* fix(utils.py): support passing dynamic api base to validate_environment
Returns True if just api base is required and api base is passed
* fix(litellm_pre_call_utils.py): feature flag sending client headers to llm api
Fixes https://github.com/BerriAI/litellm/issues/6410
* fix(anthropic/chat/transformation.py): return correct error message
* fix(http_handler.py): add error response text in places where we expect it
* fix(factory.py): handle base case of no non-system messages to bedrock
Fixes https://github.com/BerriAI/litellm/issues/6411
* feat(cohere/embed): Support cohere image embeddings
Closes https://github.com/BerriAI/litellm/issues/6413
* fix(__init__.py): fix linting error
* docs(supported_embedding.md): add image embedding example to docs
* feat(cohere/embed): use cohere embedding returned usage for cost calc
* build(model_prices_and_context_window.json): add embed-english-v3.0 details (image cost + 'supports_image_input' flag)
* fix(cohere_transformation.py): fix linting error
* test(test_proxy_server.py): cleanup test
* test: cleanup test
* fix: fix linting errors
* LiteLLM Minor Fixes & Improvements (09/23/2024) (#5842)
* feat(auth_utils.py): enable admin to allow client-side credentials to be passed
Makes it easier for devs to experiment with finetuned fireworks ai models
* feat(router.py): allow setting configurable_clientside_auth_params for a model
Closes https://github.com/BerriAI/litellm/issues/5843
* build(model_prices_and_context_window.json): fix anthropic claude-3-5-sonnet max output token limit
Fixes https://github.com/BerriAI/litellm/issues/5850
* fix(azure_ai/): support content list for azure ai
Fixes https://github.com/BerriAI/litellm/issues/4237
* fix(litellm_logging.py): always set saved_cache_cost
Set to 0 by default
* fix(fireworks_ai/cost_calculator.py): add fireworks ai default pricing
handles calling 405b+ size models
* fix(slack_alerting.py): fix error alerting for failed spend tracking
Fixes regression with slack alerting error monitoring
* fix(vertex_and_google_ai_studio_gemini.py): handle gemini no candidates in streaming chunk error
* docs(bedrock.md): add llama3-1 models
* test: fix tests
* fix(azure_ai/chat): fix transformation for azure ai calls
* feat(azure_ai/embed): Add azure ai embeddings support
Closes https://github.com/BerriAI/litellm/issues/5861
* fix(azure_ai/embed): enable async embedding
* feat(azure_ai/embed): support azure ai multimodal embeddings
* fix(azure_ai/embed): support async multi modal embeddings
* feat(together_ai/embed): support together ai embedding calls
* feat(rerank/main.py): log source documents for rerank endpoints to langfuse
improves rerank endpoint logging
* fix(langfuse.py): support logging `/audio/speech` input to langfuse
* test(test_embedding.py): fix test
* test(test_completion_cost.py): fix helper util