
||||
)
|
||||
else:
|
||||
litellm_prediction_response = litellm.vertexAITextEmbeddingConfig.transform_vertex_response_to_openai(
|
||||
response=_json_response,
|
||||
model=model,
|
||||
model_response=litellm.EmbeddingResponse(),
|
||||
)
|
||||
if isinstance(litellm_prediction_response, litellm.EmbeddingResponse):
|
||||
litellm_prediction_response.model = model
|
||||
|
||||
logging_obj.model = model
|
||||
logging_obj.model_call_details["model"] = logging_obj.model
|
||||
|
||||
await logging_obj.async_success_handler(
|
||||
result=litellm_prediction_response,
|
||||
start_time=start_time,
|
||||
end_time=end_time,
|
||||
cache_hit=cache_hit,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def extract_model_from_url(url: str) -> str:
|
||||
pattern = r"/models/([^:]+)"
|
||||
match = re.search(pattern, url)
|
||||
if match:
|
||||
return match.group(1)
|
||||
return "unknown"
|
|
@ -21,6 +21,9 @@ from litellm.types.utils import StandardPassThroughResponseObject
|
|||
from .llm_provider_handlers.anthropic_passthrough_logging_handler import (
|
||||
AnthropicPassthroughLoggingHandler,
|
||||
)
|
||||
from .llm_provider_handlers.vertex_passthrough_logging_handler import (
|
||||
VertexPassthroughLoggingHandler,
|
||||
)
|
||||
|
||||
|
||||
class PassThroughEndpointLogging:
|
||||
|
@ -47,7 +50,7 @@ class PassThroughEndpointLogging:
|
|||
**kwargs,
|
||||
):
|
||||
if self.is_vertex_route(url_route):
|
||||
await self.vertex_passthrough_handler(
|
||||
await VertexPassthroughLoggingHandler.vertex_passthrough_handler(
|
||||
httpx_response=httpx_response,
|
||||
logging_obj=logging_obj,
|
||||
url_route=url_route,
|
||||
|
@ -105,100 +108,3 @@ class PassThroughEndpointLogging:
|
|||
if route in url_route:
|
||||
return True
|
||||
return False
|
||||
|
||||
def extract_model_from_url(self, url: str) -> str:
|
||||
pattern = r"/models/([^:]+)"
|
||||
match = re.search(pattern, url)
|
||||
if match:
|
||||
return match.group(1)
|
||||
return "unknown"
|
||||
|
||||
async def vertex_passthrough_handler(
|
||||
self,
|
||||
httpx_response: httpx.Response,
|
||||
logging_obj: LiteLLMLoggingObj,
|
||||
url_route: str,
|
||||
result: str,
|
||||
start_time: datetime,
|
||||
end_time: datetime,
|
||||
cache_hit: bool,
|
||||
**kwargs,
|
||||
):
|
||||
if "generateContent" in url_route:
|
||||
model = self.extract_model_from_url(url_route)
|
||||
|
||||
instance_of_vertex_llm = litellm.VertexGeminiConfig()
|
||||
litellm_model_response: litellm.ModelResponse = (
|
||||
instance_of_vertex_llm._transform_response(
|
||||
model=model,
|
||||
messages=[
|
||||
{"role": "user", "content": "no-message-pass-through-endpoint"}
|
||||
],
|
||||
response=httpx_response,
|
||||
model_response=litellm.ModelResponse(),
|
||||
logging_obj=logging_obj,
|
||||
optional_params={},
|
||||
litellm_params={},
|
||||
api_key="",
|
||||
data={},
|
||||
print_verbose=litellm.print_verbose,
|
||||
encoding=None,
|
||||
)
|
||||
)
|
||||
logging_obj.model = litellm_model_response.model or model
|
||||
logging_obj.model_call_details["model"] = logging_obj.model
|
||||
|
||||
await logging_obj.async_success_handler(
|
||||
result=litellm_model_response,
|
||||
start_time=start_time,
|
||||
end_time=end_time,
|
||||
cache_hit=cache_hit,
|
||||
**kwargs,
|
||||
)
|
||||
elif "predict" in url_route:
|
||||
from litellm.llms.vertex_ai_and_google_ai_studio.image_generation.image_generation_handler import (
|
||||
VertexImageGeneration,
|
||||
)
|
||||
from litellm.types.utils import PassthroughCallTypes
|
||||
|
||||
vertex_image_generation_class = VertexImageGeneration()
|
||||
|
||||
model = self.extract_model_from_url(url_route)
|
||||
_json_response = httpx_response.json()
|
||||
|
||||
litellm_prediction_response: Union[
|
||||
litellm.ModelResponse, litellm.EmbeddingResponse, litellm.ImageResponse
|
||||
] = litellm.ModelResponse()
|
||||
if vertex_image_generation_class.is_image_generation_response(
|
||||
_json_response
|
||||
):
|
||||
litellm_prediction_response = (
|
||||
vertex_image_generation_class.process_image_generation_response(
|
||||
_json_response,
|
||||
model_response=litellm.ImageResponse(),
|
||||
model=model,
|
||||
)
|
||||
)
|
||||
|
||||
logging_obj.call_type = (
|
||||
PassthroughCallTypes.passthrough_image_generation.value
|
||||
)
|
||||
else:
|
||||
litellm_prediction_response = litellm.vertexAITextEmbeddingConfig.transform_vertex_response_to_openai(
|
||||
response=_json_response,
|
||||
model=model,
|
||||
model_response=litellm.EmbeddingResponse(),
|
||||
)
|
||||
if isinstance(litellm_prediction_response, litellm.EmbeddingResponse):
|
||||
litellm_prediction_response.model = model
|
||||
|
||||
logging_obj.model = model
|
||||
logging_obj.model_call_details["model"] = logging_obj.model
|
||||
|
||||
await logging_obj.async_success_handler(
|
||||
result=litellm_prediction_response,
|
||||
start_time=start_time,
|
||||
end_time=end_time,
|
||||
cache_hit=cache_hit,
|
||||
**kwargs,
|
||||
)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue