update docs

This commit is contained in:
Krrish Dholakia 2023-09-11 08:06:30 -07:00
parent 1909444285
commit feaff2f385

View file

@ -1,7 +1,7 @@
# Completion Token Usage & Cost
By default LiteLLM returns token usage in all completion requests ([See here](https://litellm.readthedocs.io/en/latest/output/))
However, we also expose 3 public helper functions to calculate token usage across providers:
However, we also expose 4 public helper functions to calculate token usage across providers:
- `token_counter`: This returns the number of tokens for a given input - it uses the tokenizer based on the model, and defaults to tiktoken if no model-specific tokenizer is available.
@ -9,6 +9,8 @@ However, we also expose 3 public helper functions to calculate token usage acros
- `completion_cost`: This returns the overall cost (in USD) for a given LLM API Call. It combines `token_counter` and `cost_per_token` to return the cost for that query (counting both cost of input and output).
- `get_max_tokens`: This returns a dictionary for a given model name, with it's max_tokens, input_cost_per_token and output_cost_per_token
## Example Usage
### 1. `token_counter`
@ -51,3 +53,15 @@ formatted_string = f"${float(cost):.10f}"
print(formatted_string)
```
### 4. `get_max_tokens`
* Input: Accepts a model name - e.g. `gpt-3.5-turbo` (to get a complete list, call `litellm.model_list`)
* Output: Returns a dict object containing the max_tokens, input_cost_per_token, output_cost_per_token
```python
from litellm import get_max_tokens
model = "gpt-3.5-turbo"
print(get_max_tokens(model)) # {'max_tokens': 4000, 'input_cost_per_token': 1.5e-06, 'output_cost_per_token': 2e-06}
```