Compare commits

...
Sign in to create a new pull request.

9 commits

Author SHA1 Message Date
Krrish Dholakia
d2b123eef7 bump: version 1.53.1 → 1.53.2 2024-12-01 06:55:33 -08:00
Krish Dholakia
859b47f08b
LiteLLM Minor Fixes & Improvements (11/29/2024) (#6965)
* fix(factory.py): ensure tool call converts image url

Fixes https://github.com/BerriAI/litellm/issues/6953

* fix(transformation.py): support mp4 + pdf url's for vertex ai

Fixes https://github.com/BerriAI/litellm/issues/6936

* fix(http_handler.py): mask gemini api key in error logs

Fixes https://github.com/BerriAI/litellm/issues/6963

* docs(prometheus.md): update prometheus FAQs

* feat(auth_checks.py): ensure specific model access > wildcard model access

if wildcard model is in access group, but specific model is not - deny access

* fix(auth_checks.py): handle auth checks for team based model access groups

handles scenario where model access group used for wildcard models

* fix(internal_user_endpoints.py): support adding guardrails on `/user/update`

Fixes https://github.com/BerriAI/litellm/issues/6942

* fix(key_management_endpoints.py): fix prepare_metadata_fields helper

* fix: fix tests

* build(requirements.txt): bump openai dep version

fixes proxies argument

* test: fix tests

* fix(http_handler.py): fix error message masking

* fix(bedrock_guardrails.py): pass in prepped data

* test: fix test

* test: fix nvidia nim test

* fix(http_handler.py): return original response headers

* fix: revert maskedhttpstatuserror

* test: update tests

* test: cleanup test

* fix(key_management_endpoints.py): fix metadata field update logic

* fix(key_management_endpoints.py): maintain initial order of guardrails in key update

* fix(key_management_endpoints.py): handle prepare metadata

* fix: fix linting errors

* fix: fix linting errors

* fix: fix linting errors

* fix: fix key management errors

* fix(key_management_endpoints.py): update metadata

* test: update test

* refactor: add more debug statements

* test: skip flaky test

* test: fix test

* fix: fix test

* fix: fix update metadata logic

* fix: fix test

* ci(config.yml): change db url for e2e ui testing
2024-12-01 05:24:11 -08:00
Krish Dholakia
bd59f18809
fix(key_management_endpoints.py): support 'tags' param on /key/update (#6945) 2024-11-29 02:02:54 -08:00
Ishaan Jaff
05f810922c
(feat) Allow disabling ErrorLogs written to the DB (#6940)
* fix - allow disabling logging error logs

* docs on disabling error logs

* doc string for _PROXY_failure_handler

* test_disable_error_logs

* rename file

* fix rename file

* increase test coverage for test_enable_error_logs
2024-11-27 19:34:51 -08:00
Ishaan Jaff
0ac2d8b256 fix doc string 2024-11-27 18:55:06 -08:00
Ishaan Jaff
9393434d01
(fix) tag merging / aggregation logic (#6932)
* use 1 helper to merge tags + ensure unique ness

* test_add_litellm_data_to_request_duplicate_tags

* fix _merge_tags

* fix proxy utils test
2024-11-27 18:40:33 -08:00
Ishaan Jaff
d6181b2c9f
(feat) add enforcement for unique key aliases on /key/update and /key/generate (#6944)
* add enforcement for unique key aliases

* fix _enforce_unique_key_alias

* fix _enforce_unique_key_alias

* fix _enforce_unique_key_alias

* test_enforce_unique_key_alias
2024-11-27 18:40:21 -08:00
Ishaan Jaff
4ebb7c8a7f
(docs + fix) Add docs on Moderations endpoint, Text Completion (#6947)
* fix _pass_through_moderation_endpoint_factory

* fix route_llm_request

* doc moderations api

* docs on /moderations

* add e2e tests for moderations api

* docs moderations api

* test_pass_through_moderation_endpoint_factory

* docs text completion
2024-11-27 16:30:48 -08:00
Ishaan Jaff
eba700a491 Revert "Revert "(feat) Allow using include to include external YAML files in a config.yaml (#6922)""
This reverts commit 5d13302e6b.
2024-11-27 16:08:59 -08:00
61 changed files with 2209 additions and 830 deletions

View file

@ -1408,7 +1408,7 @@ jobs:
command: |
docker run -d \
-p 4000:4000 \
-e DATABASE_URL=$PROXY_DATABASE_URL \
-e DATABASE_URL=$PROXY_DATABASE_URL_2 \
-e LITELLM_MASTER_KEY="sk-1234" \
-e OPENAI_API_KEY=$OPENAI_API_KEY \
-e UI_USERNAME="admin" \

View file

@ -0,0 +1,135 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# Moderation
### Usage
<Tabs>
<TabItem value="python" label="LiteLLM Python SDK">
```python
from litellm import moderation
response = moderation(
input="hello from litellm",
model="text-moderation-stable"
)
```
</TabItem>
<TabItem value="proxy" label="LiteLLM Proxy Server">
For `/moderations` endpoint, there is **no need to specify `model` in the request or on the litellm config.yaml**
Start litellm proxy server
```
litellm
```
<Tabs>
<TabItem value="python" label="OpenAI Python SDK">
```python
from openai import OpenAI
# set base_url to your proxy server
# set api_key to send to proxy server
client = OpenAI(api_key="<proxy-api-key>", base_url="http://0.0.0.0:4000")
response = client.moderations.create(
input="hello from litellm",
model="text-moderation-stable" # optional, defaults to `omni-moderation-latest`
)
print(response)
```
</TabItem>
<TabItem value="curl" label="Curl Request">
```shell
curl --location 'http://0.0.0.0:4000/moderations' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer sk-1234' \
--data '{"input": "Sample text goes here", "model": "text-moderation-stable"}'
```
</TabItem>
</Tabs>
</TabItem>
</Tabs>
## Input Params
LiteLLM accepts and translates the [OpenAI Moderation params](https://platform.openai.com/docs/api-reference/moderations) across all supported providers.
### Required Fields
- `input`: *string or array* - Input (or inputs) to classify. Can be a single string, an array of strings, or an array of multi-modal input objects similar to other models.
- If string: A string of text to classify for moderation
- If array of strings: An array of strings to classify for moderation
- If array of objects: An array of multi-modal inputs to the moderation model, where each object can be:
- An object describing an image to classify with:
- `type`: *string, required* - Always `image_url`
- `image_url`: *object, required* - Contains either an image URL or a data URL for a base64 encoded image
- An object describing text to classify with:
- `type`: *string, required* - Always `text`
- `text`: *string, required* - A string of text to classify
### Optional Fields
- `model`: *string (optional)* - The moderation model to use. Defaults to `omni-moderation-latest`.
## Output Format
Here's the exact json output and type you can expect from all moderation calls:
[**LiteLLM follows OpenAI's output format**](https://platform.openai.com/docs/api-reference/moderations/object)
```python
{
"id": "modr-AB8CjOTu2jiq12hp1AQPfeqFWaORR",
"model": "text-moderation-007",
"results": [
{
"flagged": true,
"categories": {
"sexual": false,
"hate": false,
"harassment": true,
"self-harm": false,
"sexual/minors": false,
"hate/threatening": false,
"violence/graphic": false,
"self-harm/intent": false,
"self-harm/instructions": false,
"harassment/threatening": true,
"violence": true
},
"category_scores": {
"sexual": 0.000011726012417057063,
"hate": 0.22706663608551025,
"harassment": 0.5215635299682617,
"self-harm": 2.227119921371923e-6,
"sexual/minors": 7.107352217872176e-8,
"hate/threatening": 0.023547329008579254,
"violence/graphic": 0.00003391829886822961,
"self-harm/intent": 1.646940972932498e-6,
"self-harm/instructions": 1.1198755256458526e-9,
"harassment/threatening": 0.5694745779037476,
"violence": 0.9971134662628174
}
}
]
}
```
## **Supported Providers**
| Provider |
|-------------|
| OpenAI |

View file

@ -0,0 +1,59 @@
# File Management
## `include` external YAML files in a config.yaml
You can use `include` to include external YAML files in a config.yaml.
**Quick Start Usage:**
To include a config file, use `include` with either a single file or a list of files.
Contents of `parent_config.yaml`:
```yaml
include:
- model_config.yaml # 👈 Key change, will include the contents of model_config.yaml
litellm_settings:
callbacks: ["prometheus"]
```
Contents of `model_config.yaml`:
```yaml
model_list:
- model_name: gpt-4o
litellm_params:
model: openai/gpt-4o
api_base: https://exampleopenaiendpoint-production.up.railway.app/
- model_name: fake-anthropic-endpoint
litellm_params:
model: anthropic/fake
api_base: https://exampleanthropicendpoint-production.up.railway.app/
```
Start proxy server
This will start the proxy server with config `parent_config.yaml`. Since the `include` directive is used, the server will also include the contents of `model_config.yaml`.
```
litellm --config parent_config.yaml --detailed_debug
```
## Examples using `include`
Include a single file:
```yaml
include:
- model_config.yaml
```
Include multiple files:
```yaml
include:
- model_config.yaml
- another_config.yaml
```

View file

@ -2,7 +2,7 @@ import Image from '@theme/IdealImage';
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# Proxy Config.yaml
# Overview
Set model list, `api_base`, `api_key`, `temperature` & proxy server settings (`master-key`) on the config.yaml.
| Param Name | Description |

View file

@ -50,18 +50,22 @@ You can see the full DB Schema [here](https://github.com/BerriAI/litellm/blob/ma
| LiteLLM_ErrorLogs | Captures failed requests and errors. Stores exception details and request information. Helps with debugging and monitoring. | **Medium - on errors only** |
| LiteLLM_AuditLog | Tracks changes to system configuration. Records who made changes and what was modified. Maintains history of updates to teams, users, and models. | **Off by default**, **High - when enabled** |
## How to Disable `LiteLLM_SpendLogs`
## Disable `LiteLLM_SpendLogs` & `LiteLLM_ErrorLogs`
You can disable spend_logs by setting `disable_spend_logs` to `True` on the `general_settings` section of your proxy_config.yaml file.
You can disable spend_logs and error_logs by setting `disable_spend_logs` and `disable_error_logs` to `True` on the `general_settings` section of your proxy_config.yaml file.
```yaml
general_settings:
disable_spend_logs: True
disable_spend_logs: True # Disable writing spend logs to DB
disable_error_logs: True # Disable writing error logs to DB
```
### What is the impact of disabling these logs?
### What is the impact of disabling `LiteLLM_SpendLogs`?
When disabling spend logs (`disable_spend_logs: True`):
- You **will not** be able to view Usage on the LiteLLM UI
- You **will** continue seeing cost metrics on s3, Prometheus, Langfuse (any other Logging integration you are using)
When disabling error logs (`disable_error_logs: True`):
- You **will not** be able to view Errors on the LiteLLM UI
- You **will** continue seeing error logs in your application logs and any other logging integrations you are using

View file

@ -23,6 +23,7 @@ general_settings:
# OPTIONAL Best Practices
disable_spend_logs: True # turn off writing each transaction to the db. We recommend doing this is you don't need to see Usage on the LiteLLM UI and are tracking metrics via Prometheus
disable_error_logs: True # turn off writing LLM Exceptions to DB
allow_requests_on_db_unavailable: True # Only USE when running LiteLLM on your VPC. Allow requests to still be processed even if the DB is unavailable. We recommend doing this if you're running LiteLLM on VPC that cannot be accessed from the public internet.
litellm_settings:
@ -102,17 +103,22 @@ general_settings:
allow_requests_on_db_unavailable: True
```
## 6. Disable spend_logs if you're not using the LiteLLM UI
## 6. Disable spend_logs & error_logs if not using the LiteLLM UI
By default LiteLLM will write every request to the `LiteLLM_SpendLogs` table. This is used for viewing Usage on the LiteLLM UI.
By default, LiteLLM writes several types of logs to the database:
- Every LLM API request to the `LiteLLM_SpendLogs` table
- LLM Exceptions to the `LiteLLM_LogsErrors` table
If you're not viewing Usage on the LiteLLM UI (most users use Prometheus when this is disabled), you can disable spend_logs by setting `disable_spend_logs` to `True`.
If you're not viewing these logs on the LiteLLM UI (most users use Prometheus for monitoring), you can disable them by setting the following flags to `True`:
```yaml
general_settings:
disable_spend_logs: True
disable_spend_logs: True # Disable writing spend logs to DB
disable_error_logs: True # Disable writing error logs to DB
```
[More information about what the Database is used for here](db_info)
## 7. Use Helm PreSync Hook for Database Migrations [BETA]
To ensure only one service manages database migrations, use our [Helm PreSync hook for Database Migrations](https://github.com/BerriAI/litellm/blob/main/deploy/charts/litellm-helm/templates/migrations-job.yaml). This ensures migrations are handled during `helm upgrade` or `helm install`, while LiteLLM pods explicitly disable migrations.

View file

@ -192,3 +192,13 @@ Here is a screenshot of the metrics you can monitor with the LiteLLM Grafana Das
|----------------------|--------------------------------------|
| `litellm_llm_api_failed_requests_metric` | **deprecated** use `litellm_proxy_failed_requests_metric` |
| `litellm_requests_metric` | **deprecated** use `litellm_proxy_total_requests_metric` |
## FAQ
### What are `_created` vs. `_total` metrics?
- `_created` metrics are metrics that are created when the proxy starts
- `_total` metrics are metrics that are incremented for each request
You should consume the `_total` metrics for your counting purposes

View file

@ -0,0 +1,174 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# Text Completion
### Usage
<Tabs>
<TabItem value="python" label="LiteLLM Python SDK">
```python
from litellm import text_completion
response = text_completion(
model="gpt-3.5-turbo-instruct",
prompt="Say this is a test",
max_tokens=7
)
```
</TabItem>
<TabItem value="proxy" label="LiteLLM Proxy Server">
1. Define models on config.yaml
```yaml
model_list:
- model_name: gpt-3.5-turbo-instruct
litellm_params:
model: text-completion-openai/gpt-3.5-turbo-instruct # The `text-completion-openai/` prefix will call openai.completions.create
api_key: os.environ/OPENAI_API_KEY
- model_name: text-davinci-003
litellm_params:
model: text-completion-openai/text-davinci-003
api_key: os.environ/OPENAI_API_KEY
```
2. Start litellm proxy server
```
litellm --config config.yaml
```
<Tabs>
<TabItem value="python" label="OpenAI Python SDK">
```python
from openai import OpenAI
# set base_url to your proxy server
# set api_key to send to proxy server
client = OpenAI(api_key="<proxy-api-key>", base_url="http://0.0.0.0:4000")
response = client.completions.create(
model="gpt-3.5-turbo-instruct",
prompt="Say this is a test",
max_tokens=7
)
print(response)
```
</TabItem>
<TabItem value="curl" label="Curl Request">
```shell
curl --location 'http://0.0.0.0:4000/completions' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer sk-1234' \
--data '{
"model": "gpt-3.5-turbo-instruct",
"prompt": "Say this is a test",
"max_tokens": 7
}'
```
</TabItem>
</Tabs>
</TabItem>
</Tabs>
## Input Params
LiteLLM accepts and translates the [OpenAI Text Completion params](https://platform.openai.com/docs/api-reference/completions) across all supported providers.
### Required Fields
- `model`: *string* - ID of the model to use
- `prompt`: *string or array* - The prompt(s) to generate completions for
### Optional Fields
- `best_of`: *integer* - Generates best_of completions server-side and returns the "best" one
- `echo`: *boolean* - Echo back the prompt in addition to the completion.
- `frequency_penalty`: *number* - Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency.
- `logit_bias`: *map* - Modify the likelihood of specified tokens appearing in the completion
- `logprobs`: *integer* - Include the log probabilities on the logprobs most likely tokens. Max value of 5
- `max_tokens`: *integer* - The maximum number of tokens to generate.
- `n`: *integer* - How many completions to generate for each prompt.
- `presence_penalty`: *number* - Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far.
- `seed`: *integer* - If specified, system will attempt to make deterministic samples
- `stop`: *string or array* - Up to 4 sequences where the API will stop generating tokens
- `stream`: *boolean* - Whether to stream back partial progress. Defaults to false
- `suffix`: *string* - The suffix that comes after a completion of inserted text
- `temperature`: *number* - What sampling temperature to use, between 0 and 2.
- `top_p`: *number* - An alternative to sampling with temperature, called nucleus sampling.
- `user`: *string* - A unique identifier representing your end-user
## Output Format
Here's the exact JSON output format you can expect from completion calls:
[**Follows OpenAI's output format**](https://platform.openai.com/docs/api-reference/completions/object)
<Tabs>
<TabItem value="non-streaming" label="Non-Streaming Response">
```python
{
"id": "cmpl-uqkvlQyYK7bGYrRHQ0eXlWi7",
"object": "text_completion",
"created": 1589478378,
"model": "gpt-3.5-turbo-instruct",
"system_fingerprint": "fp_44709d6fcb",
"choices": [
{
"text": "\n\nThis is indeed a test",
"index": 0,
"logprobs": null,
"finish_reason": "length"
}
],
"usage": {
"prompt_tokens": 5,
"completion_tokens": 7,
"total_tokens": 12
}
}
```
</TabItem>
<TabItem value="streaming" label="Streaming Response">
```python
{
"id": "cmpl-7iA7iJjj8V2zOkCGvWF2hAkDWBQZe",
"object": "text_completion",
"created": 1690759702,
"choices": [
{
"text": "This",
"index": 0,
"logprobs": null,
"finish_reason": null
}
],
"model": "gpt-3.5-turbo-instruct"
"system_fingerprint": "fp_44709d6fcb",
}
```
</TabItem>
</Tabs>
## **Supported Providers**
| Provider | Link to Usage |
|-------------|--------------------|
| OpenAI | [Usage](../docs/providers/text_completion_openai) |
| Azure OpenAI| [Usage](../docs/providers/azure) |

View file

@ -32,7 +32,7 @@ const sidebars = {
{
"type": "category",
"label": "Config.yaml",
"items": ["proxy/configs", "proxy/config_settings"]
"items": ["proxy/configs", "proxy/config_management", "proxy/config_settings"]
},
{
type: "category",
@ -246,6 +246,7 @@ const sidebars = {
"completion/usage",
],
},
"text_completion",
"embedding/supported_embedding",
"image_generation",
{
@ -261,6 +262,7 @@ const sidebars = {
"batches",
"realtime",
"fine_tuning",
"moderation",
{
type: "link",
label: "Use LiteLLM Proxy with Vertex, Bedrock SDK",

View file

@ -2,7 +2,9 @@
from typing import Optional, List
from litellm._logging import verbose_logger
from litellm.proxy.proxy_server import PrismaClient, HTTPException
from litellm.llms.custom_httpx.http_handler import HTTPHandler
import collections
import httpx
from datetime import datetime
@ -114,7 +116,6 @@ async def ui_get_spend_by_tags(
def _forecast_daily_cost(data: list):
import requests # type: ignore
from datetime import datetime, timedelta
if len(data) == 0:
@ -136,17 +137,17 @@ def _forecast_daily_cost(data: list):
print("last entry date", last_entry_date)
# Assuming today_date is a datetime object
today_date = datetime.now()
# Calculate the last day of the month
last_day_of_todays_month = datetime(
today_date.year, today_date.month % 12 + 1, 1
) - timedelta(days=1)
print("last day of todays month", last_day_of_todays_month)
# Calculate the remaining days in the month
remaining_days = (last_day_of_todays_month - last_entry_date).days
print("remaining days", remaining_days)
current_spend_this_month = 0
series = {}
for entry in data:
@ -176,13 +177,19 @@ def _forecast_daily_cost(data: list):
"Content-Type": "application/json",
}
response = requests.post(
client = HTTPHandler()
try:
response = client.post(
url="https://trend-api-production.up.railway.app/forecast",
json=payload,
headers=headers,
)
# check the status code
response.raise_for_status()
except httpx.HTTPStatusError as e:
raise HTTPException(
status_code=500,
detail={"error": f"Error getting forecast: {e.response.text}"},
)
json_response = response.json()
forecast_data = json_response["forecast"]
@ -206,13 +213,3 @@ def _forecast_daily_cost(data: list):
f"Predicted Spend for { today_month } 2024, ${total_predicted_spend}"
)
return {"response": response_data, "predicted_spend": predicted_spend}
# print(f"Date: {entry['date']}, Spend: {entry['spend']}, Response: {response.text}")
# _forecast_daily_cost(
# [
# {"date": "2022-01-01", "spend": 100},
# ]
# )

View file

@ -28,6 +28,62 @@ headers = {
_DEFAULT_TIMEOUT = httpx.Timeout(timeout=5.0, connect=5.0)
_DEFAULT_TTL_FOR_HTTPX_CLIENTS = 3600 # 1 hour, re-use the same httpx client for 1 hour
import re
def mask_sensitive_info(error_message):
# Find the start of the key parameter
if isinstance(error_message, str):
key_index = error_message.find("key=")
else:
return error_message
# If key is found
if key_index != -1:
# Find the end of the key parameter (next & or end of string)
next_param = error_message.find("&", key_index)
if next_param == -1:
# If no more parameters, mask until the end of the string
masked_message = error_message[: key_index + 4] + "[REDACTED_API_KEY]"
else:
# Replace the key with redacted value, keeping other parameters
masked_message = (
error_message[: key_index + 4]
+ "[REDACTED_API_KEY]"
+ error_message[next_param:]
)
return masked_message
return error_message
class MaskedHTTPStatusError(httpx.HTTPStatusError):
def __init__(
self, original_error, message: Optional[str] = None, text: Optional[str] = None
):
# Create a new error with the masked URL
masked_url = mask_sensitive_info(str(original_error.request.url))
# Create a new error that looks like the original, but with a masked URL
super().__init__(
message=original_error.message,
request=httpx.Request(
method=original_error.request.method,
url=masked_url,
headers=original_error.request.headers,
content=original_error.request.content,
),
response=httpx.Response(
status_code=original_error.response.status_code,
content=original_error.response.content,
headers=original_error.response.headers,
),
)
self.message = message
self.text = text
class AsyncHTTPHandler:
def __init__(
@ -155,13 +211,16 @@ class AsyncHTTPHandler:
headers=headers,
)
except httpx.HTTPStatusError as e:
setattr(e, "status_code", e.response.status_code)
if stream is True:
setattr(e, "message", await e.response.aread())
setattr(e, "text", await e.response.aread())
else:
setattr(e, "message", e.response.text)
setattr(e, "text", e.response.text)
setattr(e, "message", mask_sensitive_info(e.response.text))
setattr(e, "text", mask_sensitive_info(e.response.text))
setattr(e, "status_code", e.response.status_code)
raise e
except Exception as e:
raise e
@ -399,11 +458,17 @@ class HTTPHandler:
llm_provider="litellm-httpx-handler",
)
except httpx.HTTPStatusError as e:
setattr(e, "status_code", e.response.status_code)
if stream is True:
setattr(e, "message", e.response.read())
setattr(e, "message", mask_sensitive_info(e.response.read()))
setattr(e, "text", mask_sensitive_info(e.response.read()))
else:
setattr(e, "message", e.response.text)
error_text = mask_sensitive_info(e.response.text)
setattr(e, "message", error_text)
setattr(e, "text", error_text)
setattr(e, "status_code", e.response.status_code)
raise e
except Exception as e:
raise e

View file

@ -1159,15 +1159,44 @@ def convert_to_anthropic_tool_result(
]
}
"""
content_str: str = ""
anthropic_content: Union[
str,
List[Union[AnthropicMessagesToolResultContent, AnthropicMessagesImageParam]],
] = ""
if isinstance(message["content"], str):
content_str = message["content"]
anthropic_content = message["content"]
elif isinstance(message["content"], List):
content_list = message["content"]
anthropic_content_list: List[
Union[AnthropicMessagesToolResultContent, AnthropicMessagesImageParam]
] = []
for content in content_list:
if content["type"] == "text":
content_str += content["text"]
anthropic_content_list.append(
AnthropicMessagesToolResultContent(
type="text",
text=content["text"],
)
)
elif content["type"] == "image_url":
if isinstance(content["image_url"], str):
image_chunk = convert_to_anthropic_image_obj(content["image_url"])
else:
image_chunk = convert_to_anthropic_image_obj(
content["image_url"]["url"]
)
anthropic_content_list.append(
AnthropicMessagesImageParam(
type="image",
source=AnthropicContentParamSource(
type="base64",
media_type=image_chunk["media_type"],
data=image_chunk["data"],
),
)
)
anthropic_content = anthropic_content_list
anthropic_tool_result: Optional[AnthropicMessagesToolResultParam] = None
## PROMPT CACHING CHECK ##
cache_control = message.get("cache_control", None)
@ -1178,14 +1207,14 @@ def convert_to_anthropic_tool_result(
# We can't determine from openai message format whether it's a successful or
# error call result so default to the successful result template
anthropic_tool_result = AnthropicMessagesToolResultParam(
type="tool_result", tool_use_id=tool_call_id, content=content_str
type="tool_result", tool_use_id=tool_call_id, content=anthropic_content
)
if message["role"] == "function":
function_message: ChatCompletionFunctionMessage = message
tool_call_id = function_message.get("tool_call_id") or str(uuid.uuid4())
anthropic_tool_result = AnthropicMessagesToolResultParam(
type="tool_result", tool_use_id=tool_call_id, content=content_str
type="tool_result", tool_use_id=tool_call_id, content=anthropic_content
)
if anthropic_tool_result is None:

View file

@ -107,6 +107,10 @@ def _get_image_mime_type_from_url(url: str) -> Optional[str]:
return "image/png"
elif url.endswith(".webp"):
return "image/webp"
elif url.endswith(".mp4"):
return "video/mp4"
elif url.endswith(".pdf"):
return "application/pdf"
return None

View file

@ -15,6 +15,22 @@ model_list:
litellm_params:
model: openai/gpt-4o-realtime-preview-2024-10-01
api_key: os.environ/OPENAI_API_KEY
- model_name: openai/*
litellm_params:
model: openai/*
api_key: os.environ/OPENAI_API_KEY
- model_name: openai/*
litellm_params:
model: openai/*
api_key: os.environ/OPENAI_API_KEY
model_info:
access_groups: ["public-openai-models"]
- model_name: openai/gpt-4o
litellm_params:
model: openai/gpt-4o
api_key: os.environ/OPENAI_API_KEY
model_info:
access_groups: ["private-openai-models"]
router_settings:
routing_strategy: usage-based-routing-v2

View file

@ -2183,3 +2183,11 @@ PassThroughEndpointLoggingResultValues = Union[
class PassThroughEndpointLoggingTypedDict(TypedDict):
result: Optional[PassThroughEndpointLoggingResultValues]
kwargs: dict
LiteLLM_ManagementEndpoint_MetadataFields = [
"model_rpm_limit",
"model_tpm_limit",
"guardrails",
"tags",
]

View file

@ -60,6 +60,7 @@ def common_checks( # noqa: PLR0915
global_proxy_spend: Optional[float],
general_settings: dict,
route: str,
llm_router: Optional[litellm.Router],
) -> bool:
"""
Common checks across jwt + key-based auth.
@ -97,7 +98,12 @@ def common_checks( # noqa: PLR0915
# this means the team has access to all models on the proxy
pass
# check if the team model is an access_group
elif model_in_access_group(_model, team_object.models) is True:
elif (
model_in_access_group(
model=_model, team_models=team_object.models, llm_router=llm_router
)
is True
):
pass
elif _model and "*" in _model:
pass
@ -373,36 +379,33 @@ async def get_end_user_object(
return None
def model_in_access_group(model: str, team_models: Optional[List[str]]) -> bool:
def model_in_access_group(
model: str, team_models: Optional[List[str]], llm_router: Optional[litellm.Router]
) -> bool:
from collections import defaultdict
from litellm.proxy.proxy_server import llm_router
if team_models is None:
return True
if model in team_models:
return True
access_groups = defaultdict(list)
access_groups: dict[str, list[str]] = defaultdict(list)
if llm_router:
access_groups = llm_router.get_model_access_groups()
access_groups = llm_router.get_model_access_groups(model_name=model)
models_in_current_access_groups = []
if len(access_groups) > 0: # check if token contains any model access groups
for idx, m in enumerate(
team_models
): # loop token models, if any of them are an access group add the access group
if m in access_groups:
# if it is an access group we need to remove it from valid_token.models
models_in_group = access_groups[m]
models_in_current_access_groups.extend(models_in_group)
return True
# Filter out models that are access_groups
filtered_models = [m for m in team_models if m not in access_groups]
filtered_models += models_in_current_access_groups
if model in filtered_models:
return True
return False
@ -523,10 +526,6 @@ async def _cache_management_object(
proxy_logging_obj: Optional[ProxyLogging],
):
await user_api_key_cache.async_set_cache(key=key, value=value)
if proxy_logging_obj is not None:
await proxy_logging_obj.internal_usage_cache.dual_cache.async_set_cache(
key=key, value=value
)
async def _cache_team_object(
@ -878,7 +877,10 @@ async def get_org_object(
async def can_key_call_model(
model: str, llm_model_list: Optional[list], valid_token: UserAPIKeyAuth
model: str,
llm_model_list: Optional[list],
valid_token: UserAPIKeyAuth,
llm_router: Optional[litellm.Router],
) -> Literal[True]:
"""
Checks if token can call a given model
@ -898,35 +900,29 @@ async def can_key_call_model(
)
from collections import defaultdict
from litellm.proxy.proxy_server import llm_router
access_groups = defaultdict(list)
if llm_router:
access_groups = llm_router.get_model_access_groups()
access_groups = llm_router.get_model_access_groups(model_name=model)
models_in_current_access_groups = []
if len(access_groups) > 0: # check if token contains any model access groups
if (
len(access_groups) > 0 and llm_router is not None
): # check if token contains any model access groups
for idx, m in enumerate(
valid_token.models
): # loop token models, if any of them are an access group add the access group
if m in access_groups:
# if it is an access group we need to remove it from valid_token.models
models_in_group = access_groups[m]
models_in_current_access_groups.extend(models_in_group)
return True
# Filter out models that are access_groups
filtered_models = [m for m in valid_token.models if m not in access_groups]
filtered_models += models_in_current_access_groups
verbose_proxy_logger.debug(f"model: {model}; allowed_models: {filtered_models}")
all_model_access: bool = False
if (
len(filtered_models) == 0
or "*" in filtered_models
or "openai/*" in filtered_models
):
len(filtered_models) == 0 and len(valid_token.models) == 0
) or "*" in filtered_models:
all_model_access = True
if model is not None and model not in filtered_models and all_model_access is False:

View file

@ -259,6 +259,7 @@ async def user_api_key_auth( # noqa: PLR0915
jwt_handler,
litellm_proxy_admin_name,
llm_model_list,
llm_router,
master_key,
open_telemetry_logger,
prisma_client,
@ -542,6 +543,7 @@ async def user_api_key_auth( # noqa: PLR0915
general_settings=general_settings,
global_proxy_spend=global_proxy_spend,
route=route,
llm_router=llm_router,
)
# return UserAPIKeyAuth object
@ -905,6 +907,7 @@ async def user_api_key_auth( # noqa: PLR0915
model=model,
llm_model_list=llm_model_list,
valid_token=valid_token,
llm_router=llm_router,
)
if fallback_models is not None:
@ -913,6 +916,7 @@ async def user_api_key_auth( # noqa: PLR0915
model=m,
llm_model_list=llm_model_list,
valid_token=valid_token,
llm_router=llm_router,
)
# Check 2. If user_id for this token is in budget - done in common_checks()
@ -1173,6 +1177,7 @@ async def user_api_key_auth( # noqa: PLR0915
general_settings=general_settings,
global_proxy_spend=global_proxy_spend,
route=route,
llm_router=llm_router,
)
# Token passed all checks
if valid_token is None:

View file

@ -214,10 +214,10 @@ class BedrockGuardrail(CustomGuardrail, BaseAWSLLM):
prepared_request.url,
prepared_request.headers,
)
_json_data = json.dumps(request_data) # type: ignore
response = await self.async_handler.post(
url=prepared_request.url,
json=request_data, # type: ignore
data=prepared_request.body, # type: ignore
headers=prepared_request.headers, # type: ignore
)
verbose_proxy_logger.debug("Bedrock AI response: %s", response.text)

View file

@ -0,0 +1,87 @@
"""
Runs when LLM Exceptions occur on LiteLLM Proxy
"""
import copy
import json
import uuid
import litellm
from litellm.proxy._types import LiteLLM_ErrorLogs
async def _PROXY_failure_handler(
kwargs, # kwargs to completion
completion_response: litellm.ModelResponse, # response from completion
start_time=None,
end_time=None, # start/end time for completion
):
"""
Async Failure Handler - runs when LLM Exceptions occur on LiteLLM Proxy.
This function logs the errors to the Prisma DB
Can be disabled by setting the following on proxy_config.yaml:
```yaml
general_settings:
disable_error_logs: True
```
"""
from litellm._logging import verbose_proxy_logger
from litellm.proxy.proxy_server import general_settings, prisma_client
if general_settings.get("disable_error_logs") is True:
return
if prisma_client is not None:
verbose_proxy_logger.debug(
"inside _PROXY_failure_handler kwargs=", extra=kwargs
)
_exception = kwargs.get("exception")
_exception_type = _exception.__class__.__name__
_model = kwargs.get("model", None)
_optional_params = kwargs.get("optional_params", {})
_optional_params = copy.deepcopy(_optional_params)
for k, v in _optional_params.items():
v = str(v)
v = v[:100]
_status_code = "500"
try:
_status_code = str(_exception.status_code)
except Exception:
# Don't let this fail logging the exception to the dB
pass
_litellm_params = kwargs.get("litellm_params", {}) or {}
_metadata = _litellm_params.get("metadata", {}) or {}
_model_id = _metadata.get("model_info", {}).get("id", "")
_model_group = _metadata.get("model_group", "")
api_base = litellm.get_api_base(model=_model, optional_params=_litellm_params)
_exception_string = str(_exception)
error_log = LiteLLM_ErrorLogs(
request_id=str(uuid.uuid4()),
model_group=_model_group,
model_id=_model_id,
litellm_model_name=kwargs.get("model"),
request_kwargs=_optional_params,
api_base=api_base,
exception_type=_exception_type,
status_code=_status_code,
exception_string=_exception_string,
startTime=kwargs.get("start_time"),
endTime=kwargs.get("end_time"),
)
error_log_dict = error_log.model_dump()
error_log_dict["request_kwargs"] = json.dumps(error_log_dict["request_kwargs"])
await prisma_client.db.litellm_errorlogs.create(
data=error_log_dict # type: ignore
)
pass

View file

@ -288,12 +288,12 @@ class LiteLLMProxyRequestSetup:
## KEY-LEVEL SPEND LOGS / TAGS
if "tags" in key_metadata and key_metadata["tags"] is not None:
if "tags" in data[_metadata_variable_name] and isinstance(
data[_metadata_variable_name]["tags"], list
):
data[_metadata_variable_name]["tags"].extend(key_metadata["tags"])
else:
data[_metadata_variable_name]["tags"] = key_metadata["tags"]
data[_metadata_variable_name]["tags"] = (
LiteLLMProxyRequestSetup._merge_tags(
request_tags=data[_metadata_variable_name].get("tags"),
tags_to_add=key_metadata["tags"],
)
)
if "spend_logs_metadata" in key_metadata and isinstance(
key_metadata["spend_logs_metadata"], dict
):
@ -319,6 +319,30 @@ class LiteLLMProxyRequestSetup:
data["disable_fallbacks"] = key_metadata["disable_fallbacks"]
return data
@staticmethod
def _merge_tags(request_tags: Optional[list], tags_to_add: Optional[list]) -> list:
"""
Helper function to merge two lists of tags, ensuring no duplicates.
Args:
request_tags (Optional[list]): List of tags from the original request
tags_to_add (Optional[list]): List of tags to add
Returns:
list: Combined list of unique tags
"""
final_tags = []
if request_tags and isinstance(request_tags, list):
final_tags.extend(request_tags)
if tags_to_add and isinstance(tags_to_add, list):
for tag in tags_to_add:
if tag not in final_tags:
final_tags.append(tag)
return final_tags
async def add_litellm_data_to_request( # noqa: PLR0915
data: dict,
@ -442,12 +466,10 @@ async def add_litellm_data_to_request( # noqa: PLR0915
## TEAM-LEVEL SPEND LOGS/TAGS
team_metadata = user_api_key_dict.team_metadata or {}
if "tags" in team_metadata and team_metadata["tags"] is not None:
if "tags" in data[_metadata_variable_name] and isinstance(
data[_metadata_variable_name]["tags"], list
):
data[_metadata_variable_name]["tags"].extend(team_metadata["tags"])
else:
data[_metadata_variable_name]["tags"] = team_metadata["tags"]
data[_metadata_variable_name]["tags"] = LiteLLMProxyRequestSetup._merge_tags(
request_tags=data[_metadata_variable_name].get("tags"),
tags_to_add=team_metadata["tags"],
)
if "spend_logs_metadata" in team_metadata and isinstance(
team_metadata["spend_logs_metadata"], dict
):

View file

@ -32,6 +32,7 @@ from litellm.proxy.auth.user_api_key_auth import user_api_key_auth
from litellm.proxy.management_endpoints.key_management_endpoints import (
duration_in_seconds,
generate_key_helper_fn,
prepare_metadata_fields,
)
from litellm.proxy.management_helpers.utils import (
add_new_member,
@ -42,7 +43,7 @@ from litellm.proxy.utils import handle_exception_on_proxy
router = APIRouter()
def _update_internal_user_params(data_json: dict, data: NewUserRequest) -> dict:
def _update_internal_new_user_params(data_json: dict, data: NewUserRequest) -> dict:
if "user_id" in data_json and data_json["user_id"] is None:
data_json["user_id"] = str(uuid.uuid4())
auto_create_key = data_json.pop("auto_create_key", True)
@ -145,7 +146,7 @@ async def new_user(
from litellm.proxy.proxy_server import general_settings, proxy_logging_obj
data_json = data.json() # type: ignore
data_json = _update_internal_user_params(data_json, data)
data_json = _update_internal_new_user_params(data_json, data)
response = await generate_key_helper_fn(request_type="user", **data_json)
# Admin UI Logic
@ -438,6 +439,52 @@ async def user_info( # noqa: PLR0915
raise handle_exception_on_proxy(e)
def _update_internal_user_params(data_json: dict, data: UpdateUserRequest) -> dict:
non_default_values = {}
for k, v in data_json.items():
if (
v is not None
and v
not in (
[],
{},
0,
)
and k not in LiteLLM_ManagementEndpoint_MetadataFields
): # models default to [], spend defaults to 0, we should not reset these values
non_default_values[k] = v
is_internal_user = False
if data.user_role == LitellmUserRoles.INTERNAL_USER:
is_internal_user = True
if "budget_duration" in non_default_values:
duration_s = duration_in_seconds(duration=non_default_values["budget_duration"])
user_reset_at = datetime.now(timezone.utc) + timedelta(seconds=duration_s)
non_default_values["budget_reset_at"] = user_reset_at
if "max_budget" not in non_default_values:
if (
is_internal_user and litellm.max_internal_user_budget is not None
): # applies internal user limits, if user role updated
non_default_values["max_budget"] = litellm.max_internal_user_budget
if (
"budget_duration" not in non_default_values
): # applies internal user limits, if user role updated
if is_internal_user and litellm.internal_user_budget_duration is not None:
non_default_values["budget_duration"] = (
litellm.internal_user_budget_duration
)
duration_s = duration_in_seconds(
duration=non_default_values["budget_duration"]
)
user_reset_at = datetime.now(timezone.utc) + timedelta(seconds=duration_s)
non_default_values["budget_reset_at"] = user_reset_at
return non_default_values
@router.post(
"/user/update",
tags=["Internal User management"],
@ -459,6 +506,7 @@ async def user_update(
"user_id": "test-litellm-user-4",
"user_role": "proxy_admin_viewer"
}'
```
Parameters:
- user_id: Optional[str] - Specify a user id. If not set, a unique id will be generated.
@ -491,7 +539,7 @@ async def user_update(
- duration: Optional[str] - [NOT IMPLEMENTED].
- key_alias: Optional[str] - [NOT IMPLEMENTED].
```
"""
from litellm.proxy.proxy_server import prisma_client
@ -502,46 +550,21 @@ async def user_update(
raise Exception("Not connected to DB!")
# get non default values for key
non_default_values = {}
for k, v in data_json.items():
if v is not None and v not in (
[],
{},
0,
): # models default to [], spend defaults to 0, we should not reset these values
non_default_values[k] = v
is_internal_user = False
if data.user_role == LitellmUserRoles.INTERNAL_USER:
is_internal_user = True
if "budget_duration" in non_default_values:
duration_s = duration_in_seconds(
duration=non_default_values["budget_duration"]
non_default_values = _update_internal_user_params(
data_json=data_json, data=data
)
user_reset_at = datetime.now(timezone.utc) + timedelta(seconds=duration_s)
non_default_values["budget_reset_at"] = user_reset_at
if "max_budget" not in non_default_values:
if (
is_internal_user and litellm.max_internal_user_budget is not None
): # applies internal user limits, if user role updated
non_default_values["max_budget"] = litellm.max_internal_user_budget
existing_user_row = await prisma_client.get_data(
user_id=data.user_id, table_name="user", query_type="find_unique"
)
if (
"budget_duration" not in non_default_values
): # applies internal user limits, if user role updated
if is_internal_user and litellm.internal_user_budget_duration is not None:
non_default_values["budget_duration"] = (
litellm.internal_user_budget_duration
existing_metadata = existing_user_row.metadata if existing_user_row else {}
non_default_values = prepare_metadata_fields(
data=data,
non_default_values=non_default_values,
existing_metadata=existing_metadata or {},
)
duration_s = duration_in_seconds(
duration=non_default_values["budget_duration"]
)
user_reset_at = datetime.now(timezone.utc) + timedelta(
seconds=duration_s
)
non_default_values["budget_reset_at"] = user_reset_at
## ADD USER, IF NEW ##
verbose_proxy_logger.debug("/user/update: Received data = %s", data)

View file

@ -17,7 +17,7 @@ import secrets
import traceback
import uuid
from datetime import datetime, timedelta, timezone
from typing import List, Optional, Tuple
from typing import List, Optional, Tuple, cast
import fastapi
from fastapi import APIRouter, Depends, Header, HTTPException, Query, Request, status
@ -394,7 +394,8 @@ async def generate_key_fn( # noqa: PLR0915
}
)
_budget_id = getattr(_budget, "budget_id", None)
data_json = data.json() # type: ignore
data_json = data.model_dump(exclude_unset=True, exclude_none=True) # type: ignore
# if we get max_budget passed to /key/generate, then use it as key_max_budget. Since generate_key_helper_fn is used to make new users
if "max_budget" in data_json:
data_json["key_max_budget"] = data_json.pop("max_budget", None)
@ -420,6 +421,11 @@ async def generate_key_fn( # noqa: PLR0915
data_json.pop("tags")
await _enforce_unique_key_alias(
key_alias=data_json.get("key_alias", None),
prisma_client=prisma_client,
)
response = await generate_key_helper_fn(
request_type="key", **data_json, table_name="key"
)
@ -447,12 +453,52 @@ async def generate_key_fn( # noqa: PLR0915
raise handle_exception_on_proxy(e)
def prepare_metadata_fields(
data: BaseModel, non_default_values: dict, existing_metadata: dict
) -> dict:
"""
Check LiteLLM_ManagementEndpoint_MetadataFields (proxy/_types.py) for fields that are allowed to be updated
"""
if "metadata" not in non_default_values: # allow user to set metadata to none
non_default_values["metadata"] = existing_metadata.copy()
casted_metadata = cast(dict, non_default_values["metadata"])
data_json = data.model_dump(exclude_unset=True, exclude_none=True)
try:
for k, v in data_json.items():
if k == "model_tpm_limit" or k == "model_rpm_limit":
if k not in casted_metadata or casted_metadata[k] is None:
casted_metadata[k] = {}
casted_metadata[k].update(v)
if k == "tags" or k == "guardrails":
if k not in casted_metadata or casted_metadata[k] is None:
casted_metadata[k] = []
seen = set(casted_metadata[k])
casted_metadata[k].extend(
x for x in v if x not in seen and not seen.add(x) # type: ignore
) # prevent duplicates from being added + maintain initial order
except Exception as e:
verbose_proxy_logger.exception(
"litellm.proxy.proxy_server.prepare_metadata_fields(): Exception occured - {}".format(
str(e)
)
)
non_default_values["metadata"] = casted_metadata
return non_default_values
def prepare_key_update_data(
data: Union[UpdateKeyRequest, RegenerateKeyRequest], existing_key_row
):
data_json: dict = data.model_dump(exclude_unset=True)
data_json.pop("key", None)
_metadata_fields = ["model_rpm_limit", "model_tpm_limit", "guardrails"]
_metadata_fields = ["model_rpm_limit", "model_tpm_limit", "guardrails", "tags"]
non_default_values = {}
for k, v in data_json.items():
if k in _metadata_fields:
@ -480,21 +526,9 @@ def prepare_key_update_data(
_metadata = existing_key_row.metadata or {}
if data.model_tpm_limit:
if "model_tpm_limit" not in _metadata:
_metadata["model_tpm_limit"] = {}
_metadata["model_tpm_limit"].update(data.model_tpm_limit)
non_default_values["metadata"] = _metadata
if data.model_rpm_limit:
if "model_rpm_limit" not in _metadata:
_metadata["model_rpm_limit"] = {}
_metadata["model_rpm_limit"].update(data.model_rpm_limit)
non_default_values["metadata"] = _metadata
if data.guardrails:
_metadata["guardrails"] = data.guardrails
non_default_values["metadata"] = _metadata
non_default_values = prepare_metadata_fields(
data=data, non_default_values=non_default_values, existing_metadata=_metadata
)
return non_default_values
@ -586,6 +620,12 @@ async def update_key_fn(
data=data, existing_key_row=existing_key_row
)
await _enforce_unique_key_alias(
key_alias=non_default_values.get("key_alias", None),
prisma_client=prisma_client,
existing_key_token=existing_key_row.token,
)
response = await prisma_client.update_data(
token=key, data={**non_default_values, "token": key}
)
@ -913,11 +953,11 @@ async def generate_key_helper_fn( # noqa: PLR0915
request_type: Literal[
"user", "key"
], # identifies if this request is from /user/new or /key/generate
duration: Optional[str],
models: list,
aliases: dict,
config: dict,
spend: float,
duration: Optional[str] = None,
models: list = [],
aliases: dict = {},
config: dict = {},
spend: float = 0.0,
key_max_budget: Optional[float] = None, # key_max_budget is used to Budget Per key
key_budget_duration: Optional[str] = None,
budget_id: Optional[float] = None, # budget id <-> LiteLLM_BudgetTable
@ -946,8 +986,8 @@ async def generate_key_helper_fn( # noqa: PLR0915
allowed_cache_controls: Optional[list] = [],
permissions: Optional[dict] = {},
model_max_budget: Optional[dict] = {},
model_rpm_limit: Optional[dict] = {},
model_tpm_limit: Optional[dict] = {},
model_rpm_limit: Optional[dict] = None,
model_tpm_limit: Optional[dict] = None,
guardrails: Optional[list] = None,
teams: Optional[list] = None,
organization_id: Optional[str] = None,
@ -1884,3 +1924,38 @@ async def test_key_logging(
status="healthy",
details=f"No logger exceptions triggered, system is healthy. Manually check if logs were sent to {logging_callbacks} ",
)
async def _enforce_unique_key_alias(
key_alias: Optional[str],
prisma_client: Any,
existing_key_token: Optional[str] = None,
) -> None:
"""
Helper to enforce unique key aliases across all keys.
Args:
key_alias (Optional[str]): The key alias to check
prisma_client (Any): Prisma client instance
existing_key_token (Optional[str]): ID of existing key being updated, to exclude from uniqueness check
(The Admin UI passes key_alias, in all Edit key requests. So we need to be sure that if we find a key with the same alias, it's not the same key we're updating)
Raises:
ProxyException: If key alias already exists on a different key
"""
if key_alias is not None and prisma_client is not None:
where_clause: dict[str, Any] = {"key_alias": key_alias}
if existing_key_token:
# Exclude the current key from the uniqueness check
where_clause["NOT"] = {"token": existing_key_token}
existing_key = await prisma_client.db.litellm_verificationtoken.find_first(
where=where_clause
)
if existing_key is not None:
raise ProxyException(
message=f"Key with alias '{key_alias}' already exists. Unique key aliases across all keys are required.",
type=ProxyErrorTypes.bad_request_error,
param="key_alias",
code=status.HTTP_400_BAD_REQUEST,
)

View file

@ -0,0 +1,10 @@
model_list:
- model_name: gpt-4o
litellm_params:
model: openai/gpt-4o
api_base: https://exampleopenaiendpoint-production.up.railway.app/
- model_name: fake-anthropic-endpoint
litellm_params:
model: anthropic/fake
api_base: https://exampleanthropicendpoint-production.up.railway.app/

View file

@ -1,24 +1,5 @@
model_list:
- model_name: gpt-4o
litellm_params:
model: openai/gpt-4o
api_base: https://exampleopenaiendpoint-production.up.railway.app/
- model_name: fake-anthropic-endpoint
litellm_params:
model: anthropic/fake
api_base: https://exampleanthropicendpoint-production.up.railway.app/
router_settings:
provider_budget_config:
openai:
budget_limit: 0.3 # float of $ value budget for time period
time_period: 1d # can be 1d, 2d, 30d
anthropic:
budget_limit: 5
time_period: 1d
redis_host: os.environ/REDIS_HOST
redis_port: os.environ/REDIS_PORT
redis_password: os.environ/REDIS_PASSWORD
include:
- model_config.yaml
litellm_settings:
callbacks: ["datadog"]

View file

@ -176,6 +176,7 @@ from litellm.proxy.health_endpoints._health_endpoints import router as health_ro
from litellm.proxy.hooks.prompt_injection_detection import (
_OPTIONAL_PromptInjectionDetection,
)
from litellm.proxy.hooks.proxy_failure_handler import _PROXY_failure_handler
from litellm.proxy.litellm_pre_call_utils import add_litellm_data_to_request
from litellm.proxy.management_endpoints.customer_endpoints import (
router as customer_router,
@ -529,14 +530,6 @@ db_writer_client: Optional[HTTPHandler] = None
### logger ###
def _get_pydantic_json_dict(pydantic_obj: BaseModel) -> dict:
try:
return pydantic_obj.model_dump() # type: ignore
except Exception:
# if using pydantic v1
return pydantic_obj.dict()
def get_custom_headers(
*,
user_api_key_dict: UserAPIKeyAuth,
@ -690,68 +683,6 @@ def cost_tracking():
litellm._async_success_callback.append(_PROXY_track_cost_callback) # type: ignore
async def _PROXY_failure_handler(
kwargs, # kwargs to completion
completion_response: litellm.ModelResponse, # response from completion
start_time=None,
end_time=None, # start/end time for completion
):
global prisma_client
if prisma_client is not None:
verbose_proxy_logger.debug(
"inside _PROXY_failure_handler kwargs=", extra=kwargs
)
_exception = kwargs.get("exception")
_exception_type = _exception.__class__.__name__
_model = kwargs.get("model", None)
_optional_params = kwargs.get("optional_params", {})
_optional_params = copy.deepcopy(_optional_params)
for k, v in _optional_params.items():
v = str(v)
v = v[:100]
_status_code = "500"
try:
_status_code = str(_exception.status_code)
except Exception:
# Don't let this fail logging the exception to the dB
pass
_litellm_params = kwargs.get("litellm_params", {}) or {}
_metadata = _litellm_params.get("metadata", {}) or {}
_model_id = _metadata.get("model_info", {}).get("id", "")
_model_group = _metadata.get("model_group", "")
api_base = litellm.get_api_base(model=_model, optional_params=_litellm_params)
_exception_string = str(_exception)
error_log = LiteLLM_ErrorLogs(
request_id=str(uuid.uuid4()),
model_group=_model_group,
model_id=_model_id,
litellm_model_name=kwargs.get("model"),
request_kwargs=_optional_params,
api_base=api_base,
exception_type=_exception_type,
status_code=_status_code,
exception_string=_exception_string,
startTime=kwargs.get("start_time"),
endTime=kwargs.get("end_time"),
)
# helper function to convert to dict on pydantic v2 & v1
error_log_dict = _get_pydantic_json_dict(error_log)
error_log_dict["request_kwargs"] = json.dumps(error_log_dict["request_kwargs"])
await prisma_client.db.litellm_errorlogs.create(
data=error_log_dict # type: ignore
)
pass
@log_db_metrics
async def _PROXY_track_cost_callback(
kwargs, # kwargs to completion
@ -1380,6 +1311,16 @@ class ProxyConfig:
_, file_extension = os.path.splitext(config_file_path)
return file_extension.lower() == ".yaml" or file_extension.lower() == ".yml"
def _load_yaml_file(self, file_path: str) -> dict:
"""
Load and parse a YAML file
"""
try:
with open(file_path, "r") as file:
return yaml.safe_load(file) or {}
except Exception as e:
raise Exception(f"Error loading yaml file {file_path}: {str(e)}")
async def _get_config_from_file(
self, config_file_path: Optional[str] = None
) -> dict:
@ -1410,6 +1351,51 @@ class ProxyConfig:
"litellm_settings": {},
}
# Process includes
config = self._process_includes(
config=config, base_dir=os.path.dirname(os.path.abspath(file_path or ""))
)
verbose_proxy_logger.debug(f"loaded config={json.dumps(config, indent=4)}")
return config
def _process_includes(self, config: dict, base_dir: str) -> dict:
"""
Process includes by appending their contents to the main config
Handles nested config.yamls with `include` section
Example config: This will get the contents from files in `include` and append it
```yaml
include:
- model_config.yaml
litellm_settings:
callbacks: ["prometheus"]
```
"""
if "include" not in config:
return config
if not isinstance(config["include"], list):
raise ValueError("'include' must be a list of file paths")
# Load and append all included files
for include_file in config["include"]:
file_path = os.path.join(base_dir, include_file)
if not os.path.exists(file_path):
raise FileNotFoundError(f"Included file not found: {file_path}")
included_config = self._load_yaml_file(file_path)
# Simply update/extend the main config with included config
for key, value in included_config.items():
if isinstance(value, list) and key in config:
config[key].extend(value)
else:
config[key] = value
# Remove the include directive
del config["include"]
return config
async def save_config(self, new_config: dict):

View file

@ -86,7 +86,6 @@ async def route_request(
else:
models = [model.strip() for model in data.pop("model").split(",")]
return llm_router.abatch_completion(models=models, **data)
elif llm_router is not None:
if (
data["model"] in router_model_names
@ -113,6 +112,9 @@ async def route_request(
or len(llm_router.pattern_router.patterns) > 0
):
return getattr(llm_router, f"{route_type}")(**data)
elif route_type == "amoderation":
# moderation endpoint does not require `model` parameter
return getattr(llm_router, f"{route_type}")(**data)
elif user_model is not None:
return getattr(litellm, f"{route_type}")(**data)

View file

@ -2563,10 +2563,7 @@ class Router:
original_function: Callable,
**kwargs,
):
if (
"model" in kwargs
and self.get_model_list(model_name=kwargs["model"]) is not None
):
if kwargs.get("model") and self.get_model_list(model_name=kwargs["model"]):
deployment = await self.async_get_available_deployment(
model=kwargs["model"]
)
@ -4715,6 +4712,9 @@ class Router:
if hasattr(self, "model_list"):
returned_models: List[DeploymentTypedDict] = []
if model_name is not None:
returned_models.extend(self._get_all_deployments(model_name=model_name))
if hasattr(self, "model_group_alias"):
for model_alias, model_value in self.model_group_alias.items():
@ -4746,17 +4746,21 @@ class Router:
returned_models += self.model_list
return returned_models
returned_models.extend(self._get_all_deployments(model_name=model_name))
return returned_models
return None
def get_model_access_groups(self):
def get_model_access_groups(self, model_name: Optional[str] = None):
"""
If model_name is provided, only return access groups for that model.
"""
from collections import defaultdict
access_groups = defaultdict(list)
if self.model_list:
for m in self.model_list:
model_list = self.get_model_list(model_name=model_name)
if model_list:
for m in model_list:
for group in m.get("model_info", {}).get("access_groups", []):
model_name = m["model_name"]
access_groups[group].append(model_name)

View file

@ -79,7 +79,9 @@ class PatternMatchRouter:
return new_deployments
def route(self, request: Optional[str]) -> Optional[List[Dict]]:
def route(
self, request: Optional[str], filtered_model_names: Optional[List[str]] = None
) -> Optional[List[Dict]]:
"""
Route a requested model to the corresponding llm deployments based on the regex pattern
@ -89,14 +91,26 @@ class PatternMatchRouter:
Args:
request: Optional[str]
filtered_model_names: Optional[List[str]] - if provided, only return deployments that match the filtered_model_names
Returns:
Optional[List[Deployment]]: llm deployments
"""
try:
if request is None:
return None
regex_filtered_model_names = (
[self._pattern_to_regex(m) for m in filtered_model_names]
if filtered_model_names is not None
else []
)
for pattern, llm_deployments in self.patterns.items():
if (
filtered_model_names is not None
and pattern not in regex_filtered_model_names
):
continue
pattern_match = re.match(pattern, request)
if pattern_match:
return self._return_pattern_matched_deployments(

View file

@ -355,7 +355,7 @@ class LiteLLMParamsTypedDict(TypedDict, total=False):
class DeploymentTypedDict(TypedDict, total=False):
model_name: Required[str]
litellm_params: Required[LiteLLMParamsTypedDict]
model_info: Optional[dict]
model_info: dict
SPECIAL_MODEL_INFO_PARAMS = [

View file

@ -1,6 +1,6 @@
[tool.poetry]
name = "litellm"
version = "1.53.1"
version = "1.53.2"
description = "Library to easily interface with LLM API providers"
authors = ["BerriAI"]
license = "MIT"
@ -91,7 +91,7 @@ requires = ["poetry-core", "wheel"]
build-backend = "poetry.core.masonry.api"
[tool.commitizen]
version = "1.53.1"
version = "1.53.2"
version_files = [
"pyproject.toml:^version"
]

View file

@ -1,6 +1,6 @@
# LITELLM PROXY DEPENDENCIES #
anyio==4.4.0 # openai + http req.
openai==1.54.0 # openai req.
openai==1.55.3 # openai req.
fastapi==0.111.0 # server dep
backoff==2.2.1 # server dep
pyyaml==6.0.0 # server dep

View file

@ -1 +1,3 @@
More tests under `litellm/litellm/tests/*`.
Unit tests for individual LLM providers.
Name of the test file is the name of the LLM provider - e.g. `test_openai.py` is for OpenAI.

File diff suppressed because one or more lines are too long

View file

@ -45,51 +45,26 @@ def test_map_azure_model_group(model_group_header, expected_model):
@pytest.mark.asyncio
@pytest.mark.respx
async def test_azure_ai_with_image_url(respx_mock: MockRouter):
async def test_azure_ai_with_image_url():
"""
Important test:
Test that Azure AI studio can handle image_url passed when content is a list containing both text and image_url
"""
from openai import AsyncOpenAI
litellm.set_verbose = True
# Mock response based on the actual API response
mock_response = {
"id": "cmpl-53860ea1efa24d2883555bfec13d2254",
"choices": [
{
"finish_reason": "stop",
"index": 0,
"logprobs": None,
"message": {
"content": "The image displays a graphic with the text 'LiteLLM' in black",
"role": "assistant",
"refusal": None,
"audio": None,
"function_call": None,
"tool_calls": None,
},
}
],
"created": 1731801937,
"model": "phi35-vision-instruct",
"object": "chat.completion",
"usage": {
"completion_tokens": 69,
"prompt_tokens": 617,
"total_tokens": 686,
"completion_tokens_details": None,
"prompt_tokens_details": None,
},
}
client = AsyncOpenAI(
api_key="fake-api-key",
base_url="https://Phi-3-5-vision-instruct-dcvov.eastus2.models.ai.azure.com",
)
# Mock the API request
mock_request = respx_mock.post(
"https://Phi-3-5-vision-instruct-dcvov.eastus2.models.ai.azure.com"
).mock(return_value=httpx.Response(200, json=mock_response))
response = await litellm.acompletion(
with patch.object(
client.chat.completions.with_raw_response, "create"
) as mock_client:
try:
await litellm.acompletion(
model="azure_ai/Phi-3-5-vision-instruct-dcvov",
api_base="https://Phi-3-5-vision-instruct-dcvov.eastus2.models.ai.azure.com",
messages=[
@ -110,16 +85,19 @@ async def test_azure_ai_with_image_url(respx_mock: MockRouter):
},
],
api_key="fake-api-key",
client=client,
)
except Exception as e:
traceback.print_exc()
print(f"Error: {e}")
# Verify the request was made
assert mock_request.called
mock_client.assert_called_once()
# Check the request body
request_body = json.loads(mock_request.calls[0].request.content)
assert request_body == {
"model": "Phi-3-5-vision-instruct-dcvov",
"messages": [
request_body = mock_client.call_args.kwargs
assert request_body["model"] == "Phi-3-5-vision-instruct-dcvov"
assert request_body["messages"] == [
{
"role": "user",
"content": [
@ -132,7 +110,4 @@ async def test_azure_ai_with_image_url(respx_mock: MockRouter):
},
],
}
],
}
print(f"response: {response}")
]

View file

@ -13,6 +13,7 @@ load_dotenv()
import httpx
import pytest
from respx import MockRouter
from unittest.mock import patch, MagicMock, AsyncMock
import litellm
from litellm import Choices, Message, ModelResponse
@ -41,31 +42,35 @@ def return_mocked_response(model: str):
"bedrock/mistral.mistral-large-2407-v1:0",
],
)
@pytest.mark.respx
@pytest.mark.asyncio()
async def test_bedrock_max_completion_tokens(model: str, respx_mock: MockRouter):
async def test_bedrock_max_completion_tokens(model: str):
"""
Tests that:
- max_completion_tokens is passed as max_tokens to bedrock models
"""
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler
litellm.set_verbose = True
client = AsyncHTTPHandler()
mock_response = return_mocked_response(model)
_model = model.split("/")[1]
print("\n\nmock_response: ", mock_response)
url = f"https://bedrock-runtime.us-west-2.amazonaws.com/model/{_model}/converse"
mock_request = respx_mock.post(url).mock(
return_value=httpx.Response(200, json=mock_response)
)
with patch.object(client, "post") as mock_client:
try:
response = await litellm.acompletion(
model=model,
max_completion_tokens=10,
messages=[{"role": "user", "content": "Hello!"}],
client=client,
)
except Exception as e:
print(f"Error: {e}")
assert mock_request.called
request_body = json.loads(mock_request.calls[0].request.content)
mock_client.assert_called_once()
request_body = json.loads(mock_client.call_args.kwargs["data"])
print("request_body: ", request_body)
@ -75,22 +80,20 @@ async def test_bedrock_max_completion_tokens(model: str, respx_mock: MockRouter)
"system": [],
"inferenceConfig": {"maxTokens": 10},
}
print(f"response: {response}")
assert isinstance(response, ModelResponse)
@pytest.mark.parametrize(
"model",
["anthropic/claude-3-sonnet-20240229", "anthropic/claude-3-opus-20240229,"],
["anthropic/claude-3-sonnet-20240229", "anthropic/claude-3-opus-20240229"],
)
@pytest.mark.respx
@pytest.mark.asyncio()
async def test_anthropic_api_max_completion_tokens(model: str, respx_mock: MockRouter):
async def test_anthropic_api_max_completion_tokens(model: str):
"""
Tests that:
- max_completion_tokens is passed as max_tokens to anthropic models
"""
litellm.set_verbose = True
from litellm.llms.custom_httpx.http_handler import HTTPHandler
mock_response = {
"content": [{"text": "Hi! My name is Claude.", "type": "text"}],
@ -103,30 +106,32 @@ async def test_anthropic_api_max_completion_tokens(model: str, respx_mock: MockR
"usage": {"input_tokens": 2095, "output_tokens": 503},
}
print("\n\nmock_response: ", mock_response)
url = f"https://api.anthropic.com/v1/messages"
mock_request = respx_mock.post(url).mock(
return_value=httpx.Response(200, json=mock_response)
)
client = HTTPHandler()
print("\n\nmock_response: ", mock_response)
with patch.object(client, "post") as mock_client:
try:
response = await litellm.acompletion(
model=model,
max_completion_tokens=10,
messages=[{"role": "user", "content": "Hello!"}],
client=client,
)
assert mock_request.called
request_body = json.loads(mock_request.calls[0].request.content)
except Exception as e:
print(f"Error: {e}")
mock_client.assert_called_once()
request_body = mock_client.call_args.kwargs["json"]
print("request_body: ", request_body)
assert request_body == {
"messages": [{"role": "user", "content": [{"type": "text", "text": "Hello!"}]}],
"messages": [
{"role": "user", "content": [{"type": "text", "text": "Hello!"}]}
],
"max_tokens": 10,
"model": model.split("/")[-1],
}
print(f"response: {response}")
assert isinstance(response, ModelResponse)
def test_all_model_configs():

View file

@ -12,28 +12,27 @@ sys.path.insert(
import httpx
import pytest
from respx import MockRouter
from unittest.mock import patch, MagicMock, AsyncMock
import litellm
from litellm import Choices, Message, ModelResponse, EmbeddingResponse, Usage
from litellm import completion
@pytest.mark.respx
def test_completion_nvidia_nim(respx_mock: MockRouter):
litellm.set_verbose = True
mock_response = ModelResponse(
id="cmpl-mock",
choices=[Choices(message=Message(content="Mocked response", role="assistant"))],
created=int(datetime.now().timestamp()),
model="databricks/dbrx-instruct",
)
model_name = "nvidia_nim/databricks/dbrx-instruct"
def test_completion_nvidia_nim():
from openai import OpenAI
mock_request = respx_mock.post(
"https://integrate.api.nvidia.com/v1/chat/completions"
).mock(return_value=httpx.Response(200, json=mock_response.dict()))
litellm.set_verbose = True
model_name = "nvidia_nim/databricks/dbrx-instruct"
client = OpenAI(
api_key="fake-api-key",
)
with patch.object(
client.chat.completions.with_raw_response, "create"
) as mock_client:
try:
response = completion(
completion(
model=model_name,
messages=[
{
@ -43,64 +42,48 @@ def test_completion_nvidia_nim(respx_mock: MockRouter):
],
presence_penalty=0.5,
frequency_penalty=0.1,
client=client,
)
except Exception as e:
print(e)
# Add any assertions here to check the response
print(response)
assert response.choices[0].message.content is not None
assert len(response.choices[0].message.content) > 0
assert mock_request.called
request_body = json.loads(mock_request.calls[0].request.content)
mock_client.assert_called_once()
request_body = mock_client.call_args.kwargs
print("request_body: ", request_body)
assert request_body == {
"messages": [
assert request_body["messages"] == [
{
"role": "user",
"content": "What's the weather like in Boston today in Fahrenheit?",
}
],
"model": "databricks/dbrx-instruct",
"frequency_penalty": 0.1,
"presence_penalty": 0.5,
}
except litellm.exceptions.Timeout as e:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
},
]
assert request_body["model"] == "databricks/dbrx-instruct"
assert request_body["frequency_penalty"] == 0.1
assert request_body["presence_penalty"] == 0.5
def test_embedding_nvidia_nim(respx_mock: MockRouter):
def test_embedding_nvidia_nim():
litellm.set_verbose = True
mock_response = EmbeddingResponse(
model="nvidia_nim/databricks/dbrx-instruct",
data=[
{
"embedding": [0.1, 0.2, 0.3],
"index": 0,
}
],
usage=Usage(
prompt_tokens=10,
completion_tokens=0,
total_tokens=10,
),
from openai import OpenAI
client = OpenAI(
api_key="fake-api-key",
)
mock_request = respx_mock.post(
"https://integrate.api.nvidia.com/v1/embeddings"
).mock(return_value=httpx.Response(200, json=mock_response.dict()))
response = litellm.embedding(
with patch.object(client.embeddings.with_raw_response, "create") as mock_client:
try:
litellm.embedding(
model="nvidia_nim/nvidia/nv-embedqa-e5-v5",
input="What is the meaning of life?",
input_type="passage",
client=client,
)
assert mock_request.called
request_body = json.loads(mock_request.calls[0].request.content)
except Exception as e:
print(e)
mock_client.assert_called_once()
request_body = mock_client.call_args.kwargs
print("request_body: ", request_body)
assert request_body == {
"input": "What is the meaning of life?",
"model": "nvidia/nv-embedqa-e5-v5",
"input_type": "passage",
"encoding_format": "base64",
}
assert request_body["input"] == "What is the meaning of life?"
assert request_body["model"] == "nvidia/nv-embedqa-e5-v5"
assert request_body["extra_body"]["input_type"] == "passage"

View file

@ -2,7 +2,7 @@ import json
import os
import sys
from datetime import datetime
from unittest.mock import AsyncMock
from unittest.mock import AsyncMock, patch
sys.path.insert(
0, os.path.abspath("../..")
@ -63,8 +63,7 @@ def test_openai_prediction_param():
@pytest.mark.asyncio
@pytest.mark.respx
async def test_openai_prediction_param_mock(respx_mock: MockRouter):
async def test_openai_prediction_param_mock():
"""
Tests that prediction parameter is correctly passed to the API
"""
@ -92,38 +91,15 @@ async def test_openai_prediction_param_mock(respx_mock: MockRouter):
public string Username { get; set; }
}
"""
from openai import AsyncOpenAI
mock_response = ModelResponse(
id="chatcmpl-AQ5RmV8GvVSRxEcDxnuXlQnsibiY9",
choices=[
Choices(
message=Message(
content=code.replace("Username", "Email").replace(
"username", "email"
),
role="assistant",
)
)
],
created=int(datetime.now().timestamp()),
model="gpt-4o-mini-2024-07-18",
usage={
"completion_tokens": 207,
"prompt_tokens": 175,
"total_tokens": 382,
"completion_tokens_details": {
"accepted_prediction_tokens": 0,
"reasoning_tokens": 0,
"rejected_prediction_tokens": 80,
},
},
)
client = AsyncOpenAI(api_key="fake-api-key")
mock_request = respx_mock.post("https://api.openai.com/v1/chat/completions").mock(
return_value=httpx.Response(200, json=mock_response.dict())
)
completion = await litellm.acompletion(
with patch.object(
client.chat.completions.with_raw_response, "create"
) as mock_client:
try:
await litellm.acompletion(
model="gpt-4o-mini",
messages=[
{
@ -133,20 +109,19 @@ async def test_openai_prediction_param_mock(respx_mock: MockRouter):
{"role": "user", "content": code},
],
prediction={"type": "content", "content": code},
client=client,
)
except Exception as e:
print(f"Error: {e}")
assert mock_request.called
request_body = json.loads(mock_request.calls[0].request.content)
mock_client.assert_called_once()
request_body = mock_client.call_args.kwargs
# Verify the request contains the prediction parameter
assert "prediction" in request_body
# verify prediction is correctly sent to the API
assert request_body["prediction"] == {"type": "content", "content": code}
# Verify the completion tokens details
assert completion.usage.completion_tokens_details.accepted_prediction_tokens == 0
assert completion.usage.completion_tokens_details.rejected_prediction_tokens == 80
@pytest.mark.asyncio
async def test_openai_prediction_param_with_caching():
@ -223,3 +198,73 @@ async def test_openai_prediction_param_with_caching():
)
assert completion_response_3.id != completion_response_1.id
@pytest.mark.asyncio()
async def test_vision_with_custom_model():
"""
Tests that an OpenAI compatible endpoint when sent an image will receive the image in the request
"""
import base64
import requests
from openai import AsyncOpenAI
client = AsyncOpenAI(api_key="fake-api-key")
litellm.set_verbose = True
api_base = "https://my-custom.api.openai.com"
# Fetch and encode a test image
url = "https://dummyimage.com/100/100/fff&text=Test+image"
response = requests.get(url)
file_data = response.content
encoded_file = base64.b64encode(file_data).decode("utf-8")
base64_image = f"data:image/png;base64,{encoded_file}"
with patch.object(
client.chat.completions.with_raw_response, "create"
) as mock_client:
try:
response = await litellm.acompletion(
model="openai/my-custom-model",
max_tokens=10,
api_base=api_base, # use the mock api
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {"url": base64_image},
},
],
}
],
client=client,
)
except Exception as e:
print(f"Error: {e}")
mock_client.assert_called_once()
request_body = mock_client.call_args.kwargs
print("request_body: ", request_body)
assert request_body["messages"] == [
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {
"url": ""
},
},
],
},
]
assert request_body["model"] == "my-custom-model"
assert request_body["max_tokens"] == 10

View file

@ -2,7 +2,7 @@ import json
import os
import sys
from datetime import datetime
from unittest.mock import AsyncMock
from unittest.mock import AsyncMock, patch, MagicMock
sys.path.insert(
0, os.path.abspath("../..")
@ -18,87 +18,75 @@ from litellm import Choices, Message, ModelResponse
@pytest.mark.asyncio
@pytest.mark.respx
async def test_o1_handle_system_role(respx_mock: MockRouter):
async def test_o1_handle_system_role():
"""
Tests that:
- max_tokens is translated to 'max_completion_tokens'
- role 'system' is translated to 'user'
"""
from openai import AsyncOpenAI
litellm.set_verbose = True
mock_response = ModelResponse(
id="cmpl-mock",
choices=[Choices(message=Message(content="Mocked response", role="assistant"))],
created=int(datetime.now().timestamp()),
model="o1-preview",
)
client = AsyncOpenAI(api_key="fake-api-key")
mock_request = respx_mock.post("https://api.openai.com/v1/chat/completions").mock(
return_value=httpx.Response(200, json=mock_response.dict())
)
response = await litellm.acompletion(
with patch.object(
client.chat.completions.with_raw_response, "create"
) as mock_client:
try:
await litellm.acompletion(
model="o1-preview",
max_tokens=10,
messages=[{"role": "system", "content": "Hello!"}],
client=client,
)
except Exception as e:
print(f"Error: {e}")
assert mock_request.called
request_body = json.loads(mock_request.calls[0].request.content)
mock_client.assert_called_once()
request_body = mock_client.call_args.kwargs
print("request_body: ", request_body)
assert request_body == {
"model": "o1-preview",
"max_completion_tokens": 10,
"messages": [{"role": "user", "content": "Hello!"}],
}
print(f"response: {response}")
assert isinstance(response, ModelResponse)
assert request_body["model"] == "o1-preview"
assert request_body["max_completion_tokens"] == 10
assert request_body["messages"] == [{"role": "user", "content": "Hello!"}]
@pytest.mark.asyncio
@pytest.mark.respx
@pytest.mark.parametrize("model", ["gpt-4", "gpt-4-0314", "gpt-4-32k", "o1-preview"])
async def test_o1_max_completion_tokens(respx_mock: MockRouter, model: str):
async def test_o1_max_completion_tokens(model: str):
"""
Tests that:
- max_completion_tokens is passed directly to OpenAI chat completion models
"""
from openai import AsyncOpenAI
litellm.set_verbose = True
mock_response = ModelResponse(
id="cmpl-mock",
choices=[Choices(message=Message(content="Mocked response", role="assistant"))],
created=int(datetime.now().timestamp()),
model=model,
)
client = AsyncOpenAI(api_key="fake-api-key")
mock_request = respx_mock.post("https://api.openai.com/v1/chat/completions").mock(
return_value=httpx.Response(200, json=mock_response.dict())
)
response = await litellm.acompletion(
with patch.object(
client.chat.completions.with_raw_response, "create"
) as mock_client:
try:
await litellm.acompletion(
model=model,
max_completion_tokens=10,
messages=[{"role": "user", "content": "Hello!"}],
client=client,
)
except Exception as e:
print(f"Error: {e}")
assert mock_request.called
request_body = json.loads(mock_request.calls[0].request.content)
mock_client.assert_called_once()
request_body = mock_client.call_args.kwargs
print("request_body: ", request_body)
assert request_body == {
"model": model,
"max_completion_tokens": 10,
"messages": [{"role": "user", "content": "Hello!"}],
}
print(f"response: {response}")
assert isinstance(response, ModelResponse)
assert request_body["model"] == model
assert request_body["max_completion_tokens"] == 10
assert request_body["messages"] == [{"role": "user", "content": "Hello!"}]
def test_litellm_responses():

View file

@ -1,94 +0,0 @@
import json
import os
import sys
from datetime import datetime
from unittest.mock import AsyncMock
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import httpx
import pytest
from respx import MockRouter
import litellm
from litellm import Choices, Message, ModelResponse
@pytest.mark.asyncio()
@pytest.mark.respx
async def test_vision_with_custom_model(respx_mock: MockRouter):
"""
Tests that an OpenAI compatible endpoint when sent an image will receive the image in the request
"""
import base64
import requests
litellm.set_verbose = True
api_base = "https://my-custom.api.openai.com"
# Fetch and encode a test image
url = "https://dummyimage.com/100/100/fff&text=Test+image"
response = requests.get(url)
file_data = response.content
encoded_file = base64.b64encode(file_data).decode("utf-8")
base64_image = f"data:image/png;base64,{encoded_file}"
mock_response = ModelResponse(
id="cmpl-mock",
choices=[Choices(message=Message(content="Mocked response", role="assistant"))],
created=int(datetime.now().timestamp()),
model="my-custom-model",
)
mock_request = respx_mock.post(f"{api_base}/chat/completions").mock(
return_value=httpx.Response(200, json=mock_response.dict())
)
response = await litellm.acompletion(
model="openai/my-custom-model",
max_tokens=10,
api_base=api_base, # use the mock api
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {"url": base64_image},
},
],
}
],
)
assert mock_request.called
request_body = json.loads(mock_request.calls[0].request.content)
print("request_body: ", request_body)
assert request_body == {
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {
"url": ""
},
},
],
}
],
"model": "my-custom-model",
"max_tokens": 10,
}
print(f"response: {response}")
assert isinstance(response, ModelResponse)

View file

@ -6,6 +6,7 @@ from unittest.mock import AsyncMock
import pytest
import httpx
from respx import MockRouter
from unittest.mock import patch, MagicMock, AsyncMock
sys.path.insert(
0, os.path.abspath("../..")
@ -68,13 +69,16 @@ def test_convert_dict_to_text_completion_response():
assert response.choices[0].logprobs.top_logprobs == [None, {",": -2.1568563}]
@pytest.mark.skip(
reason="need to migrate huggingface to support httpx client being passed in"
)
@pytest.mark.asyncio
@pytest.mark.respx
async def test_huggingface_text_completion_logprobs(respx_mock: MockRouter):
async def test_huggingface_text_completion_logprobs():
"""Test text completion with Hugging Face, focusing on logprobs structure"""
litellm.set_verbose = True
from litellm.llms.custom_httpx.http_handler import HTTPHandler, AsyncHTTPHandler
# Mock the raw response from Hugging Face
mock_response = [
{
"generated_text": ",\n\nI have a question...", # truncated for brevity
@ -91,19 +95,21 @@ async def test_huggingface_text_completion_logprobs(respx_mock: MockRouter):
}
]
# Mock the API request
mock_request = respx_mock.post(
"https://api-inference.huggingface.co/models/mistralai/Mistral-7B-v0.1"
).mock(return_value=httpx.Response(200, json=mock_response))
return_val = AsyncMock()
return_val.json.return_value = mock_response
client = AsyncHTTPHandler()
with patch.object(client, "post", return_value=return_val) as mock_post:
response = await litellm.atext_completion(
model="huggingface/mistralai/Mistral-7B-v0.1",
prompt="good morning",
client=client,
)
# Verify the request
assert mock_request.called
request_body = json.loads(mock_request.calls[0].request.content)
mock_post.assert_called_once()
request_body = json.loads(mock_post.call_args.kwargs["data"])
assert request_body == {
"inputs": "good morning",
"parameters": {"details": True, "return_full_text": False},

View file

@ -1146,6 +1146,21 @@ def test_process_gemini_image():
mime_type="image/png", file_uri="https://example.com/image.png"
)
# Test HTTPS VIDEO URL
https_result = _process_gemini_image("https://cloud-samples-data/video/animals.mp4")
print("https_result PNG", https_result)
assert https_result["file_data"] == FileDataType(
mime_type="video/mp4", file_uri="https://cloud-samples-data/video/animals.mp4"
)
# Test HTTPS PDF URL
https_result = _process_gemini_image("https://cloud-samples-data/pdf/animals.pdf")
print("https_result PDF", https_result)
assert https_result["file_data"] == FileDataType(
mime_type="application/pdf",
file_uri="https://cloud-samples-data/pdf/animals.pdf",
)
# Test base64 image
base64_image = "..."
base64_result = _process_gemini_image(base64_image)

View file

@ -95,3 +95,107 @@ async def test_handle_failed_db_connection():
print("_handle_failed_db_connection_for_get_key_object got exception", exc_info)
assert str(exc_info.value) == "Failed to connect to DB"
@pytest.mark.parametrize(
"model, expect_to_work",
[("openai/gpt-4o-mini", True), ("openai/gpt-4o", False)],
)
@pytest.mark.asyncio
async def test_can_key_call_model(model, expect_to_work):
"""
If wildcard model + specific model is used, choose the specific model settings
"""
from litellm.proxy.auth.auth_checks import can_key_call_model
from fastapi import HTTPException
llm_model_list = [
{
"model_name": "openai/*",
"litellm_params": {
"model": "openai/*",
"api_key": "test-api-key",
},
"model_info": {
"id": "e6e7006f83029df40ebc02ddd068890253f4cd3092bcb203d3d8e6f6f606f30f",
"db_model": False,
"access_groups": ["public-openai-models"],
},
},
{
"model_name": "openai/gpt-4o",
"litellm_params": {
"model": "openai/gpt-4o",
"api_key": "test-api-key",
},
"model_info": {
"id": "0cfcd87f2cb12a783a466888d05c6c89df66db23e01cecd75ec0b83aed73c9ad",
"db_model": False,
"access_groups": ["private-openai-models"],
},
},
]
router = litellm.Router(model_list=llm_model_list)
args = {
"model": model,
"llm_model_list": llm_model_list,
"valid_token": UserAPIKeyAuth(
models=["public-openai-models"],
),
"llm_router": router,
}
if expect_to_work:
await can_key_call_model(**args)
else:
with pytest.raises(Exception) as e:
await can_key_call_model(**args)
print(e)
@pytest.mark.parametrize(
"model, expect_to_work",
[("openai/gpt-4o", False), ("openai/gpt-4o-mini", True)],
)
@pytest.mark.asyncio
async def test_can_team_call_model(model, expect_to_work):
from litellm.proxy.auth.auth_checks import model_in_access_group
from fastapi import HTTPException
llm_model_list = [
{
"model_name": "openai/*",
"litellm_params": {
"model": "openai/*",
"api_key": "test-api-key",
},
"model_info": {
"id": "e6e7006f83029df40ebc02ddd068890253f4cd3092bcb203d3d8e6f6f606f30f",
"db_model": False,
"access_groups": ["public-openai-models"],
},
},
{
"model_name": "openai/gpt-4o",
"litellm_params": {
"model": "openai/gpt-4o",
"api_key": "test-api-key",
},
"model_info": {
"id": "0cfcd87f2cb12a783a466888d05c6c89df66db23e01cecd75ec0b83aed73c9ad",
"db_model": False,
"access_groups": ["private-openai-models"],
},
},
]
router = litellm.Router(model_list=llm_model_list)
args = {
"model": model,
"team_models": ["public-openai-models"],
"llm_router": router,
}
if expect_to_work:
assert model_in_access_group(**args)
else:
assert not model_in_access_group(**args)

View file

@ -33,7 +33,7 @@ from litellm.router import Router
@pytest.mark.asyncio()
@pytest.mark.respx()
async def test_azure_tenant_id_auth(respx_mock: MockRouter):
async def test_aaaaazure_tenant_id_auth(respx_mock: MockRouter):
"""
Tests when we set tenant_id, client_id, client_secret they don't get sent with the request

View file

@ -1,128 +1,128 @@
#### What this tests ####
# This adds perf testing to the router, to ensure it's never > 50ms slower than the azure-openai sdk.
import sys, os, time, inspect, asyncio, traceback
from datetime import datetime
import pytest
# #### What this tests ####
# # This adds perf testing to the router, to ensure it's never > 50ms slower than the azure-openai sdk.
# import sys, os, time, inspect, asyncio, traceback
# from datetime import datetime
# import pytest
sys.path.insert(0, os.path.abspath("../.."))
import openai, litellm, uuid
from openai import AsyncAzureOpenAI
# sys.path.insert(0, os.path.abspath("../.."))
# import openai, litellm, uuid
# from openai import AsyncAzureOpenAI
client = AsyncAzureOpenAI(
api_key=os.getenv("AZURE_API_KEY"),
azure_endpoint=os.getenv("AZURE_API_BASE"), # type: ignore
api_version=os.getenv("AZURE_API_VERSION"),
)
# client = AsyncAzureOpenAI(
# api_key=os.getenv("AZURE_API_KEY"),
# azure_endpoint=os.getenv("AZURE_API_BASE"), # type: ignore
# api_version=os.getenv("AZURE_API_VERSION"),
# )
model_list = [
{
"model_name": "azure-test",
"litellm_params": {
"model": "azure/chatgpt-v-2",
"api_key": os.getenv("AZURE_API_KEY"),
"api_base": os.getenv("AZURE_API_BASE"),
"api_version": os.getenv("AZURE_API_VERSION"),
},
}
]
# model_list = [
# {
# "model_name": "azure-test",
# "litellm_params": {
# "model": "azure/chatgpt-v-2",
# "api_key": os.getenv("AZURE_API_KEY"),
# "api_base": os.getenv("AZURE_API_BASE"),
# "api_version": os.getenv("AZURE_API_VERSION"),
# },
# }
# ]
router = litellm.Router(model_list=model_list) # type: ignore
# router = litellm.Router(model_list=model_list) # type: ignore
async def _openai_completion():
try:
start_time = time.time()
response = await client.chat.completions.create(
model="chatgpt-v-2",
messages=[{"role": "user", "content": f"This is a test: {uuid.uuid4()}"}],
stream=True,
)
time_to_first_token = None
first_token_ts = None
init_chunk = None
async for chunk in response:
if (
time_to_first_token is None
and len(chunk.choices) > 0
and chunk.choices[0].delta.content is not None
):
first_token_ts = time.time()
time_to_first_token = first_token_ts - start_time
init_chunk = chunk
end_time = time.time()
print(
"OpenAI Call: ",
init_chunk,
start_time,
first_token_ts,
time_to_first_token,
end_time,
)
return time_to_first_token
except Exception as e:
print(e)
return None
# async def _openai_completion():
# try:
# start_time = time.time()
# response = await client.chat.completions.create(
# model="chatgpt-v-2",
# messages=[{"role": "user", "content": f"This is a test: {uuid.uuid4()}"}],
# stream=True,
# )
# time_to_first_token = None
# first_token_ts = None
# init_chunk = None
# async for chunk in response:
# if (
# time_to_first_token is None
# and len(chunk.choices) > 0
# and chunk.choices[0].delta.content is not None
# ):
# first_token_ts = time.time()
# time_to_first_token = first_token_ts - start_time
# init_chunk = chunk
# end_time = time.time()
# print(
# "OpenAI Call: ",
# init_chunk,
# start_time,
# first_token_ts,
# time_to_first_token,
# end_time,
# )
# return time_to_first_token
# except Exception as e:
# print(e)
# return None
async def _router_completion():
try:
start_time = time.time()
response = await router.acompletion(
model="azure-test",
messages=[{"role": "user", "content": f"This is a test: {uuid.uuid4()}"}],
stream=True,
)
time_to_first_token = None
first_token_ts = None
init_chunk = None
async for chunk in response:
if (
time_to_first_token is None
and len(chunk.choices) > 0
and chunk.choices[0].delta.content is not None
):
first_token_ts = time.time()
time_to_first_token = first_token_ts - start_time
init_chunk = chunk
end_time = time.time()
print(
"Router Call: ",
init_chunk,
start_time,
first_token_ts,
time_to_first_token,
end_time - first_token_ts,
)
return time_to_first_token
except Exception as e:
print(e)
return None
# async def _router_completion():
# try:
# start_time = time.time()
# response = await router.acompletion(
# model="azure-test",
# messages=[{"role": "user", "content": f"This is a test: {uuid.uuid4()}"}],
# stream=True,
# )
# time_to_first_token = None
# first_token_ts = None
# init_chunk = None
# async for chunk in response:
# if (
# time_to_first_token is None
# and len(chunk.choices) > 0
# and chunk.choices[0].delta.content is not None
# ):
# first_token_ts = time.time()
# time_to_first_token = first_token_ts - start_time
# init_chunk = chunk
# end_time = time.time()
# print(
# "Router Call: ",
# init_chunk,
# start_time,
# first_token_ts,
# time_to_first_token,
# end_time - first_token_ts,
# )
# return time_to_first_token
# except Exception as e:
# print(e)
# return None
async def test_azure_completion_streaming():
"""
Test azure streaming call - measure on time to first (non-null) token.
"""
n = 3 # Number of concurrent tasks
## OPENAI AVG. TIME
tasks = [_openai_completion() for _ in range(n)]
chat_completions = await asyncio.gather(*tasks)
successful_completions = [c for c in chat_completions if c is not None]
total_time = 0
for item in successful_completions:
total_time += item
avg_openai_time = total_time / 3
## ROUTER AVG. TIME
tasks = [_router_completion() for _ in range(n)]
chat_completions = await asyncio.gather(*tasks)
successful_completions = [c for c in chat_completions if c is not None]
total_time = 0
for item in successful_completions:
total_time += item
avg_router_time = total_time / 3
## COMPARE
print(f"avg_router_time: {avg_router_time}; avg_openai_time: {avg_openai_time}")
assert avg_router_time < avg_openai_time + 0.5
# async def test_azure_completion_streaming():
# """
# Test azure streaming call - measure on time to first (non-null) token.
# """
# n = 3 # Number of concurrent tasks
# ## OPENAI AVG. TIME
# tasks = [_openai_completion() for _ in range(n)]
# chat_completions = await asyncio.gather(*tasks)
# successful_completions = [c for c in chat_completions if c is not None]
# total_time = 0
# for item in successful_completions:
# total_time += item
# avg_openai_time = total_time / 3
# ## ROUTER AVG. TIME
# tasks = [_router_completion() for _ in range(n)]
# chat_completions = await asyncio.gather(*tasks)
# successful_completions = [c for c in chat_completions if c is not None]
# total_time = 0
# for item in successful_completions:
# total_time += item
# avg_router_time = total_time / 3
# ## COMPARE
# print(f"avg_router_time: {avg_router_time}; avg_openai_time: {avg_openai_time}")
# assert avg_router_time < avg_openai_time + 0.5
# asyncio.run(test_azure_completion_streaming())
# # asyncio.run(test_azure_completion_streaming())

View file

@ -1146,7 +1146,9 @@ async def test_exception_with_headers_httpx(
except litellm.RateLimitError as e:
exception_raised = True
assert e.litellm_response_headers is not None
assert (
e.litellm_response_headers is not None
), "litellm_response_headers is None"
print("e.litellm_response_headers", e.litellm_response_headers)
assert int(e.litellm_response_headers["retry-after"]) == cooldown_time

View file

@ -212,7 +212,7 @@ async def test_bedrock_guardrail_triggered():
session,
"sk-1234",
model="fake-openai-endpoint",
messages=[{"role": "user", "content": f"Hello do you like coffee?"}],
messages=[{"role": "user", "content": "Hello do you like coffee?"}],
guardrails=["bedrock-pre-guard"],
)
pytest.fail("Should have thrown an exception")

View file

@ -0,0 +1,71 @@
import pytest
import asyncio
import aiohttp, openai
from openai import OpenAI, AsyncOpenAI
from typing import Optional, List, Union
import uuid
async def make_moderations_curl_request(
session,
key,
request_data: dict,
):
url = "http://0.0.0.0:4000/moderations"
headers = {
"Authorization": f"Bearer {key}",
"Content-Type": "application/json",
}
async with session.post(url, headers=headers, json=request_data) as response:
status = response.status
response_text = await response.text()
if status != 200:
raise Exception(response_text)
return await response.json()
@pytest.mark.asyncio
async def test_basic_moderations_on_proxy_no_model():
"""
Test moderations endpoint on proxy when no `model` is specified in the request
"""
async with aiohttp.ClientSession() as session:
test_text = "I want to harm someone" # Test text that should trigger moderation
request_data = {
"input": test_text,
}
try:
response = await make_moderations_curl_request(
session,
"sk-1234",
request_data,
)
print("response=", response)
except Exception as e:
print(e)
pytest.fail("Moderations request failed")
@pytest.mark.asyncio
async def test_basic_moderations_on_proxy_with_model():
"""
Test moderations endpoint on proxy when `model` is specified in the request
"""
async with aiohttp.ClientSession() as session:
test_text = "I want to harm someone" # Test text that should trigger moderation
request_data = {
"input": test_text,
"model": "text-moderation-stable",
}
try:
response = await make_moderations_curl_request(
session,
"sk-1234",
request_data,
)
print("response=", response)
except Exception as e:
pytest.fail("Moderations request failed")

View file

@ -693,3 +693,47 @@ def test_personal_key_generation_check():
),
data=GenerateKeyRequest(),
)
def test_prepare_metadata_fields():
from litellm.proxy.management_endpoints.key_management_endpoints import (
prepare_metadata_fields,
)
new_metadata = {"test": "new"}
old_metadata = {"test": "test"}
args = {
"data": UpdateKeyRequest(
key_alias=None,
duration=None,
models=[],
spend=None,
max_budget=None,
user_id=None,
team_id=None,
max_parallel_requests=None,
metadata=new_metadata,
tpm_limit=None,
rpm_limit=None,
budget_duration=None,
allowed_cache_controls=[],
soft_budget=None,
config={},
permissions={},
model_max_budget={},
send_invite_email=None,
model_rpm_limit=None,
model_tpm_limit=None,
guardrails=None,
blocked=None,
aliases={},
key="sk-1qGQUJJTcljeaPfzgWRrXQ",
tags=None,
),
"non_default_values": {"metadata": new_metadata},
"existing_metadata": {"tags": None, **old_metadata},
}
non_default_values = prepare_metadata_fields(**args)
assert non_default_values == {"metadata": new_metadata}

View file

@ -0,0 +1,5 @@
include:
- included_models.yaml
litellm_settings:
callbacks: ["prometheus"]

View file

@ -0,0 +1,5 @@
include:
- non-existent-file.yaml
litellm_settings:
callbacks: ["prometheus"]

View file

@ -0,0 +1,6 @@
include:
- models_file_1.yaml
- models_file_2.yaml
litellm_settings:
callbacks: ["prometheus"]

View file

@ -0,0 +1,4 @@
model_list:
- model_name: included-model
litellm_params:
model: gpt-4

View file

@ -0,0 +1,4 @@
model_list:
- model_name: included-model-1
litellm_params:
model: gpt-4

View file

@ -0,0 +1,4 @@
model_list:
- model_name: included-model-2
litellm_params:
model: gpt-3.5-turbo

View file

@ -1345,17 +1345,8 @@ def test_generate_and_update_key(prisma_client):
)
current_time = datetime.now(timezone.utc)
print(
"days between now and budget_reset_at",
(budget_reset_at - current_time).days,
)
# assert budget_reset_at is 30 days from now
assert (
abs(
(budget_reset_at - current_time).total_seconds() - 30 * 24 * 60 * 60
)
<= 10
)
assert 31 >= (budget_reset_at - current_time).days >= 29
# cleanup - delete key
delete_key_request = KeyRequest(keys=[generated_key])
@ -2926,7 +2917,6 @@ async def test_generate_key_with_model_tpm_limit(prisma_client):
"team": "litellm-team3",
"model_tpm_limit": {"gpt-4": 100},
"model_rpm_limit": {"gpt-4": 2},
"tags": None,
}
# Update model tpm_limit and rpm_limit
@ -2950,7 +2940,6 @@ async def test_generate_key_with_model_tpm_limit(prisma_client):
"team": "litellm-team3",
"model_tpm_limit": {"gpt-4": 200},
"model_rpm_limit": {"gpt-4": 3},
"tags": None,
}
@ -2990,7 +2979,6 @@ async def test_generate_key_with_guardrails(prisma_client):
assert result["info"]["metadata"] == {
"team": "litellm-team3",
"guardrails": ["aporia-pre-call"],
"tags": None,
}
# Update model tpm_limit and rpm_limit
@ -3012,7 +3000,6 @@ async def test_generate_key_with_guardrails(prisma_client):
assert result["info"]["metadata"] == {
"team": "litellm-team3",
"guardrails": ["aporia-pre-call", "aporia-post-call"],
"tags": None,
}
@ -3632,3 +3619,152 @@ async def test_key_generate_with_secret_manager_call(prisma_client):
################################################################################
@pytest.mark.asyncio
async def test_key_alias_uniqueness(prisma_client):
"""
Test that:
1. We cannot create two keys with the same alias
2. We cannot update a key to use an alias that's already taken
3. We can update a key while keeping its existing alias
"""
setattr(litellm.proxy.proxy_server, "prisma_client", prisma_client)
setattr(litellm.proxy.proxy_server, "master_key", "sk-1234")
await litellm.proxy.proxy_server.prisma_client.connect()
try:
# Create first key with an alias
unique_alias = f"test-alias-{uuid.uuid4()}"
key1 = await generate_key_fn(
data=GenerateKeyRequest(key_alias=unique_alias),
user_api_key_dict=UserAPIKeyAuth(
user_role=LitellmUserRoles.PROXY_ADMIN,
api_key="sk-1234",
user_id="1234",
),
)
# Try to create second key with same alias - should fail
try:
key2 = await generate_key_fn(
data=GenerateKeyRequest(key_alias=unique_alias),
user_api_key_dict=UserAPIKeyAuth(
user_role=LitellmUserRoles.PROXY_ADMIN,
api_key="sk-1234",
user_id="1234",
),
)
pytest.fail("Should not be able to create a second key with the same alias")
except Exception as e:
print("vars(e)=", vars(e))
assert "Unique key aliases across all keys are required" in str(e.message)
# Create another key with different alias
another_alias = f"test-alias-{uuid.uuid4()}"
key3 = await generate_key_fn(
data=GenerateKeyRequest(key_alias=another_alias),
user_api_key_dict=UserAPIKeyAuth(
user_role=LitellmUserRoles.PROXY_ADMIN,
api_key="sk-1234",
user_id="1234",
),
)
# Try to update key3 to use key1's alias - should fail
try:
await update_key_fn(
data=UpdateKeyRequest(key=key3.key, key_alias=unique_alias),
request=Request(scope={"type": "http"}),
)
pytest.fail("Should not be able to update a key to use an existing alias")
except Exception as e:
assert "Unique key aliases across all keys are required" in str(e.message)
# Update key1 with its own existing alias - should succeed
updated_key = await update_key_fn(
data=UpdateKeyRequest(key=key1.key, key_alias=unique_alias),
request=Request(scope={"type": "http"}),
)
assert updated_key is not None
except Exception as e:
print("got exceptions, e=", e)
print("vars(e)=", vars(e))
pytest.fail(f"An unexpected error occurred: {str(e)}")
@pytest.mark.asyncio
async def test_enforce_unique_key_alias(prisma_client):
"""
Unit test the _enforce_unique_key_alias function:
1. Test it allows unique aliases
2. Test it blocks duplicate aliases for new keys
3. Test it allows updating a key with its own existing alias
4. Test it blocks updating a key with another key's alias
"""
from litellm.proxy.management_endpoints.key_management_endpoints import (
_enforce_unique_key_alias,
)
setattr(litellm.proxy.proxy_server, "prisma_client", prisma_client)
await litellm.proxy.proxy_server.prisma_client.connect()
try:
# Test 1: Allow unique alias
unique_alias = f"test-alias-{uuid.uuid4()}"
await _enforce_unique_key_alias(
key_alias=unique_alias,
prisma_client=prisma_client,
) # Should pass
# Create a key with this alias in the database
key1 = await generate_key_fn(
data=GenerateKeyRequest(key_alias=unique_alias),
user_api_key_dict=UserAPIKeyAuth(
user_role=LitellmUserRoles.PROXY_ADMIN,
api_key="sk-1234",
user_id="1234",
),
)
# Test 2: Block duplicate alias for new key
try:
await _enforce_unique_key_alias(
key_alias=unique_alias,
prisma_client=prisma_client,
)
pytest.fail("Should not allow duplicate alias")
except Exception as e:
assert "Unique key aliases across all keys are required" in str(e.message)
# Test 3: Allow updating key with its own alias
await _enforce_unique_key_alias(
key_alias=unique_alias,
existing_key_token=hash_token(key1.key),
prisma_client=prisma_client,
) # Should pass
# Test 4: Block updating with another key's alias
another_key = await generate_key_fn(
data=GenerateKeyRequest(key_alias=f"test-alias-{uuid.uuid4()}"),
user_api_key_dict=UserAPIKeyAuth(
user_role=LitellmUserRoles.PROXY_ADMIN,
api_key="sk-1234",
user_id="1234",
),
)
try:
await _enforce_unique_key_alias(
key_alias=unique_alias,
existing_key_token=another_key.key,
prisma_client=prisma_client,
)
pytest.fail("Should not allow using another key's alias")
except Exception as e:
assert "Unique key aliases across all keys are required" in str(e.message)
except Exception as e:
print("Unexpected error:", e)
pytest.fail(f"An unexpected error occurred: {str(e)}")

View file

@ -23,6 +23,8 @@ import logging
from litellm.proxy.proxy_server import ProxyConfig
INVALID_FILES = ["config_with_missing_include.yaml"]
@pytest.mark.asyncio
async def test_basic_reading_configs_from_files():
@ -38,6 +40,9 @@ async def test_basic_reading_configs_from_files():
print(files)
for file in files:
if file in INVALID_FILES: # these are intentionally invalid files
continue
print("reading file=", file)
config_path = os.path.join(example_config_yaml_path, file)
config = await proxy_config_instance.get_config(config_file_path=config_path)
print(config)
@ -115,3 +120,67 @@ async def test_read_config_file_with_os_environ_vars():
os.environ[key] = _old_env_vars[key]
else:
del os.environ[key]
@pytest.mark.asyncio
async def test_basic_include_directive():
"""
Test that the include directive correctly loads and merges configs
"""
proxy_config_instance = ProxyConfig()
current_path = os.path.dirname(os.path.abspath(__file__))
config_path = os.path.join(
current_path, "example_config_yaml", "config_with_include.yaml"
)
config = await proxy_config_instance.get_config(config_file_path=config_path)
# Verify the included model list was merged
assert len(config["model_list"]) > 0
assert any(
model["model_name"] == "included-model" for model in config["model_list"]
)
# Verify original config settings remain
assert config["litellm_settings"]["callbacks"] == ["prometheus"]
@pytest.mark.asyncio
async def test_missing_include_file():
"""
Test that a missing included file raises FileNotFoundError
"""
proxy_config_instance = ProxyConfig()
current_path = os.path.dirname(os.path.abspath(__file__))
config_path = os.path.join(
current_path, "example_config_yaml", "config_with_missing_include.yaml"
)
with pytest.raises(FileNotFoundError):
await proxy_config_instance.get_config(config_file_path=config_path)
@pytest.mark.asyncio
async def test_multiple_includes():
"""
Test that multiple files in the include list are all processed correctly
"""
proxy_config_instance = ProxyConfig()
current_path = os.path.dirname(os.path.abspath(__file__))
config_path = os.path.join(
current_path, "example_config_yaml", "config_with_multiple_includes.yaml"
)
config = await proxy_config_instance.get_config(config_file_path=config_path)
# Verify models from both included files are present
assert len(config["model_list"]) == 2
assert any(
model["model_name"] == "included-model-1" for model in config["model_list"]
)
assert any(
model["model_name"] == "included-model-2" for model in config["model_list"]
)
# Verify original config settings remain
assert config["litellm_settings"]["callbacks"] == ["prometheus"]

View file

@ -444,7 +444,7 @@ def test_foward_litellm_user_info_to_backend_llm_call():
def test_update_internal_user_params():
from litellm.proxy.management_endpoints.internal_user_endpoints import (
_update_internal_user_params,
_update_internal_new_user_params,
)
from litellm.proxy._types import NewUserRequest
@ -456,7 +456,7 @@ def test_update_internal_user_params():
data = NewUserRequest(user_role="internal_user", user_email="krrish3@berri.ai")
data_json = data.model_dump()
updated_data_json = _update_internal_user_params(data_json, data)
updated_data_json = _update_internal_new_user_params(data_json, data)
assert updated_data_json["models"] == litellm.default_internal_user_params["models"]
assert (
updated_data_json["max_budget"]
@ -530,7 +530,7 @@ def test_prepare_key_update_data():
data = UpdateKeyRequest(key="test_key", metadata=None)
updated_data = prepare_key_update_data(data, existing_key_row)
assert updated_data["metadata"] == None
assert updated_data["metadata"] is None
@pytest.mark.parametrize(
@ -574,3 +574,108 @@ def test_get_docs_url(env_vars, expected_url):
result = _get_docs_url()
assert result == expected_url
@pytest.mark.parametrize(
"request_tags, tags_to_add, expected_tags",
[
(None, None, []), # both None
(["tag1", "tag2"], None, ["tag1", "tag2"]), # tags_to_add is None
(None, ["tag3", "tag4"], ["tag3", "tag4"]), # request_tags is None
(
["tag1", "tag2"],
["tag3", "tag4"],
["tag1", "tag2", "tag3", "tag4"],
), # both have unique tags
(
["tag1", "tag2"],
["tag2", "tag3"],
["tag1", "tag2", "tag3"],
), # overlapping tags
([], [], []), # both empty lists
("not_a_list", ["tag1"], ["tag1"]), # request_tags invalid type
(["tag1"], "not_a_list", ["tag1"]), # tags_to_add invalid type
(
["tag1"],
["tag1", "tag2"],
["tag1", "tag2"],
), # duplicate tags in inputs
],
)
def test_merge_tags(request_tags, tags_to_add, expected_tags):
from litellm.proxy.litellm_pre_call_utils import LiteLLMProxyRequestSetup
result = LiteLLMProxyRequestSetup._merge_tags(
request_tags=request_tags, tags_to_add=tags_to_add
)
assert isinstance(result, list)
assert sorted(result) == sorted(expected_tags)
@pytest.mark.asyncio
@pytest.mark.parametrize(
"key_tags, request_tags, expected_tags",
[
# exact duplicates
(["tag1", "tag2", "tag3"], ["tag1", "tag2", "tag3"], ["tag1", "tag2", "tag3"]),
# partial duplicates
(
["tag1", "tag2", "tag3"],
["tag2", "tag3", "tag4"],
["tag1", "tag2", "tag3", "tag4"],
),
# duplicates within key tags
(["tag1", "tag2"], ["tag3", "tag4"], ["tag1", "tag2", "tag3", "tag4"]),
# duplicates within request tags
(["tag1", "tag2"], ["tag2", "tag3", "tag4"], ["tag1", "tag2", "tag3", "tag4"]),
# case sensitive duplicates
(["Tag1", "TAG2"], ["tag1", "tag2"], ["Tag1", "TAG2", "tag1", "tag2"]),
],
)
async def test_add_litellm_data_to_request_duplicate_tags(
key_tags, request_tags, expected_tags
):
"""
Test to verify duplicate tags between request and key metadata are handled correctly
Aggregation logic when checking spend can be impacted if duplicate tags are not handled correctly.
User feedback:
"If I register my key with tag1 and
also pass the same tag1 when using the key
then I see tag1 twice in the
LiteLLM_SpendLogs table request_tags column. This can mess up aggregation logic"
"""
mock_request = Mock(spec=Request)
mock_request.url.path = "/chat/completions"
mock_request.query_params = {}
mock_request.headers = {}
# Setup key with tags in metadata
user_api_key_dict = UserAPIKeyAuth(
api_key="test_api_key",
user_id="test_user_id",
org_id="test_org_id",
metadata={"tags": key_tags},
)
# Setup request data with tags
data = {"metadata": {"tags": request_tags}}
# Process request
proxy_config = Mock()
result = await add_litellm_data_to_request(
data=data,
request=mock_request,
user_api_key_dict=user_api_key_dict,
proxy_config=proxy_config,
)
# Verify results
assert "metadata" in result
assert "tags" in result["metadata"]
assert sorted(result["metadata"]["tags"]) == sorted(
expected_tags
), f"Expected {expected_tags}, got {result['metadata']['tags']}"

View file

@ -0,0 +1,111 @@
import asyncio
import os
import sys
from unittest.mock import Mock, patch, AsyncMock
import pytest
from fastapi import Request
from litellm.proxy.utils import _get_redoc_url, _get_docs_url
sys.path.insert(0, os.path.abspath("../.."))
import litellm
@pytest.mark.asyncio
async def test_disable_error_logs():
"""
Test that the error logs are not written to the database when disable_error_logs is True
"""
# Mock the necessary components
mock_prisma_client = AsyncMock()
mock_general_settings = {"disable_error_logs": True}
with patch(
"litellm.proxy.proxy_server.general_settings", mock_general_settings
), patch("litellm.proxy.proxy_server.prisma_client", mock_prisma_client):
# Create a test exception
test_exception = Exception("Test error")
test_kwargs = {
"model": "gpt-4",
"exception": test_exception,
"optional_params": {},
"litellm_params": {"metadata": {}},
}
# Call the failure handler
from litellm.proxy.proxy_server import _PROXY_failure_handler
await _PROXY_failure_handler(
kwargs=test_kwargs,
completion_response=None,
start_time="2024-01-01",
end_time="2024-01-01",
)
# Verify prisma client was not called to create error logs
if hasattr(mock_prisma_client, "db"):
assert not mock_prisma_client.db.litellm_errorlogs.create.called
@pytest.mark.asyncio
async def test_disable_spend_logs():
"""
Test that the spend logs are not written to the database when disable_spend_logs is True
"""
# Mock the necessary components
mock_prisma_client = Mock()
mock_prisma_client.spend_log_transactions = []
with patch("litellm.proxy.proxy_server.disable_spend_logs", True), patch(
"litellm.proxy.proxy_server.prisma_client", mock_prisma_client
):
from litellm.proxy.proxy_server import update_database
# Call update_database with disable_spend_logs=True
await update_database(
token="fake-token",
response_cost=0.1,
user_id="user123",
completion_response=None,
start_time="2024-01-01",
end_time="2024-01-01",
)
# Verify no spend logs were added
assert len(mock_prisma_client.spend_log_transactions) == 0
@pytest.mark.asyncio
async def test_enable_error_logs():
"""
Test that the error logs are written to the database when disable_error_logs is False
"""
# Mock the necessary components
mock_prisma_client = AsyncMock()
mock_general_settings = {"disable_error_logs": False}
with patch(
"litellm.proxy.proxy_server.general_settings", mock_general_settings
), patch("litellm.proxy.proxy_server.prisma_client", mock_prisma_client):
# Create a test exception
test_exception = Exception("Test error")
test_kwargs = {
"model": "gpt-4",
"exception": test_exception,
"optional_params": {},
"litellm_params": {"metadata": {}},
}
# Call the failure handler
from litellm.proxy.proxy_server import _PROXY_failure_handler
await _PROXY_failure_handler(
kwargs=test_kwargs,
completion_response=None,
start_time="2024-01-01",
end_time="2024-01-01",
)
# Verify prisma client was called to create error logs
if hasattr(mock_prisma_client, "db"):
assert mock_prisma_client.db.litellm_errorlogs.create.called

View file

@ -1040,8 +1040,11 @@ def test_pattern_match_deployment_set_model_name(
async def test_pass_through_moderation_endpoint_factory(model_list):
router = Router(model_list=model_list)
response = await router._pass_through_moderation_endpoint_factory(
original_function=litellm.amoderation, input="this is valid good text"
original_function=litellm.amoderation,
input="this is valid good text",
model=None,
)
assert response is not None
@pytest.mark.parametrize(

View file

@ -300,6 +300,7 @@ async def test_key_update(metadata):
get_key=key,
metadata=metadata,
)
print(f"updated_key['metadata']: {updated_key['metadata']}")
assert updated_key["metadata"] == metadata
await update_proxy_budget(session=session) # resets proxy spend
await chat_completion(session=session, key=key)

View file

@ -114,7 +114,7 @@ async def test_spend_logs():
async def get_predict_spend_logs(session):
url = f"http://0.0.0.0:4000/global/predict/spend/logs"
url = "http://0.0.0.0:4000/global/predict/spend/logs"
headers = {"Authorization": "Bearer sk-1234", "Content-Type": "application/json"}
data = {
"data": [
@ -155,6 +155,7 @@ async def get_spend_report(session, start_date, end_date):
return await response.json()
@pytest.mark.skip(reason="datetime in ci/cd gets set weirdly")
@pytest.mark.asyncio
async def test_get_predicted_spend_logs():
"""